Gibbsian line ensembles and β -corners processes

Evgeni Dimitrov

Columbia University

October 18, 2021

Workshop on Integrable Structures in Random Matrix Theory and Beyond - MSRI, Berkeley

2 Convergence of Gibbsian line ensembles

- 3 Maximal free energy in the log-gamma polymer
- 4 β -corners processes

Gibbs property = internal consistency condition of a random model. Uniform lozenge tilings of the hexagon

Gibbsian line ensembles

Line ensemble (LE) = finite or countably infinite collection of random continuous curves, defined on the same probability space.

Tiling Gibbs property \implies LE Gibbs property. LE Gibbs property = locally avoiding Bernoulli random walks (or bridges). *Line ensemble* (LE) = finite or countably infinite collection of random continuous curves, defined on the same probability space.

LE Gibbs property = locally avoiding Bernoulli random walks (or bridges).

Gibbsian line ensembles

Gibbsian line ensembles = finite or countably infinite collection of random walk trajectories with *local* interactions

Domino tilings of the Aztec diamond [Johansson '02]

Multi-layer PNG model [Prähofer-Spohn '02]

Lozenge tilings of polygons [Petrov '14]

Gibbsian LEs appear in random tilings, last passage percolation and directed random polymers.

Asymptotics of Gibbsian line ensembles

Q: What happens when to a Gibbsian line ensemble $\{\mathcal{L}_i^N\}_{i=1}^N$ as $N \to \infty$?

Figure: Simulation due to L. Petrov

We enter the Kardar-Parisi-Zhang (KPZ) universality class Limiting object: (Parabolic) Airy line ensemble $\{\mathcal{L}_i^{Airy}\}_{i=1}^{\infty}$

The parabolic Airy line ensemble

(Parabolic) Airy line ensemble $\{\mathcal{L}_{i}^{Airy}\}_{i=1}^{\infty}$ $\mathcal{L}_{1}^{Airy} = (\text{parabolic})$ Airy process $\mathcal{L}_{1}^{Airy}(0) = \text{GUE Tracy-Widom dist.}$ $\{\mathcal{L}_{i}^{Airy}\}_{i=1}^{\infty}$ has the Brownian Gibbs property (locally avoiding Brownian bridges)

Key questions for Gibbsian line ensembles

- Tightness
- Characterization
- Onvergence
 - Zero temperature: {L_i^{Airy}}_{i=1}[∞]
 Positive temperature: {L_i^{KPZ,t}}_{i=1}[∞]
- Operation Properties
- O Applications

2 Convergence of Gibbsian line ensembles

3 Maximal free energy in the log-gamma polymer

β -corners processes

Framework for proving convergence to the Airy LE

- To prove $\mathcal{L}^N \xrightarrow{\text{U.C.}} \mathcal{L}^{Airy}$ one needs

 - **2** Show that \mathcal{L}^N is tight

Zero temperature

- PNG [Prähofer-Spohn '02]
- Domino tilings Aztec diamond [Johansson '02]
- Schur processes
 [Okounkov-Reshetikhin '03]
- TASEP [Johansson '03]
- Expon. LPP [Borodin-Péché '08]
- Brownian watermellons [Corwin-Hammond '14]

Positive temperature Until 2020 most work was on $\mathcal{L}_1^N \xrightarrow{1.p.} \mathcal{L}_1^{Airy}$:

- ASEP [Tracy-Widom '08]
- KPZ eqn. [Sasamoto-Spohn '10]
- Macdonald processes [Borodin-Corwin '14]
- Log-gamma polymer [Borodin-Corwin-Remenik '13]
- S6V [Borodin-Corwin-Gorin '16]

 $\text{Until 2020: } \mathcal{L}_1^N \xrightarrow{f.d.} \mathcal{L}_1^{\textit{Airy}}$

- Physics: replica approach (non-rigorous)
- Math: [Nguyen-Zygouras '16] (incomplete)

Theorem (D. '20)

Let $\mathfrak{L}^{N} = \{L_{i}^{N}\}_{i=1}^{N}$ be the Hall-Littlewood Gibbsian LE (M, N, a, t). The two-point distribution of L_{1}^{N} converges to the two-point distribution of \mathcal{L}_{1}^{Airy} .

Result is limited to two points and parameter restrictions

- When reflected L^N₁ has the law of the height function of the stochastic six-vertex model [Borodin-Bufetov-Wheeler '16]
- The first multi-point convergence result for a non-determinantal (positive temperature) model. Softer techniques were later developed by [Quastel-Sarkar '20] (ASEP and KPZ) and [Virág '20] (polymer models).

Theorem (D. '20)

Let $\mathfrak{L}^{N} = \{L_{i}^{N}\}_{i=1}^{N}$ be the Hall-Littlewood Gibbsian LE (M, N, a, t). The two-point distribution of L_{1}^{N} converges to the two-point distribution of \mathcal{L}_{1}^{Airy} .

Use the method of *Macdonald difference operators* [Borodin-Corvin '14]

$$\mathbb{E}\left[\frac{1}{(u_{1}t^{-L_{1}^{N}(n_{1})}; t)_{\infty}} \frac{1}{(u_{2}t^{-L_{1}^{N}(n_{2})}; t)_{\infty}}\right] = \sum_{N_{1}=0}^{\infty} \sum_{N_{2}=0}^{\infty} I_{M}(N_{1}, N_{2})$$

$$I_{M}(N_{1}, N_{2}) = \frac{1}{N_{1}!N_{2}!} \int_{\gamma_{1}^{N_{1}}} \int_{\gamma_{2}^{N_{1}}} \int_{\gamma_{3}^{N_{2}}} \int_{\gamma_{4}^{N_{2}}} D(\vec{w}, \vec{z}) G(\vec{w}, \vec{z}, n_{1}, u_{1})$$

$$D(\vec{w}, \vec{z}) G(\vec{w}, \vec{z}, n_{2}, u_{2}) \cdot CT(\vec{w}, \vec{z}; \vec{w}, \vec{z}) \prod_{i=1}^{N_{2}} \frac{d\hat{w}_{i}}{2\pi\iota} \prod_{i=1}^{N_{2}} \frac{d\hat{z}_{i}}{2\pi\iota} \prod_{i=1}^{N_{1}} \frac{dw_{i}}{2\pi\iota} \prod_{i=1}^{N_{1}} \frac{dz_{i}}{2\pi\iota}$$

$$D(\vec{w}, \vec{z}) = \det\left[\frac{1}{z_{i} - w_{i}}\right]_{i,j=1}^{N_{1}}, CT = \prod_{i=1}^{N_{1}} \prod_{j=1}^{N_{2}} \frac{(\hat{z}_{j}z_{i}^{-1};t)_{\infty}}{(\hat{w}_{j}z_{i}^{-1};t)_{\infty}} \frac{(\hat{w}_{j}w_{i}^{-1};t)_{\infty}}{(\hat{z}_{j}w_{i}^{-1};t)_{\infty}}$$

$$G(\vec{w}, \vec{z}, n_{1}, u_{1}) = \prod_{i=1}^{N_{1}} \left(\frac{1+az_{i}}{1+aw_{i}}\right)^{M} \left(\frac{1+aw_{i}^{-1}}{1+az_{i}^{-1}}\right)^{n_{1}} \frac{S(\log w_{i} - \log z_{i};u_{1}, t)}{[-\log t]w_{i}},$$

$$(a; t)_{\infty} = \prod_{m=0}^{\infty} (1 - at^{m}) - t$$
-Pochhammer symbol

Framework for proving convergence to the Airy LE

To prove $\mathcal{L}^N \xrightarrow{\text{u.c.}} \mathcal{L}^{Airy}$ one needs

2 Show that \mathcal{L}^N is tight

In [D.-Matetski '20] we proposed the following alternate framework.

- Show that $\mathcal{L}_1^N \xrightarrow{\text{f.d.}} \mathcal{L}_1^{Airy}$ parabolic Airy process.
- Show that L^N is tight and that all subsequential limits satisfy the Brownian Gibbs property (locally avoiding Brownian bridges).
- Show that L^{Airy} is the unique line ensemble which satisfies the Brownian Gibbs property and has the parabolic Airy process as its top curve.
 - The framework reduces the quantitative information we need from \mathcal{L}^N to \mathcal{L}_1^N (useful for models that are non-determinantal)
- \mathcal{L}_1^N is frequently special: KPZ line ensemble $\{\mathcal{L}_i^{KPZ,t}\}_{i=1}^{\infty}$ $(\mathcal{L}_1^{KPZ,t})$ is the solution to the narrow wedge KPZ equation at time t)

The Princess and the Pea

Q: Can the Princess feel the pea? A: Yes, and more!

Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski '20)

Suppose that \mathcal{L}^1 and \mathcal{L}^2 are Brownian Gibbsian line ensembles with laws \mathbb{P}_1 and \mathbb{P}_2 , respectively. Suppose further that for every $k \in \mathbb{N}$, $t_1 < t_2 < \cdots < t_k$ and $x_1, \ldots, x_k \in \mathbb{R}$ we have

$$\mathbb{P}_1\left(\mathcal{L}_1^1(t_1) \leq x_1, \ldots, \mathcal{L}_1^1(t_k) \leq x_k\right) = \mathbb{P}_2\left(\mathcal{L}_1^2(t_1) \leq x_1, \ldots, \mathcal{L}_1^2(t_k) \leq x_k\right).$$

Then $\mathbb{P}_1 = \mathbb{P}_2$.

Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski '20)

Suppose that \mathcal{L}^1 and \mathcal{L}^2 are Brownian Gibbsian line ensembles with laws \mathbb{P}_1 and \mathbb{P}_2 , respectively. Suppose further that for every $k \in \mathbb{N}$, $t_1 < t_2 < \cdots < t_k$ and $x_1, \ldots, x_k \in \mathbb{R}$ we have

$$\mathbb{P}_1\left(\mathcal{L}_1^1(t_1) \leq x_1, \ldots, \mathcal{L}_1^1(t_k) \leq x_k\right) = \mathbb{P}_2\left(\mathcal{L}_1^2(t_1) \leq x_1, \ldots, \mathcal{L}_1^2(t_k) \leq x_k\right).$$

Then $\mathbb{P}_1 = \mathbb{P}_2$.

- Theorem says that a Brownian Gibbsian line ensemble is completely characterized by its top curve. The (parabolic) Airy line ensemble {L_i^{Airy}}_{i=1} is characterized by (1) the Brownian Gibbs property and (2) L₁^{Airy} = (parabolic) Airy process
- 2 Proof is non-constructive (no formulas for \mathcal{L}_2 etc.)
- Positive temperature analogue recently proved in [D. '21]. Specifically, the KPZ_t line ensemble is characterized by its lowest-indexed curve being the narrow wedge KPZ equation and its Gibbs property (called *H*-Brownian Gibbs property)
 17/31

Tightness of Gibbsian line ensembles

Theorem (Meta-)

Let $\mathfrak{L}^{N} = \{L_{i}^{N}\}_{i=1}^{N}$ be a sequence of Gibbsian line ensembles. Suppose that for some constants $p \in \mathbb{R}$ and each $n \in \mathbb{Z}$ the r.v.'s $\frac{L_{1}^{N}(nN^{2/3})-pnN^{2/3}}{N^{1/3}}$ are tight and globally parabolic. Then $\frac{L_{i}^{N}(xN^{2/3})-pxN^{2/3}}{N^{1/3}}$ are tight in $C(\mathbb{N} \times \mathbb{R})$ and all subsequential limits satisfy the Brownian Gibbs property.

- 1-point tightness + Gibbs property \implies tightness of whole ensemble
- Avoiding Bernoulli random walkers (proof of concept) [D.-Fang-Fesser-Serio-Teitler-Wang-Zhu '20]
- (H, H^{RW})-Gibbsian line ensembles (log-gamma polymer) [D.-Wu '21]
- Key ingredient: KMT coupling for random walk bridges [D.-Wu '19]

• Show that $\mathcal{L}_1^N \xrightarrow{\text{f.d.}} \mathcal{L}_1^{Airy}$ parabolic Airy process.

- Show that L^N is tight and that all subsequential limits satisfy the Brownian Gibbs property (locally avoiding Brownian bridges).
- Show that L^{Airy} is the unique line ensemble which satisfies the Brownian Gibbs property and has the parabolic Airy process on top.

Framework was used to show $\{\mathcal{L}_{i}^{KPZ,t}\}_{i=1}^{\infty} \implies \{\mathcal{L}_{i}^{Airy}\}_{i=1}^{\infty}$ as $t \to \infty$. Step 1 in [Quastel-Sarkar '20], [Virág '20], Step 2 in [Wu '21], and Step 3 in [D.-Matetski '20].

Currently applying it to log-gamma polymer - Step 2 in [D.-Wu '21].

- Gibbsian line ensembles
- 2 Convergence of Gibbsian line ensembles
- 3 Maximal free energy in the log-gamma polymer
 - \blacksquare β -corners processes

The log-gamma polymer [Seppäläinen '09]

 $d_{i,j}$ are i.i.d. inverse-gamma: $f_{\theta}(x) = \mathbf{1}\{x > 0\}\Gamma(\theta)^{-1}x^{-\theta-1}\exp(-x^{-1})$. Partition functions: $Z^N(n) = \sum_{\pi:(1,1)\to(n,N)} w(\pi), w(\pi) = \prod_{(i,j)\in\pi} d_{i,j}$

Free energies: $L_1^N(n) = \log Z^N(n)$

Using *geometric RSK* [Corwin-O'Connell-Seppäläinen-Zygouras '14] showed that L_1^N embeds as the lowest indexed curve in a line ensemble with a nice Gibbs property (uses inverse-gamma weights - very special)

Maximal free energy F_N

Why study F_N ?

- **1** Interesting phase transition for F_N from $\theta < \theta_c$ to $\theta > \theta_c$ (next slide).
- F_N is related to the smallest singular value of a random operator on the honeycomb lattice [Kotowski-Virág '19].
- **\bigcirc** F_N is a proxy for studying a free directed polymer path measure.

Maximal free energy F_N

Theorem (Barraquand-Corwin-D. '21abc)

If $heta_c = 2\Psi^{-1}(0) > 0$ (Ψ is the digamma function) then

- For $\theta < \theta_c$, $F_N + 2\Psi(\theta/2)N$ has order $N^{1/3}$ GUE Tracy-Widom fluctuations;
- For $\theta = \theta_c$, $F_N = \Theta(N^{1/3}(\log N)^{2/3})$;

• For $\theta > \theta_c$, $F_N = \Theta(\log N)$.

Theorem extends [Kotowski-Virág '19], which considers $\theta < \theta_c/2$.

Ideas behind the proof: subcritical case $\theta < \theta_c$

Maximal free energy: $F_N = \max_{\substack{(1,1) \le X \le Y \le (N,N)}} \log Z(X; Y)$. Lower bound: $F_N \ge \log Z(1,1; N, N)$ and $\log Z(1,1; N, N) + 2\Psi(\theta/2)N$ has order $N^{1/3}$ GUE Tracy-Widom fluctuations [Borodin-Corwin-Remenik '13], [Krishnan-Quastel '18] and [Barraquand-Corwin-D. '21a]. Upper bound: $N^{-1/3}(F_N + 2\Psi(\theta/2)N)$.

Key ingredients:

- Moderate deviation estimates for log Z(X; Y) from [Barraquand-Corwin-D. '21a]
- Tightness of log Z(X;...) and log Z(X;:)
 [Barraquand-Corwin-D. '21b] and [D.-Wu '21]
- Polymer structure

- Gibbsian line ensembles
- 2 Convergence of Gibbsian line ensembles
- 3 Maximal free energy in the log-gamma polymer
- 4 β -corners processes

β -corners processes

Gaussian Unitary Ensemble. $\{\xi_{ij}, \eta_{ij}\}_{i,j=1}^{\infty}$ are i.i.d. N(0,1) variables.

GUE-corners process: ($\beta = 2$ corners process). Gibbs property: $\mathbb{P}(\lambda^1, \dots, \lambda^{k-1} | \lambda^k) = \prod_{i=1}^{k-1} I(\lambda^i, \lambda^{i+1})$ with $I(\lambda^i, \lambda^{i+1}) = \mathbf{1}\{\lambda^i \leq \lambda^{i+1}\}$

β -corners processes

Gaussian Orthogonal/Unitary/Symplectic Ensemble X_{ij} are real ($\beta = 1$), complex ($\beta = 2$) and quaternion ($\beta = 4$). Continuous β -corners process:

$$\mathbb{P}(\lambda^1,\ldots,\lambda^{k-1}|\lambda^k) = \prod_{i=1}^{k-1} I(\lambda^i,\lambda^{i+1})$$

 $I(\lambda^{j}, \lambda^{j+1}) = \mathbf{1}\{\lambda^{j} \leq \lambda^{j+1}\} \prod_{1 \leq b < a \leq j} (\lambda^{j}_{b} - \lambda^{j}_{a})^{2-\beta} \prod_{a=1}^{j} \prod_{b=1}^{j+1} |\lambda^{j}_{a} - \lambda^{j+1}_{b}|^{\frac{\beta}{2}-1}$ Discrete β -corners process:

$$\mathbb{P}(\lambda^1,\ldots,\lambda^{k-1}|\lambda^k)=\prod_{i=1}^{k-1}I(\lambda^i,\lambda^{i+1})$$

 $I(\lambda^{j}, \lambda^{j+1}) = J_{\lambda^{j+1}/\lambda^{j}}(1) \text{ (skew) Jack symmetric function with } \theta = \beta/2. \text{ When } \beta = 2 \text{ then } J_{\lambda^{j+1}/\lambda^{j}}(1) = S_{\lambda^{j+1}/\lambda^{j}}(1) = \mathbf{1}\{\lambda^{j} \leq \lambda^{j+1}\}.$

Discrete β -corners process are *integrable discretizations* of continuous β -corners processes. Special cases of ascending Macdonald processes [Borodin-Corwin '14]. Appear in distributions on irreducible representations [Bufetov-Gorin '18].

Discrete β -ensembles

Projecting β -corners processes to their top level we get Continuous: $\mathbb{P}(\lambda_1, ..., \lambda_N) \propto \prod_{1 \leq i < j \leq N} (\lambda_i - \lambda_j)^{2\beta} \prod_{i=1}^N e^{-V_N(\lambda_i)}$. Discrete: $\mathbb{P}(\ell_1, ..., \ell_N) \propto \prod_{1 \leq i < j \leq N} Q_{\theta}(\ell_i - \ell_j) \prod_{i=1}^N e^{-V_N(\ell_i)}, Q_{\theta}(x) := \frac{\Gamma(x+1)\Gamma(x+\theta)}{\Gamma(x)\Gamma(x+1-\theta)}$. β -log gas and Discrete β -ensembles - [Borodin-Gorin-Guionnet '17]

- Law of large numbers: $\mu_N = N^{-1} \sum_{i=1}^N \delta_{\ell_i/N}$ concentrate near μ_{eq} (Wigner's Semicircle Law)
- Global Central Limit Theorem: $\sum_{i=1}^{N} f(\ell_i/N) \mathbb{E}\left[\sum_{i=1}^{N} f(\ell_i/N)\right]$ is asymptotically Gaussian [Borodin-Gorin-Guionnet '17]
- Edge universality: [Bourgade-Erdős-Yau '14],[Guionnet-Huang '19]
- Edge large deviations: [Johansson '98, '00], [Féral '08]

Theorem (Das-D. '21)

For general V_N 's the random variables ℓ_1/N satisfy a large deviation principle.

Upper tail rate is N and lower tail rate is N^2 . Rate functions are explicit but *different* from continuous β -log gases (due to discreteness of the model).

Global asymptotics for β -corners processes

 β -corners process \implies height function H(x, y)Conjecture: H(x, y) converges to a suitable pullback of the *Gaussian Free field on* \mathbb{H} .

Known for Wigner matrices [Borodin '10].

Stieltjes transform: $G(z,s) = \sum_{i=1}^{s} \frac{1}{z-\ell_i^s}$.

[D.-Knizel '21]: multi-level loop equations or Nekrasov equations [Nekrasov '16] = functional equations relating joint cumulants of $G(z_1, s_1), \ldots, G(z_k, s_k)$.

- Generalize single level loop equations in [Borot-Guionnet '13] and Nekrasov equations in [Borodin-Gorin-Guionnet '17]
- [D.-Knizel '19]: G(z₁, N), G(z₂, N 1), N^{1/2}[G(z₃, N) G(z₃, N 1)] have joint Gaussian limits.

Explanation: Top two levels converge to the same 1D slice of the 2D GFF, and their difference to a certain directional derivative of the GFF. The analogue for Wigner matrices is proved in [Erdős-Schröder '18].

Gibbs properties + integrable (algebraic) input + analytic tools

- KPZ universality for Gibbsian line ensembles
- Asymptotics for polymer models
- Asymptotics for β -corners processes
- (Did not discuss) Convergence of six-vertex models to the GUE cornerss process [D. '18], [D.-Rychnovsky '20]

Thank you!

