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Matrix in high dimensions

Regular Matrix
Matrix � has entires �8, 9 , with indices 8, 9 ∈ N, (e.g. 8 = 4, 9 = 5).

Matrix in 3- dimension

Matrix � has entires �G,H , with indices G, H ∈ N3 ,
(e.g. 3 = 2, G = (5, 2), H = (4, 5)).

Example.

For fixed !, the transition matrix of simple random walk in (Z!)3 is

?GH =
1

23
1(‖G − H‖ = 1), G, H ∈ Z3! , Z! = Z/!Z

(i.e., A d-dimensional box with side ! and periodic boundary condition)
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Random band matrices in 3-dimension
� = (�GH)G,H∈ /3

!
, with centered, independent entries

up to symmetry � = �†, with band width, � # :

�GH = 0, |G − H | > ,

�GH ∼ ,−3/2, |G − H | ≤ ,.

The translation-invariant distribution property:

�GH ∼ �G+0,H+0, ∀G, H, 0
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Eigenvectors of band matrices.

Simple example
Let D: be one of the eigenvectors of � as �D: = _:D: . (_1 ≤ _2 ≤ · · · )
Clearly, if � is diagonal matrix, then D: only has one non-zero entry.

How about general band width, case? For D: (U), U = 1, 2, · · · 2000:
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Figure: |D: (U) |2. 3 = 1, ! = 2000,, = !1/4,, = !1/2 and, = !3/4.

The key result of this talk: for 3 ≥ 7,, ≥ ! X , it is the third case.
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Eugene Wigner ’s gifts

Wigner ensembles:

� = (ℎ8 9 )#8, 9=1, Eℎ 9: = 0, E|ℎ 9: |2 =
1
#
.

ℎ8 9 are independent (not necessarily normal).

Wigner’s vision concerning the universality of random matrix statistics

The local spectral statis-
tics of highly correlated
quantum systems are
given by random matrix
statistics.
Random matrix statistics
are “universal" laws for
highly correlated systems.
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Universality (Wigner)

The local eigenvalue / eigenvector statistics of Wigner ensembles are the
same as those of the Gaussian ensembles.

Universality phenomenon of Wigner matrices are very successfully proved.

Universality conjectures (theorems) of Wigner matrices

• Wigner-Dyson-Mehta conjecture, i.e., bulk universality.
Erdős, Bourgade, Yau, Y. (2017) , Schlein, Tao, Vu, Johansson, etc.

P
(
_8 ∼ � + G1

#
, _ 9 ∼ � + G2

#

)
are independent of the matrix law.

• Edge universality.
Lee, Y. (2013), Erdős, Yau, Tao, Vu, Soshnikov, etc.

• Eigenvector universality.
Bourgade, Yau (2017), Antti, Y., Schlein, Erdős, Tao, Vu, etc.
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Universality (mean-field)

The Wigner ensemble is a special class of mean-field models.

Other mean-field models

• sparsity : the adjacency matrices of Erdős-Rényi graphs.

• correlations : 3-regular graphs or other models with summable decay of
correlation functions.

• models of type � + � with � deterministic.

B. Landon, J.Y. Huang, Bauerschmidt; A. Knowles et al.; Bourgade et al.;
Erdős et al. ; Guionnet et al.; Zeitouni et al. .
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Wigner’s grand vision

Wigner ensemble =⇒ Highly correlated system ?

Highly correlated system, e.g., nucleus is a non-mean-field system.

The fundamental question concerning Wigner’s grand vision after the
Wigner-Dyson-Mehta conjecture

Why can mean-field Wigner ensembles model non-mean field systems?
Hamiltonians in physics are typically short ranged.

Beyond mean-field

• Nucleus

• Random Schrödinger operators (Anderson’s models)

• Random band matrices.
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Integrability v.s. Chaos

What will the billiard trajectories look like in these cases ?
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Integrability v.s. Chaos
For circle case and ellipse case :

For stadium case and Sinai (hole) case :
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Quantum Chaos

Energy levels in quantum billiards: � = −Δ ++ , Δ is Laplace operator

�k: := _:k:

For the gaps between eigenvalues:
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Integrability v.s. Chaos

Conjectures
Berry-Tabor conjecture (1977): If the billiard trajectories are integrable, the
eigenvalue spacings statistics is given by the Poisson distribution 4−G3G.

Bohigas-Giannoni-Schmit conjecture (1984): If the billiard is chaotic, the
eigenvalue spacings statistics is given by the GOE (Wigner).

Recall Wigner’s grand vision
Highly correlated system?
Non mean field model ?
Nucleus?
As long as they are chaotic, their local statistics is given by the GOE.
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Localization v.s. Delocalization
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Conjectures:
Integrability: Eigenvectors are localized, and eigenvalues spacing statistics
are Poisson.

Chaos: Eigenvectors are delocalized, and eigenvalues spacing statistics are
GOE (regular random matrix) type.



Introduction History Main results Spontaneous renormalization

Localization v.s. Delocalization

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.05

0.1

0.15

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Conjectures:
Integrability: Eigenvectors are localized, and eigenvalues spacing statistics
are Poisson.

Chaos: Eigenvectors are delocalized, and eigenvalues spacing statistics are
GOE (regular random matrix) type.



Introduction History Main results Spontaneous renormalization

Random matrix, Quantum chaos and Non-mean-field

Big picture:

Conjectures
Integrability: Eigenvectors are localized, and eigenvalues spacing statistics
are Poisson.

Chaos: Eigenvectors are delocalized, and eigenvalues spacing statistics are
GOE (regular random matrix) type.
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Random band matrix
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Conjecture: Transition occurs at some critical band width,2 (!)
In the bulk, Localization+Poisson,, � ,2 ; Delocalization+GOE,, � ,2 .
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Random band matrix
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Conjecture: Transition occurs at some critical band width,2 (!)
In the bulk, Localization+Poisson,, � ,2 ; Delocalization+GOE,, � ,2 .

Based on numerics (Casati-Molinari-Izrailev ’90; Feingold-Leitner-Wilkinson
’91) and non-rigorous supersymmetric arguments (Fyodorov-Mirlin, 1991):

,2 (!) =


√
! for 3 = 1√
log ! for 3 = 2

O(1) for 3 ≥ 3
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Results on this conjecture (3 = 1)

Theorem ( Bourgade-Yang-Yau-Y. (2018-2019))

Assume, � !
3
4 and � ∈ (−2 + ^, 2 − ^).

• (Bulk universality) {! (_: − �)}: → GOE.

• (Delocalization) For bulk eigenvector, ‖u‖∞ ≤ !−
1
2+n .

• (QUE) For any |� | > , ,
��∑

U∈� |uU |2 − |� |/!
�� ≤ !−n |� |/!.

Localization, Gaussian band matrix

For, � !
1
8 Schenker ’09.

For, � !
1
7 Peled- Schenker-Shamis-Sodin ’17 .

Poisson eigenvalues statistics are still unknown.
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A quick review on other results

Delocalization (d=1)

, � !6/7 Erdős and Knowles
, � !4/5 Erdős, Knowles, Yau and Y.
, � !7/9 Y. He and M. Marcozzi
, � !3/4 Bourgade, Yau, Yang and Y’ 2017-18

Eigenvalues at the edge of spectrum (d=1)

, ∼ !5/6 S. Sodin (2008)
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A quick review on some other results

Supersymmetry
When the entries are Gaussian with some specific covariance profiles, e.g.
E( |�8 9 |2) = (−,2Δ + 1)−1

8 9
supersymmetry techniques can be applied:

, ∼ ! T. Shcherbina 2014

, � !6/7 Bao and Erdős 2017

, � !1/2 T. Shcherbina and M. Shcherbina 2017, 2019

, � !1/2 M. Disertori, M. Lohmann, S. Sodin 2018

(Expected Density of states)

Large finite, M. Disertori, H. Pinson and T. Spencer 2011
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Delocalization of high dimension random band matrix

Previous results

, = !0

0 > 6
3+6 L. Erdos and � . Knowles

0 > 3+2
23+2 L. Erdos, A. Knowles, Yau and Y.

0 > 3+1
23+1 Y. He and M. Marcozzi

0 > 2
23+2 Yang and Y.

Theorem (Yang, Yau and Y. (2021) - main result)

For any 0 > 0 and 3 ≥ 7, arXiv:2104.12048, arXiv: 2107.05795
They are the first two parts of this series.
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Yang - Yau - Y. (2021)
With high prob, for any W, ℓ,  > 0, define

BW, 
;

:=
{
U : inf

G0

∑
G

|uU (G) |2 exp
[ ( |G − G0 |

ℓ

)W ] ≤  }
∼ eigenvectors exponentially localized in balls of radius ℓ

For any ℓ ≤ !1−2 for some 2 > 0,

lim
#→∞

|BW, 
;
|

#
= 0,

i.e. the density of exponentially localized eigenvectors at scale ℓ vanishes
(weak delocalization).

Note:
The first two parts of this proof focused on the complex Gaussian and 3 ≥ 8.
With a mild improvement, the third part will prove the general case and 3 ≥ 7.



Introduction History Main results Spontaneous renormalization

Quantum diffusion conjecture
Basic tool is resolvent: � (I) = (� − I)−1, I ∈ C.

Quantum diffusion conjecture

For [ � !−3 , G ≠ H, I = � + 8[

|�GH (I) |2 ∼
1
!3

∑
?∈ 2c

!
Z3

48 ? · (G−H)

[ + (,?)2
∼

[ 1
[ −,2Δ

]
GH

:= �[ (G − H),

�[ (G − H) is

the Green’s function of a random walk with step length, at the time [−1.

Theorem (Yang, Yau, Y’ (2021))

Quantum diffusion conjecture holds up to the time ∼ ,2/!2, i.e., the time that
|�GH | diffuses to the boundary. Particularly,

|�GH |2 ∼
1

,2 |G − H |3−2 , Im I ∼ ,2/!2
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Heuristic explanation

It is one of the heuristic explanation for critical bandwidth,2 for all 3 ∈ N.

Thouless theory
Delocalization - localization phase transition occurs at

Thouless energy ∼ typical eigenvalue gap ∼ !−3

Thouless energy = (Thouless time)−1

Thouless time:
The time of the resolvent effectively diffuses to the boundary: !2/,2.

(typical eigenvalue gap)−1 ∼ Thouless time

⇐⇒ !2−3 ∼ ,2 =⇒ 3 > 2 phase transition occurs at finite large,

For 3 = 1, the phase transition occurs at, =
√
!.
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Correction on Quantum diffusion.

Yang-Yau-Y. (2021) Sharp estimate on resolvents

For any positive integer " and for any G, H ∈ Z3
!
, (GH = E|�GH |2,

E|�GH |2 =
[

|<B2 |2

1 −
(
1 + Σ(" )

)
|<B2 |2(

]
GH

+ O(,−"3/2),

holds for [ ≥ ,2+Y/!2 with Y > 0 (There are other error terms omitted).

Self-energy Renormalization

The self-energy Σ(" ) (I) = ∑
=≤" E= (I); {E=} is the = − Cℎ order correction.

It satisfies the cancellation property (sum zero)��� ∑
G∈Z3

!

(E=)0G (I)
��� � ∑

G∈Z3
!

���(E=)0G (I)���
Note: the factor is about [.
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• In Fourier space,∑
G

E|�0G (I) |24i? ·G ∼ 1
[ + ? · D (" )

4 5 5
(I)?

+ errors.

where the effective diffusion matrix can be computed from Σ(" ) .

• Our result is roughly equivalent to that the unitary evolution |48C�k0 |2
induces a random walk up to the Thouless time C � !2/,2.
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Renormalization

E|�GH |2 =
[

|<B2 |2

1 −
(
1 + Σ(" )

)
|<B2 |2(

]
GH

+ O(,−"3/2),

Renormalization for electron (magnetic moment)

• QED + Expansion with Feynman graph (like Talor’s expansion)

• Infrared divergence (Need cancellation)

• Renormalization + "correct" parameters. (Choose better parameters)

• Keep expansion + corrections. (See the cancellation)
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Spontaneous renormalization

Renormalization for resolvent

• Expansion with RMT

• Infrared divergence: (‖G − H‖ � , . )

• Renormalization (The parameters are fixed. )

• Spontaneous renormalization (Cancellation property must exists.)

• Keep expansion + corrections. (Obtain sum zero property)
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Basic strategy

Step 1: choose decent !,, and [, such that in the expansion of∑
GH

E|�GH |2 =
∑
:

A:

the term having
∑
GH (E1)GH is the leading term if it does not have sum zero

property.

Step 2: With Ward’s identity, E|�GH |2 ∼ !3[−1. It will implies the∑
GH

(E1)GH �
∑
GH

| (E1)GH |
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Basic strategy

With ∑
GH

(E1)GH �
∑
GH

| (E1)GH |

Step 3: Since E1 is the sum of finite graphs, so they must really cancel each
other. It likes

0, 1 ∈ N, |0 + 1 | ≤ 0.9 =⇒ 0 + 1 = 0.

Step 4: Repeat Step 1.
But in this time, since we know the sum zero property of (E1), we can choose
some decent !,, and [, such that in the expansion of

∑
GH E|�GH |2, the

term having
∑
GH (E2)GH is the leading term.

Step 5 Repeat step 2 and 3 and go on.
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Spontaneous renormalization

Interesting fact:

We don’t know the exact local structures for this sum zero property, even for
the simple case like = = 6. We tried matlab for help, but failed.
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Thank you!
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