Gibbsian line ensembles and β -corners processes

Evgeni Dimitrov

Columbia University

October 18, 2021

Workshop on Integrable Structures in Random Matrix Theory and Beyond – MSRI, Berkeley

[Convergence of Gibbsian line ensembles](#page-9-0)

[Maximal free energy in the log-gamma polymer](#page-19-0)

 $Gibbs$ property = internal consistency condition of a random model. Uniform lozenge tilings of the hexagon

Line ensemble (LE) = finite or countably infinite collection of random continuous curves, defined on the same probability space.

Tiling Gibbs property \implies LE Gibbs property. LE Gibbs property $=$ locally avoiding Bernoulli random walks (or bridges). Line ensemble (LE) = finite or countably infinite collection of random continuous curves, defined on the same probability space.

LE Gibbs property $=$ locally avoiding Bernoulli random walks (or bridges).

Gibbsian line ensembles

Gibbsian line ensembles $=$ finite or countably infinite collection of random walk trajectories with *local* interactions

Domino tilings of the Aztec diamond [Johansson '02]

Multi-layer PNG model [Prähofer-Spohn '02]

Lozenge tilings of polygons [Petrov '14]

Gibbsian LEs appear in random tilings, last passage percolation and directed random polymers. $6/31$

Asymptotics of Gibbsian line ensembles

 ${\sf Q}$: What happens when to a Gibbsian line ensemble $\{\mathcal{L}_{i}^{N}\}_{i=1}^{N}$ as $N\to\infty$?

Figure: Simulation due to L. Petrov

We enter the Kardar-Parisi-Zhang (KPZ) universality class Limiting object: (Parabolic) Airy line ensemble $\{\mathcal{L}^{Airy}_i\}_{i=1}^{\infty}$

The parabolic Airy line ensemble

(Parabolic) Airy line ensemble $\{\mathcal{L}_i^{Airy}\}_{i=1}^{\infty}$ $\mathcal{L}^{Airy}_{1} =$ (parabolic) Airy process $\mathcal{L}^{Airy}_{1}(0) =$ GUE Tracy-Widom dist. $\{\mathcal{L}^{Airy}_i\}_{i=1}^{\infty}$ has the Brownian Gibbs property (locally avoiding Brownian bridges)

Key questions for Gibbsian line ensembles

- **1** Tightness
- **Characterization**
- **3** Convergence
	-
	- Zero temperature: $\{\mathcal{L}^{Airy}_i\}_{i=1}^{\infty}$ Positive temperature: $\{\mathcal{L}^{KPZ,t}_i\}_{i=1}^{\infty}$
- ⁴ Properties
- **6** Applications

2 [Convergence of Gibbsian line ensembles](#page-9-0)

3 [Maximal free energy in the log-gamma polymer](#page-19-0)

β [-corners processes](#page-24-0)

Framework for proving convergence to the Airy LE

- To prove $\mathcal{L}^{\mathcal{N}} \xrightarrow{\mathsf{U.C.}} \mathcal{L}^{Airy}$ one needs
	- **1** Show that $\mathcal{L}^N \xrightarrow{f.d.} \mathcal{L}^{Airy}$.
	- $\,$ $\,$ Show that $\,{\cal L}^N\,$ is tight

Zero temperature

- PNG [Prähofer-Spohn '02]
- Domino tilings Aztec diamond [Johansson '02]
- **•** Schur processes [Okounkov-Reshetikhin '03]
- TASEP [Johansson '03]
- · Expon. LPP [Borodin-Péché '08]
- **•** Brownian watermellons [Corwin-Hammond '14]

Positive temperature Until 2020 most work was on $\mathcal{L}_1^{\mathsf{N}} \xrightarrow{1.\mathsf{p}} \mathcal{L}_1^{\mathsf{Airy}}$:

- ASEP [Tracy-Widom '08]
- KPZ eqn. [Sasamoto-Spohn '10]
- Macdonald processes [Borodin-Corwin '14]
- **•** Log-gamma polymer [Borodin-Corwin-Remenik '13]
- S6V [Borodin-Corwin-Gorin '16]

Until 2020: $\mathcal{L}_1^N \xrightarrow{f.d.} \mathcal{L}_1^{Airy}$

- **•** Physics: replica approach (non-rigorous)
- Math: [Nguyen-Zygouras '16] (incomplete)

Theorem (D. '20)

Let $\mathfrak{L}^N = \{L_i^N\}_{i=1}^N$ be the Hall-Littlewood Gibbsian LE (M, N, a, t) . The two-point distribution of L_1^N converges to the two-point distribution of \mathcal{L}_1^{Airy} .

1 Result is limited to two points and parameter restrictions

- \bullet When reflected L_1^N has the law of the height function of the stochastic six-vertex model [Borodin-Bufetov-Wheeler '16]
- ³ The first multi-point convergence result for a non-determinantal (positive temperature) model. Softer techniques were later developed by [Quastel-Sarkar '20] (ASEP and KPZ) and [Virág '20] (polymer models).

Theorem (D. '20)

Let $\mathfrak{L}^N = \{L_i^N\}_{i=1}^N$ be the Hall-Littlewood Gibbsian LE (M, N, a, t) . The two-point distribution of L_1^N converges to the two-point distribution of \mathcal{L}_1^{Airy} .

Use the method of Macdonald difference operators [Borodin-Corwin '14]
\n
$$
\mathbb{E}\left[\frac{1}{(u_1t^{-L_1^N(n_1)}; t)_{\infty}} \frac{1}{(u_2t^{-L_1^N(n_2)}; t)_{\infty}}\right] = \sum_{N_1=0}^{\infty} \sum_{N_2=0}^{N_2} I_M(N_1, N_2)
$$
\n
$$
I_M(N_1, N_2) = \frac{1}{N_1! N_2!} \int_{\gamma_1^{N_1}} \int_{\gamma_2^{N_1}} \int_{\gamma_3^{N_2}} \int_{\gamma_4^{N_2}} D(\vec{w}, \vec{z}) G(\vec{w}, \vec{z}, n_1, u_1)
$$
\n
$$
D(\vec{\hat{w}}, \vec{\hat{z}}) G(\vec{\hat{w}}, \vec{\hat{z}}, n_2, u_2) \cdot CT(\vec{w}, \vec{z}; \vec{\hat{w}}, \vec{\hat{z}}) \prod_{i=1}^{N_2} \frac{d\hat{w}_i}{2\pi \iota} \prod_{i=1}^{N_2} \frac{d\hat{z}_i}{2\pi \iota} \prod_{i=1}^{N_1} \frac{dw_i}{2\pi \iota} \prod_{i=1}^{N_1} \frac{dz_i}{2\pi \iota}
$$
\n
$$
D(\vec{w}, \vec{z}) = \det \left[\frac{1}{z_i - w_j}\right]_{i,j=1}^{N_1}, CT = \prod_{i=1}^{N_1} \prod_{j=1}^{N_2} \frac{(\hat{z}_i z_i^{-1} : t)_{\infty}}{(\hat{w}_j z_i^{-1} : t)_{\infty}} \frac{(\hat{w}_j w_j^{-1} : t)_{\infty}}{(\hat{z}_j w_j^{-1} : t)_{\infty}}
$$
\n
$$
G(\vec{w}, \vec{z}, n_1, u_1) = \prod_{i=1}^{N_1} \left(\frac{1 + az_i}{1 + aw_i}\right)^M \left(\frac{1 + aw_i^{-1}}{1 + az_i^{-1}}\right)^{n_1} \frac{S(\log w_i - \log z_i; u_1, t)}{[-\log t]_{wi}},
$$
\n
$$
(a; t)_{\infty} = \prod_{m=0}^{\infty} (1 - at^m) - t\text{-Pochhammer symbol}
$$

Framework for proving convergence to the Airy LE

To prove $\mathcal{L}^{\mathcal{N}} \xrightarrow{\mathsf{U.C.}} \mathcal{L}^{Airy}$ one needs

1 Show that $\mathcal{L}^N \xrightarrow{f.d.} \mathcal{L}^{Airy}$.

 $\,$ $\,$ Show that $\,{\cal L}^N\,$ is tight

In [D.-Matetski '20] we proposed the following alternate framework.

- **1** Show that $\mathcal{L}_1^N \xrightarrow{f.d.} \mathcal{L}_1^{Airy}$ parabolic Airy process.
- \bullet Show that $\mathcal{L}^{\mathcal{N}}$ is tight and that all subsequential limits satisfy the Brownian Gibbs property (locally avoiding Brownian bridges).
- \bullet Show that \mathcal{L}^{Airy} is the unique line ensemble which satisfies the Brownian Gibbs property and has the parabolic Airy process as its top curve.
- The framework reduces the quantitative information we need from \mathcal{L}^{N} to $\mathcal{L}_1^{\textit{N}}$ (useful for models that are non-determinantal)
- \mathcal{L}^N_1 is frequently special: <code>KPZ</code> line ensemble $\{\mathcal{L}^{KPZ,t}_i\}_{i=1}^\infty$ $(\mathcal{L}^{KPZ,t}_1$ is the solution to the narrow wedge KPZ equation at time t)

The Princess and the Pea

Q: Can the Princess feel the pea? A: Yes, and more!

Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski '20)

Suppose that \mathcal{L}^1 and \mathcal{L}^2 are Brownian Gibbsian line ensembles with laws \mathbb{P}_1 and \mathbb{P}_2 , respectively. Suppose further that for every $k \in \mathbb{N}$, $t_1 < t_2 < \cdots < t_k$ and $x_1, \ldots, x_k \in \mathbb{R}$ we have

$$
\mathbb{P}_1\left(\mathcal{L}_1^1(t_1)\leq x_1,\ldots,\mathcal{L}_1^1(t_k)\leq x_k\right)=\mathbb{P}_2\left(\mathcal{L}_1^2(t_1)\leq x_1,\ldots,\mathcal{L}_1^2(t_k)\leq x_k\right).
$$

Then $\mathbb{P}_1 = \mathbb{P}_2$.

Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski '20)

Suppose that \mathcal{L}^1 and \mathcal{L}^2 are Brownian Gibbsian line ensembles with laws \mathbb{P}_1 and \mathbb{P}_2 , respectively. Suppose further that for every $k \in \mathbb{N}$, $t_1 < t_2 < \cdots < t_k$ and $x_1, \ldots, x_k \in \mathbb{R}$ we have

$$
\mathbb{P}_1\left(\mathcal{L}_1^1(t_1)\leq x_1,\ldots,\mathcal{L}_1^1(t_k)\leq x_k\right)=\mathbb{P}_2\left(\mathcal{L}_1^2(t_1)\leq x_1,\ldots,\mathcal{L}_1^2(t_k)\leq x_k\right).
$$

Then $\mathbb{P}_1 = \mathbb{P}_2$.

- **1** Theorem says that a Brownian Gibbsian line ensemble is completely characterized by its top curve. The (parabolic) Airy line ensemble $\{\mathcal{L}^{Airy}_i\}_{i=1}^\infty$ is characterized by (1) the Brownian Gibbs property and (2) $\mathcal{L}_1^{Airy} =$ (parabolic) Airy process
- **2** Proof is non-constructive (no formulas for \mathcal{L}_2 etc.)
- **3** Positive temperature analogue recently proved in [D. '21]. Specifically, the KPZ $_t$ line ensemble is characterized by its lowest-indexed curve being the narrow wedge KPZ equation and its Gibbs property (called H -Brownian Gibbs property) $17/31$

Tightness of Gibbsian line ensembles

Theorem (Meta-)

Let $\mathfrak{L}^N = \{L_i^N\}_{i=1}^N$ be a sequence of Gibbsian line ensembles. Suppose that for some constants $p \in \mathbb{R}$ and each $n \in \mathbb{Z}$ the r.v.'s $\frac{L_1^N(nN^{2/3})-pnN^{2/3}}{N^{1/3}}$ are tight and globally parabolic. Then $\frac{L_1^N (xN^{2/3}) - pxN^{2/3}}{N^{1/3}}$ are tight in $C(\mathbb{N} \times \mathbb{R})$ and all subsequential limits satisfy the Brownian Gibbs property.

- 1-point tightness + Gibbs property \implies tightness of whole ensemble
- Avoiding Bernoulli random walkers (proof of concept) [D.-Fang-Fesser-Serio-Teitler-Wang-Zhu '20]
- (H, H^{RW}) -Gibbsian line ensembles (log-gamma polymer) [D.-Wu '21]
- Key ingredient: KMT coupling for random walk bridges [D.-Wu '19]

■ Show that $\mathcal{L}_{1}^{N}\xrightarrow{f.d.}\mathcal{L}_{1}^{Airy}$ parabolic Airy process.

- \bullet Show that $\mathcal{L}^{\bm{\mathcal{N}}}$ is tight and that all subsequential limits satisfy the Brownian Gibbs property (locally avoiding Brownian bridges).
- \bullet Show that \mathcal{L}^{Airy} is the unique line ensemble which satisfies the Brownian Gibbs property and has the parabolic Airy process on top.

Framework was used to show $\{\mathcal{L}^{KPZ,t}_i\}_{i=1}^\infty \implies \{\mathcal{L}^{Airy}_i\}_{i=1}^\infty$ as $t\to \infty.$ Step 1 in [Quastel-Sarkar '20], [Virág '20], Step 2 in [Wu '21], and Step 3 in [D.-Matetski '20].

Currently applying it to log-gamma polymer – Step 2 in [D.-Wu '21].

2 [Convergence of Gibbsian line ensembles](#page-9-0)

3 [Maximal free energy in the log-gamma polymer](#page-19-0)

β [-corners processes](#page-24-0)

The log-gamma polymer [Seppäläinen '09]

 $d_{i,j}$ are i.i.d. inverse-gamma: $f_{\theta}(x) = \mathbf{1}\{x > 0\} \Gamma(\theta)^{-1} x^{-\theta-1} \exp(-x^{-1})$. Partition functions: $Z^N(n) = \sum_{\pi:(1,1) \to (n,N)} w(\pi)$, $w(\pi) = \prod_{(i,j) \in \pi} d_{i,j}$

Free energies: $L_1^N(n) = \log Z^N(n)$

Using geometric RSK [Corwin-O'Connell-Seppäläinen-Zygouras '14] showed that L_1^N embeds as the lowest indexed curve in a line ensemble with a nice Gibbs property (uses inverse-gamma weights - very special)

Maximal free energy F_N

$$
Z(X; Y) = \sum_{\pi: X \to Y} w(\pi), w(\pi) = \prod_{(i,j) \in \pi} d_{i,j}
$$

Maximal free energy: $F_N = \max_{(1,1) \le X \le Y \le (N,N)} \log Z(X; Y).$

Why study F_N ?

- **1** Interesting phase transition for F_N from $\theta < \theta_c$ to $\theta > \theta_c$ (next slide).
- \bullet F_N is related to the smallest singular value of a random operator on the honeycomb lattice [Kotowski-Virág '19].
- \bullet \bullet F_N is a proxy for studying a free directed polymer path measure.

Maximal free energy F_N

Theorem (Barraquand-Corwin-D. '21abc)

If $\theta_c=2\Psi^{-1}(0)>0$ (Ψ is the digamma function) then

- For $\theta < \theta_c$, F_N $+$ 2 $\Psi(\theta/2)$ N has order N^{1/3} GUE Tracy-Widom fluctuations;
- For $\theta = \theta_c$, $F_N = \Theta(N^{1/3}(\log N)^{2/3})$;

• For $\theta > \theta_c$, F_N = $\Theta(\log N)$.

Theorem extends [Kotowski-Virág '19], which considers $\theta < \theta_c/2$. _{23/31}

Ideas behind the proof: subcritical case $\theta < \theta_c$

Maximal free energy: $F_N = \max_{(1,1)\le X \le Y \le (N,N)} \log Z(X;Y).$ Lower bound: F_N $>$ log $Z(1,1; N, N)$ and log $Z(1,1; N, N) + 2\Psi(\theta/2)N$ has order $N^{1/3}$ GUE Tracy-Widom fluctuations [Borodin-Corwin-Remenik '13], [Krishnan-Quastel '18] and [Barraquand-Corwin-D. '21a]. Upper bound: $N^{-1/3}(F_N + 2\Psi(\theta/2)N)$.

Key ingredients:

- \bullet Moderate deviation estimates for log $Z(X; Y)$ from [Barraquand-Corwin-D. '21a]
- Tightness of $log Z(X; \cdots)$ and $log Z(X; \cdot)$ [Barraquand-Corwin-D. '21b] and [D.-Wu '21]
- **Polymer structure**
- [Gibbsian line ensembles](#page-2-0)
- 2 [Convergence of Gibbsian line ensembles](#page-9-0)
- 3 [Maximal free energy in the log-gamma polymer](#page-19-0)

β-corners processes

Gaussian Unitary Ensemble. $\{\xi_{ij},\eta_{ij}\}_{i,j=1}^\infty$ are i.i.d. $\mathcal{N}(0,1)$ variables.

GUE-corners process: $(\beta = 2$ corners process). Gibbs property: $\mathbb{P}(\lambda^1,\ldots,\lambda^{k-1}|\lambda^k)=\prod_{i=1}^{k-1}I(\lambda^i,\lambda^{i+1})$ with $I(\lambda^i,\lambda^{i+1})=\mathbf{1}\{\lambda^i\preceq\lambda^{i+1}\}$

β -corners processes

Gaussian Orthogonal/Unitary/Symplectic Ensemble X_{ii} are real $(\beta = 1)$, complex ($\beta = 2$) and quaternion ($\beta = 4$). Continuous β-corners process:

$$
\mathbb{P}(\lambda^1,\ldots,\lambda^{k-1}|\lambda^k)=\prod_{i=1}^{k-1}I(\lambda^i,\lambda^{i+1})
$$

 $I(\lambda^j, \lambda^{j+1}) = \mathbf{1}\{\lambda^j \preceq \lambda^{j+1}\} \prod_{1 \leq b < a \leq j} (\lambda_b^j - \lambda_a^j)^{2-\beta} \prod_{a=1}^j \prod_{b=1}^{j+1} |\lambda_a^j - \lambda_b^{j+1}|^{\frac{\beta}{2}-1}$ Discrete β -corners process:

$$
\mathbb{P}(\lambda^1,\ldots,\lambda^{k-1}|\lambda^k)=\prod_{i=1}^{k-1}I(\lambda^i,\lambda^{i+1})
$$

 $I(\lambda^j,\lambda^{j+1})=J_{\lambda^{j+1}/\lambda^j}(1)$ (skew) Jack symmetric function with $\theta=\beta/2.$ When $\beta=2$ then $J_{\lambda^{j+1}/\lambda^{j}}(1)=S_{\lambda^{j+1}/\lambda^{j}}(1)=\text{\bf 1}\{\lambda^{j}\preceq\lambda^{j+1}\}.$ Discrete β -corners process are *integrable discretizations* of continuous β -corners

processes. Special cases of ascending Macdonald processes [Borodin-Corwin '14]. Appear in distributions on irreducible representations [Bufetov-Gorin '18].

Discrete β-ensembles

Projecting β -corners processes to their top level we get Continuous: $\mathbb{P}(\lambda_1,\ldots,\lambda_N) \propto \prod_{1 \leq i < j \leq N} (\lambda_i - \lambda_j)^{2\beta} \prod_{i=1}^N e^{-V_N(\lambda_i)}.$ Discrete: $\mathbb{P}(\ell_1,\ldots,\ell_N) \propto \prod_{j=1}^N \mathcal{Q}_{\theta}(\ell_j-\ell_j) \prod_{i=1}^N e^{-V_N(\ell_i)}, Q_{\theta}(x) := \frac{\Gamma(x+1)\Gamma(x+\theta)}{\Gamma(x)\Gamma(x+1-\theta)}.$ $1\leq i\leq i\leq n$ β-log gas and Discrete β-ensembles - [Borodin-Gorin-Guionnet '17]

- Law of large numbers: $\mu_N = N^{-1} \sum_{i=1}^N \delta_{\ell_i/N}$ concentrate near $\mu_{\sf eq}$ (Wigner's Semicircle Law)
- Global Central Limit Theorem: $\sum_{i=1}^N f(\ell_i/N)-\mathbb{E}\left[\sum_{i=1}^N f(\ell_i/N)\right]$ is asymptotically Gaussian [Borodin-Gorin-Guionnet '17]
- Edge universality: [Bourgade-Erdős-Yau '14], [Guionnet-Huang '19]
- Edge large deviations: [Johansson '98, '00], [Féral '08]

Theorem (Das-D. '21)

For general V_N 's the random variables ℓ_1/N satisfy a large deviation principle.

Upper tail rate is N and lower tail rate is N^2 . Rate functions are explicit but different from continuous β -log gases (due to discreteness of the model).

Global asymptotics for β -corners processes

 β -corners process \implies height function $H(x, y)$ $\overline{\bigcirc}$ Conjecture: $H(x, y)$ converges to a suitable pullback of the Gaussian Free field on H .

Known for Wigner matrices [Borodin '10].

Stieltjes transform: $G(z, s) = \sum_{i=1}^{s} \frac{1}{z-\ell_i^s}$. [D.-Knizel '21]: multi-level loop equations or Nekrasov equations [Nekrasov '16]

= functional equations relating joint cumulants of $G(z_1, s_1), \ldots, G(z_k, s_k)$.

- ¹ Generalize single level loop equations in [Borot-Guionnet '13] and Nekrasov equations in [Borodin-Gorin-Guionnet '17]
- ? [D.-Knizel '19]: $G(z_1,N), G(z_2,N-1), N^{1/2}[G(z_3,N)-G(z_3,N-1)]$ have joint Gaussian limits.

Explanation: Top two levels converge to the same 1D slice of the 2D GFF, and their difference to a certain directional derivative of the GFF. The analogue for Wigner matrices is proved in [Erdős-Schröder '18].

Gibbs properties $+$ integrable (algebraic) input $+$ analytic tools

- KPZ universality for Gibbsian line ensembles
- **•** Asymptotics for polymer models
- Asymptotics for β -corners processes
- (Did not discuss) Convergence of six-vertex models to the GUE cornerss process [D. '18], [D.-Rychnovsky '20]

Thank you!

