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Introduction

γ a Jordan curve in C and g : γ 7→ C a given function.

Consider the determinant

Dn[eg ] = det

(∫
γ

ζ j ζ̄keg(ζ) |dζ|
)

0≤j,k<n

γ = T, the unit circle gives Toeplitz determinants. Related to orthogonal
polynomials on γ with weight eg if the weight is positive.

Introduced by Szegő in a paper from 1921 in the case g = 0:

Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören, Math. Z. 9 (1921),
218–270

See also the last chapter in Szegő’s book Orthogonal polynomials.



Introduction

For Toeplitz determinants we have the strong Szegő limit theorem
which gives precise asymptotics for Dn.

Want to generalize to other Jordan curves.

Another interpretation: Planar Coulomb gas on the curve

Dn[eg ] =
1

n!

∫
γn

∏
1≤µ 6=ν≤n

|ζµ − ζν |
n∏
µ=1

eg(ζµ)
n∏
µ=1

|dζν |

=
1

n!

∫
γn

e−
∑

µ6=ν log |ζµ−ζν |−1+
∑

µ g(ζµ)|dζ|.

In particular
Zn(γ) := Dn(1)

is the partition function. Asymptotics?



Szegő theorem on a Jordan curve
Let Ω∗ be the unbounded part of the complement of γ and D∗ the
exterior of the closed unit disk.

Let cφ : D∗ 7→ Ω∗ (c = the capacity of γ) be the exterior Riemann
mapping function.

φ(z) = z + φ0 + φ−1z
−1 + . . .

Leading order asymptotics as n→∞

Dn[eg ] ∼ exp

(
− n2 inf

µ

∫
γ

∫
γ

log |ζ1 − ζ2|−1 dµ(ζ1)dµ(ζ2)

)
= exp(−n2V (γ)) = cap(γ)n

2

.



Szegő theorem on a Jordan curve

Let |z | > 1, |ζ| > 1. We have the expansion

log
φ(ζ)− φ(z)

ζ − z
= −

∞∑
k,`=1

ak`ζ
−kz−`,

ak` Grunsky coefficients, ak` = a`k .

If γ is a quasicircle there is a κ < 1 so that we have the Grunsky
inequality ∣∣∣∣∣∣

∞∑
k,`=1

√
k` ak`wkw`

∣∣∣∣∣∣ ≤ κ
∞∑
k=1

|wk |2,



Szegő theorem on a Jordan curve

log
φ(ζ)− φ(z)

ζ − z
= −

∞∑
k,`=1

ak`ζ
−kz−`,

Let
B = (bk`) = (

√
k`ak`) = (b

(1)
k` ) + i(b

(2)
k` ) = B

(1)
k + iB

(2)
k

be the Grunsky operator on `2(C). It is a complex and symmetric
infinite matrix.



Szegő theorem on a Jordan curve

Let
B = (bk`) = (

√
k`ak`) = (b

(1)
k` ) + i(b

(2)
k` ) = B

(1)
k + iB

(2)
k

be the Grunsky operator on `2(C). It is a complex and symmetric
infinite matrix.

Define

K =

(
B(1) B(2)

B(2) −B(1)

)
.

on `2(C)⊕ `2(C) which is real and symmetric.

We have the Fourier expansion

g(φ(eiθ)) =
a0
2

+
∞∑
k=1

ak cos kθ + bk sin kθ.



Szegő theorem on a Jordan curve

Write

g =

(
( 1
2

√
kak)k≥1

( 1
2

√
kbk)k≥1

)
∈ `2(C)⊕ `2(C).

Theorem
Assume that γ is C 5+α, α > 0, and that

∞∑
k=1

k(|ak |2 + |bk |2) <∞.

Then

Dn[eg ] =
(2π)ncap(γ)n

2√
det(I + K )

exp
(
na0/2 + gt(I + K )−1g + o(1)

)
,

as n→∞.

Optimal conditions on g . Not optimal for γ. More about the case g = 0
later.



Example

Let γ be an ellipse with half-axes 1 + ρ2 and 1− ρ2; then cap(γ) = 1,

φ(z) = z + ρ2/z and bk` = ρk+`δk`.

In this case

Dn[eg ] =
(2π)n∏∞

k=1(1− ρ4k)1/2
exp

(
na0
2

+
1

4

∞∑
k=1

k

(
a2k

1 + ρ2k
+

b2k
1− ρ2k

)
+o(1)

)
as n→∞.



Earlier results

Szegő and Grenander-Szegő proved for analytic γ

lim
n→∞

cap(γ)−2n−1
Dn+1[eg ]

Dn[eg ]
= 2π exp

(
1

2π

∫ π

−π
g(φ(e iθ)) dθ

)
.

I proved the following relative Szegő theorem in my thesis (J. ’88)

Dn[eg ]

Dn[1]
= exp[na0/2 + gt(I + K )−1g + o(1)]

as n→∞ under stronger assumptions than in the new theorem.



Heuristic proof

Assume w.l.o.g. that cap(γ) = 1 and a0 = 0.

1

(2π)n
Dn[eg ]

=
1

(2π)n!

∫
[−π,π]n

∏
µ6=ν

∣∣∣∣φ(eiθµ)− φ(eiθν )

eiθµ − eiθµ

∣∣∣∣∏
µ

e
∑

µ g(φ(eiθµ ))+log |φ′(eiθµ )|

×
∏
µ6=ν

∣∣eiθµ − eiθµ
∣∣ dθ

= En

[
exp

(
− Re

∞∑
k,`=1

ak`

(∑
µ

e−ikθµ
)(∑

ν

e−i`θν
)

+
∑
µ

g(φ(eiθµ))

)]

= lim
m→∞

En

[
exp

(
− Re

m∑
k,`=1

bk`

(
1√
k

∑
µ

e−ikθµ
)(

1√
`

∑
ν

e−i`θν
)

+
∑
µ

g(φ(e iθµ))

)]
.



Heuristic proof
Introduce the infinite column vectors

X =

(
1√
k

∑
µ

cos kθµ

)
k≥1

, Y =

(
1√
k

∑
µ

sin kθµ

)
k≥1

,

We have the expression

− Re

m∑
k,`=1

bk`(xk − iyk)(x` − iy`) = −
(
PmX
PmY

)t

Km

(
PmX
PmY

)

= −
(
PmX
PmY

)t

Tm

(
−Λm 0

0 Λm

)
T t
m

(
PmX
PmY

)
,

where

Km =

(
B

(1)
m B

(2)
m

B
(2)
m −B(1)

m

)
, Λm = diag(λm,1, . . . , λm,m),

Tm is an orthogonal matrix, and λm,k are the singular values of Bm. By
Grunsky’s inequality |λm,k | ≤ κ < 1.



Heuristic proof

Let u and v be two real column vectors in Rm. Set

Lm =

(
Pm 0
0 Pm

)t

Tm

(
iΛ

1/2
m 0

0 Λ
1/2
m

)(
u
v

)
.

Then our formulas give

1

(2π)n
Dn[eg ] = lim

m→∞

1

πm

∫
Rm

du

∫
Rm

dve−u
tu−v tvEn

[
exp(2(Lm+g)t

(
X
Y

)]
.

We want to take the limit n→∞.



Heuristic proof

Then our formulas give

1

(2π)n
Dn[eg ] = lim

m→∞

1

πm

∫
Rm

du

∫
Rm

dve−u
tu−v tvEn

[
exp(2(Lm+g)t

(
X
Y

)]
.

We want to take the limit n→∞. If we formally interchange the two
limits and take the n→∞ limit inside the Gaussian integral we need to
compute

lim
n→∞

En

[
exp(2(Lm + g)t

(
X
Y

)]
which can be done using the strong Szegő limit theorem for Toeplitz
determinants. Computing the Gaussian integral and letting m→∞ then
gives

lim
n→∞

1

(2π)n
Dn[eg ] =

1√
det(I + K )

exp

(
gt(I + K )−1g + o(1)

)
.



Steps in the real proof

• Upper bound. If f is real valued on T and f̂0 = 0, then

En[e
∑

µ f (eiθµ )] ≤ e
∑∞

k=1 k|f̂k |
2

.

• To get real-valued objects use analytic continuation and normal
families.

• Lower bound. Change of variables θµ = φµ − 1
nh(φµ) plus Jensen’s

inequality and appropriate h.

• Grunsky part should not be too big. Leads to regularity assumptions
on γ.



Asymptotics of the partition function

The theorem gives for Zn(γ) = Dn[1],

lim
n→∞

log
Zn(γ)/cap(γ)n

2

Zn(T)/cap(T)n2
= lim

n→∞
log

Zn(γ)

(2π)ncap(γ)n2
= −1

2
log det(I−B∗B),

since det(I + K ) = det(I − B∗B).

The quantity − 1
2 log det(I − B∗B) is, up to a multiplicative constant, the

Loewner energy of the curve γ. It has also appeared as a Kähler
potential for the Weil-Petersson metric on the universal Teichmüller
space T0(1).

Curves with finite Loewner energy are called Weil-Petersson
quasicircles. The curve γ is a Weil-Petersson quasicircle if and only if
the Grunsky operator is Hilbert-Schmidt.



Asymptotics of the partition function

Some references on the Loewner energy and Weil-Petersson quasicircles:

Takhtajan, L. A., Teo, L.-P., Weil-Petersson metric on the universal
Teichmüller space, Mem. Amer. Math. Soc. 183 (2006), no. 861

Wang, Y., Equivalent descriptions of the Loewner energy, Invent. Math.
218 (2019), no. 2, 573–621

Bishop, C. J., Weil-Petersson curves, β-numbers and minimal surfaces,
http://www.math.stonybrook.edu/ bishop/papers/wpce.pdf

Viklund, F., Wang, Y., Interplay between Loewner and Dirichlet energies
via conformal welding and flow-lines, Geom. Funct. Anal. 30 (2020)
289–321



A new characterization of Weil-Petersson quasicircles

Theorem
The Jordan curve γ is a Weil-Petersson quasicircle if and only if

lim sup
n→∞

Zn(γ)

(2π)ncap(γ)n2
<∞,

and in that case we have the limit

lim
n→∞

log
Zn(γ)

(2π)ncap(γ)n2
= −1

2
log det(I − B∗B).



A new characterization of Weil-Petersson quasicircles

Theorem
The Jordan curve γ is a Weil-Petersson quasicircle if and only if

lim sup
n→∞

Zn(γ)

(2π)ncap(γ)n2
<∞,

and in that case we have the limit

lim
n→∞

log
Zn(γ)

(2π)ncap(γ)n2
= −1

2
log det(I − B∗B).

Does not follow from above. Let γr be given by 1
r φ(rz), r > 1, an

analytic curve. Use the fact that Zn(γr )

(2π)ncap(γ)n2
is increasing in n and

decreasing in r which of course has to be proved.



Thank you for your attention!


