Strong Szegő Theorem on a Jordan Curve

Kurt Johansson KTH, Stockholm, Sweden

MSRI Integrable Structures in Random Matrix Theory and Beyond October 18, 2021

Dedicated to the memory of Harold Widom 1932–2021

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Introduction

 γ a Jordan curve in $\mathbb C$ and $g : \gamma \mapsto \mathbb C$ a given function.

Consider the determinant

$$
D_n[e^{\mathcal{E}}] = \det \left(\int_{\gamma} \zeta^j \bar{\zeta}^k e^{\mathcal{E}(\zeta)} |d\zeta| \right)_{0 \le j,k < n}
$$

 $\gamma = \mathbb{T}$, the unit circle gives Toeplitz determinants. Related to orthogonal polynomials on γ with weight $e^{\mathcal{E}}$ if the weight is positive.

Introduced by Szegő in a paper from 1921 in the case $g = 0$:

Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören, Math. Z. 9 (1921), 218–270

KORKAR KERKER EL VOLO

See also the last chapter in Szegő's book Orthogonal polynomials.

Introduction

For Toeplitz determinants we have the strong Szegő limit theorem which gives precise asymptotics for D_n .

Want to generalize to other Jordan curves.

Another interpretation: Planar Coulomb gas on the curve

$$
D_n[e^{\mathcal{B}}] = \frac{1}{n!} \int_{\gamma^n} \prod_{1 \leq \mu \neq \nu \leq n} |\zeta_{\mu} - \zeta_{\nu}| \prod_{\mu=1}^n e^{\mathcal{B}(\zeta_{\mu})} \prod_{\mu=1}^n |d\zeta_{\nu}|
$$

=
$$
\frac{1}{n!} \int_{\gamma^n} e^{-\sum_{\mu \neq \nu} \log |\zeta_{\mu} - \zeta_{\nu}|^{-1} + \sum_{\mu} \mathcal{B}(\zeta_{\mu})} |d\zeta|.
$$

In particular

$$
Z_n(\gamma) := D_n(1)
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

is the partition function. Asymptotics?

Let Ω^* be the unbounded part of the complement of γ and \mathbb{D}^* the exterior of the closed unit disk.

Let $c\phi : \mathbb{D}^* \mapsto \Omega^*$ $(c =$ the capacity of $\gamma)$ be the exterior Riemann mapping function.

$$
\phi(z) = z + \phi_0 + \phi_{-1} z^{-1} + \dots
$$

Leading order asymptotics as $n \to \infty$

$$
D_n[e^{\mathcal{E}}] \sim \exp\bigg(-n^2 \inf_{\mu} \int_{\gamma} \int_{\gamma} \log |\zeta_1 - \zeta_2|^{-1} d\mu(\zeta_1) d\mu(\zeta_2)\bigg)
$$

= $\exp(-n^2 V(\gamma)) = \exp(\gamma)^{n^2}$.

KORK STRAIN A BAR SHOP

Let $|z| > 1$, $|\zeta| > 1$. We have the expansion

$$
\log \frac{\phi(\zeta) - \phi(z)}{\zeta - z} = -\sum_{k,\ell=1}^{\infty} a_{k\ell} \zeta^{-k} z^{-\ell},
$$

 $a_{k\ell}$ Grunsky coefficients, $a_{k\ell} = a_{\ell k}$.

If γ is a quasicircle there is a $\kappa < 1$ so that we have the **Grunsky** inequality \mathbf{r} \sim 1

$$
\left|\sum_{k,\ell=1}^{\infty}\sqrt{k\ell}\,a_{k\ell}w_kw_\ell\right|\leq\kappa\sum_{k=1}^{\infty}|w_k|^2,
$$

$$
\log \frac{\phi(\zeta) - \phi(z)}{\zeta - z} = -\sum_{k,\ell=1}^{\infty} a_{k\ell} \zeta^{-k} z^{-\ell},
$$

Let

$$
B=(b_{k\ell})=(\sqrt{k\ell}a_{k\ell})=(b^{(1)}_{k\ell})+\mathrm{i}(b^{(2)}_{k\ell})=B^{(1)}_k+\mathrm{i}B^{(2)}_k
$$

be the Grunsky operator on $\ell^2(\mathbb{C})$. It is a complex and symmetric infinite matrix.

Let

$$
B=(b_{k\ell})=(\sqrt{k\ell}a_{k\ell})=(b_{k\ell}^{(1)})+\mathrm{i}(b_{k\ell}^{(2)})=B_k^{(1)}+\mathrm{i}B_k^{(2)}
$$

be the Grunsky operator on $\ell^2(\mathbb{C})$. It is a complex and symmetric infinite matrix.

Define

$$
K = \begin{pmatrix} B^{(1)} & B^{(2)} \\ B^{(2)} & -B^{(1)} \end{pmatrix}.
$$

on $\ell^2(\mathbb{C}) \oplus \ell^2(\mathbb{C})$ which is real and symmetric.

We have the Fourier expansion

$$
g(\phi(e^{i\theta})) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos k\theta + b_k \sin k\theta.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Write

$$
\mathbf{g} = \begin{pmatrix} (\frac{1}{2}\sqrt{k}a_k)_{k \geq 1} \\ (\frac{1}{2}\sqrt{k}b_k)_{k \geq 1} \end{pmatrix} \in \ell^2(\mathbb{C}) \oplus \ell^2(\mathbb{C}).
$$

Theorem Assume that γ is $\mathsf{C}^{5+\alpha}, \, \alpha > 0$, and that

$$
\sum_{k=1}^{\infty}k(|a_k|^2+|b_k|^2)<\infty.
$$

Then

$$
D_n[e^{\mathcal{E}}] = \frac{(2\pi)^n \mathrm{cap}(\gamma)^{n^2}}{\sqrt{\mathrm{det}(I+K)}} \exp\left(na_0/2 + \mathbf{g}^t(I+K)^{-1}\mathbf{g} + o(1)\right),
$$

as $n \to \infty$.

Optimal conditions on g. Not optimal for γ . More about the case $g = 0$ later.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Example

Let γ be an **ellipse** with half-axes $1+\rho^2$ and $1-\rho^2$; then $\mathsf{cap}(\gamma)=1$,

$$
\phi(z) = z + \rho^2/z \quad \text{and} \quad b_{k\ell} = \rho^{k+\ell} \delta_{k\ell}.
$$

In this case

$$
D_n[e^{\mathcal{E}}] = \frac{(2\pi)^n}{\prod_{k=1}^{\infty} (1 - \rho^{4k})^{1/2}} \exp\left(\frac{n a_0}{2} + \frac{1}{4} \sum_{k=1}^{\infty} k \left(\frac{a_k^2}{1 + \rho^{2k}} + \frac{b_k^2}{1 - \rho^{2k}}\right) + o(1)\right)
$$

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

as $n \to \infty$.

Earlier results

Szegő and Grenander-Szegő proved for analytic γ

$$
\lim_{n\to\infty} \exp(\gamma)^{-2n-1} \frac{D_{n+1}[e^{\mathcal{S}}]}{D_n[e^{\mathcal{S}}]} = 2\pi \exp\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} g(\phi(e^{i\theta})) d\theta\right).
$$

I proved the following relative Szegő theorem in my thesis (J. '88)

$$
\frac{D_n[e^{\mathcal{E}}]}{D_n[1]} = \exp[na_0/2 + \mathbf{g}^t(I + K)^{-1}\mathbf{g} + o(1)]
$$

as $n \to \infty$ under stronger assumptions than in the new theorem.

Assume w.l.o.g. that $cap(\gamma) = 1$ and $a_0 = 0$.

$$
\frac{1}{(2\pi)^n} D_n[e^{\beta}] \n= \frac{1}{(2\pi)^{n}!} \int_{[-\pi,\pi]^n} \prod_{\mu \neq \nu} \left| \frac{\phi(e^{i\theta_{\mu}}) - \phi(e^{i\theta_{\nu}})}{e^{i\theta_{\mu}} - e^{i\theta_{\mu}}} \right| \prod_{\mu} e^{\sum_{\mu} g(\phi(e^{i\theta_{\mu}})) + \log |\phi'(e^{i\theta_{\mu}})|} \n\times \prod_{\mu \neq \nu} |e^{i\theta_{\mu}} - e^{i\theta_{\mu}}| d\theta \n= \mathbb{E}_n \left[exp \left(-\text{Re} \sum_{k,\ell=1}^{\infty} a_{k\ell} \left(\sum_{\mu} e^{-ik\theta_{\mu}} \right) \left(\sum_{\nu} e^{-i\ell\theta_{\nu}} \right) + \sum_{\mu} g(\phi(e^{i\theta_{\mu}})) \right) \right] \n= \lim_{m \to \infty} \mathbb{E}_n \left[exp \left(-\text{Re} \sum_{k,\ell=1}^m b_{k\ell} \left(\frac{1}{\sqrt{k}} \sum_{\mu} e^{-ik\theta_{\mu}} \right) \left(\frac{1}{\sqrt{\ell}} \sum_{\nu} e^{-i\ell\theta_{\nu}} \right) \right. \n+ \sum_{\mu} g(\phi(e^{i\theta_{\mu}})) \right].
$$

K ロ ▶ K 레 ▶ K 로 ▶ K 로 ▶ - 로 - K 이 이 이 이

Introduce the infinite column vectors

$$
\mathbf{X} = \left(\frac{1}{\sqrt{k}}\sum_{\mu}\cos k\theta_{\mu}\right)_{k\geq 1}, \quad \mathbf{Y} = \left(\frac{1}{\sqrt{k}}\sum_{\mu}\sin k\theta_{\mu}\right)_{k\geq 1},
$$

We have the expression

$$
- \operatorname{Re} \sum_{k,\ell=1}^{m} b_{k\ell} (x_k - iy_k)(x_{\ell} - iy_{\ell}) = -\begin{pmatrix} P_m \mathbf{X} \\ P_m \mathbf{Y} \end{pmatrix}^t K_m \begin{pmatrix} P_m \mathbf{X} \\ P_m \mathbf{Y} \end{pmatrix}
$$

= -\begin{pmatrix} P_m \mathbf{X} \\ P_m \mathbf{Y} \end{pmatrix}^t T_m \begin{pmatrix} -\Lambda_m & 0 \\ 0 & \Lambda_m \end{pmatrix} T_m^t \begin{pmatrix} P_m \mathbf{X} \\ P_m \mathbf{Y} \end{pmatrix},

where

$$
K_m = \begin{pmatrix} B_m^{(1)} & B_m^{(2)} \\ B_m^{(2)} & -B_m^{(1)} \end{pmatrix}, \quad \Lambda_m = \text{diag}(\lambda_{m,1}, \ldots, \lambda_{m,m}),
$$

 T_m is an orthogonal matrix, and $\lambda_{m,k}$ are the singular values of B_m . By Grunsky's inequality $|\lambda_{m,k}| \leq \kappa < 1$. **K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^**

Let $\mathbf u$ and $\mathbf v$ be two real column vectors in $\mathbb R^m$. Set

$$
L_m = \begin{pmatrix} P_m & 0 \\ 0 & P_m \end{pmatrix}^t T_m \begin{pmatrix} i\lambda_m^{1/2} & 0 \\ 0 & \lambda_m^{1/2} \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix}.
$$

Then our formulas give

$$
\frac{1}{(2\pi)^n}D_n[e^{\mathcal{E}}] = \lim_{m \to \infty} \frac{1}{\pi^m} \int_{\mathbb{R}^m} du \int_{\mathbb{R}^m} dve^{-u^t u - v^t v} \mathbb{E}_n \left[exp(2(L_m + \mathbf{g})^t \begin{pmatrix} \mathbf{X} \\ \mathbf{Y} \end{pmatrix} \right].
$$

K ロ X イロ X K ミ X K ミ X ミ X Y Q Q Q

We want to take the limit $n \to \infty$.

Then our formulas give

$$
\frac{1}{(2\pi)^n}D_n[e^{\mathcal{E}}]=\lim_{m\to\infty}\frac{1}{\pi^m}\int_{\mathbb{R}^m}du\int_{\mathbb{R}^m}dve^{-u^tu-v^tv}\mathbb{E}_n\bigg[\exp(2(L_m+\mathbf{g})^t\begin{pmatrix}\mathbf{X}\\ \mathbf{Y}\end{pmatrix}\bigg].
$$

We want to take the limit $n \to \infty$. If we formally interchange the two limits and take the $n \to \infty$ limit inside the Gaussian integral we need to compute

$$
\lim_{n\to\infty}\mathbb{E}_n\bigg[\exp(2(L_m+\mathbf{g})^t\begin{pmatrix}\mathbf{X}\\ \mathbf{Y}\end{pmatrix}\bigg]
$$

which can be done using the strong Szegő limit theorem for Toeplitz determinants. Computing the Gaussian integral and letting $m \to \infty$ then gives

$$
\lim_{n\to\infty}\frac{1}{(2\pi)^n}D_n[e^{\mathcal{S}}]=\frac{1}{\sqrt{\det(I+K)}}\exp\bigg(\mathbf{g}^t(I+K)^{-1}\mathbf{g}+o(1)\bigg).
$$

KORK ERKER ADE YOUR

Steps in the real proof

• Upper bound. If f is real valued on $\mathbb T$ and $\hat f_0=0$, then

$$
\mathbb{E}_n[e^{\sum_{\mu} f(e^{i\theta_{\mu}})}] \leq e^{\sum_{k=1}^{\infty} k|\hat{f}_k|^2}.
$$

- To get real-valued objects use analytic continuation and normal families.
- Lower bound. Change of variables $\theta_{\mu} = \phi_{\mu} \frac{1}{n} h(\phi_{\mu})$ plus Jensen's inequality and appropriate h.
- Grunsky part should not be too big. Leads to regularity assumptions on γ .

4 D > 4 P + 4 B + 4 B + B + 9 Q O

Asymptotics of the partition function

The theorem gives for $Z_n(\gamma) = D_n[1]$,

 $\lim_{n\to\infty} \log \frac{Z_n(\gamma)/\mathrm{cap}(\gamma)^{n^2}}{Z_n(\mathbb{T})/\mathrm{cap}(\mathbb{T})^{n^2}}$ $\frac{Z_n(\gamma)/\mathrm{cap}(\gamma)^n}{Z_n(\mathbb{T})/\mathrm{cap}(\mathbb{T})^{n^2}} = \lim_{n\to\infty} \log \frac{Z_n(\gamma)}{(2\pi)^n \mathrm{cap}(\gamma)^{n^2}} = -\frac{1}{2}$ $\frac{1}{2}$ log det $(I - B^*B)$, since det $(I + K) = det(I - B^*B)$.

The quantity $-\frac{1}{2} \log \det(I - B^*B)$ is, up to a multiplicative constant, the **Loewner energy** of the curve γ . It has also appeared as a Kähler potential for the Weil-Petersson metric on the universal Teichmüller space $T_0(1)$.

Curves with finite Loewner energy are called Weil-Petersson **quasicircles**. The curve γ is a Weil-Petersson quasicircle if and only if the Grunsky operator is Hilbert-Schmidt.

KORKAR KERKER EL VOLO

Asymptotics of the partition function

Some references on the Loewner energy and Weil-Petersson quasicircles:

Takhtajan, L. A., Teo, L.-P., Weil-Petersson metric on the universal Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861

Wang, Y., *Equivalent descriptions of the Loewner energy*, Invent. Math. 218 (2019), no. 2, 573–621

Bishop, C. J., Weil-Petersson curves, β -numbers and minimal surfaces, http://www.math.stonybrook.edu/ bishop/papers/wpce.pdf

Viklund, F., Wang, Y., Interplay between Loewner and Dirichlet energies via conformal welding and flow-lines, Geom. Funct. Anal. 30 (2020) 289–321

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

A new characterization of Weil-Petersson quasicircles

Theorem

The Jordan curve γ is a Weil-Petersson quasicircle if and only if

$$
\limsup_{n\to\infty}\frac{Z_n(\gamma)}{(2\pi)^n\mathrm{cap}(\gamma)^{n^2}}<\infty,
$$

and in that case we have the limit

$$
\lim_{n\to\infty}\log\frac{Z_n(\gamma)}{(2\pi)^n\mathrm{cap}(\gamma)^{n^2}}=-\frac{1}{2}\log\det(I-B^*B).
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

A new characterization of Weil-Petersson quasicircles

Theorem

The Jordan curve γ is a Weil-Petersson quasicircle if and only if

$$
\limsup_{n\to\infty}\frac{Z_n(\gamma)}{(2\pi)^n\mathrm{cap}(\gamma)^{n^2}}<\infty,
$$

and in that case we have the limit

$$
\lim_{n\to\infty}\log\frac{Z_n(\gamma)}{(2\pi)^n\mathrm{cap}(\gamma)^{n^2}}=-\frac{1}{2}\log\det(I-B^*B).
$$

Does not follow from above. Let γ_r be given by $\frac{1}{r}\phi(rz)$, $r > 1$, an analytic curve. Use the fact that $\frac{Z_n(\gamma_r)}{(2\pi)^n\text{cap}(\gamma)^{n^2}}$ is increasing in n and decreasing in r which of course has to be proved.

KORKAR KERKER EL VOLO

Thank you for your attention!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @