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@ Gibbsian line ensembles
@ Convergence of Gibbsian line ensembles
© Maximal free energy in the log-gamma polymer

e [B-corners processes
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Gibbs measures

Gibbs property = internal consistency condition of a random model.
Uniform lozenge tilings of the hexagon
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Gibbsian line ensembles

Line ensemble (LE) = finite or countably infinite collection of random
continuous curves, defined on the same probability space.

Tiling Gibbs property = LE Gibbs property.
LE Gibbs property = locally avoiding Bernoulli random walks (or bridges).
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Gibbsian line ensembles

Line ensemble (LE) = finite or countably infinite collection of random
continuous curves, defined on the same probability space.

LE Gibbs property = locally avoiding Bernoulli random walks (or bridges).
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Gibbsian line ensembles

Gibbsian line ensembles = finite or countably infinite collection of random
walk trajectories with local interactions

M § §

Domino tilings of the Aztec
diamond [Johansson '02]

Multi-layer PNG model [Prahofer-Spohn '02]

Lozenge tilings of polygons [Petrov '14]

Gibbsian LEs appear in random tilings, last passage percolation and
directed random polymers. 6/31



Asymptotics of Gibbsian line ensembles

Q: What happens when to a Gibbsian line ensemble {LN}N . as N — o00?

N2/3

Figure: Simulation due to L. Petrov

We enter the Kardar-Parisi-Zhang (KPZ) universality class
Limiting object: (Parabolic) Airy line ensemble {£/"}52,
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The parabolic Airy line ensemble
N1/3|

(Parabolic) Airy line ensemble {£/}e2,
£ = (parabolic) Airy process £ (0) = GUE Tracy-Widom dist.
{E,A’ry}j?il has the Brownian Gibbs property (locally avoiding Brownian bridges)
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Key questions for Gibbsian line ensembles
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@ Convergence of Gibbsian line ensembles
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Framework for proving convergence to the Airy LE

Positive temperature Until 2020 most
work was on LN =5 Lp L

@ ASEP [Tracy-Widom '08]

@ KPZ eqn. [Sasamoto-Spohn '10]

To prove £N L5 LAY one needs

@ Show that £V — f.d. LAY
@ Show that £V is tight

Zero temperature @ Macdonald processes

@ PNG [Pr3hofer-Spohn '02] [Borodin-Corwin '14]

@ Domino tilings Aztec diamond @ Log-gamma polymer
[Johansson '02] [Borodin-Corwin-Remenik '13]

@ Schur processes @ S6V [Borodin-Corwin-Gorin '16]

[Okounkov-Reshetikhin '03]
TASEP [Johansson '03]
Expon. LPP [Borodin-Péché '08]

Until 2020: £V s paim

@ Physics: replica approach
(non-rigorous)

@ Brownian watermellons

@ Math: [Nguyen-Zygouras '16
[Corwin-Hammond '14] [Nguyen-Zyg, ]

(incomplete)
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Finite dimensional convergence

Theorem (D. '20)

Let &N = {LNIN = be the Hall-Littlewood Gibbsian LE (M, N, a, t). The
two-point distribution of LY converges to the two-point distribution of L;™ .

Ly
Ly

© Result is limited to two points and parameter restrictions

@ When reflected LY has the law of the height function of the stochastic
six-vertex model [Borodin-Bufetov-Wheeler '16]

© The first multi-point convergence result for a non-determinantal (positive
temperature) model. Softer techniques were later developed by

[Quastel-Sarkar '20] (ASEP and KPZ) and [Virdg '20] (polymer models).
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Finite dimensional convergence

Theorem (D. '20)

Let &N = {LNIN  be the Hall-Littlewood Gibbsian LE (M, N, a, t). The
two-point distribution of LY converges to the two-point distribution of L;™ .

Use the method of Macdonald d/fference operators [Borodln Corwin '14]
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Framework for proving convergence to the Airy LE

UC.. A
To prove LN —=3 LA™ one needs

@ Show that £V i) LAY
@ Show that £V is tight

In [D.-Matetski '20] we proposed the following alternate framework.

@ Show that LY — fd. £ parabolic Airy process.

@ Show that £V is tight and that all subsequential limits satisfy the Brownian
Gibbs property (locally avoiding Brownian bridges).

© Show that £A™ is the unique line ensemble which satisfies the Brownian
Gibbs property and has the parabolic Airy process as its top curve.
@ The framework reduces the quantitative information we need from £V to

LY (useful for models that are non-determinantal)

@ LV is frequently special: KPZ line ensemble {EKPZ 1o (LFP9 s the
solution to the narrow wedge KPZ equation at time t)
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The Princess and the Pea

8

~

The Pea

Q: Can the Princess feel the pea? A: Yes, and more!
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Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski '20)

Suppose that L' and L? are Brownian Gibbsian line ensembles with laws P; and

Py, respectively. Suppose further that for every k € N, t; < tp < --- < tx and
X1, .-, Xk € R we have

P, (,C%(tl) < X,... ,E%(tk) < Xk) =P, (;C%(tl) <Xy, ﬁ%(tk) < Xk) .
Then Pl = ]Pg.
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Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski '20)

Suppose that L' and L? are Brownian Gibbsian line ensembles with laws P; and
Py, respectively. Suppose further that for every k € N, t; < tp < --- < tx and
X1, .-, Xk € R we have

P, (ﬁ%(tl) <Xx,... ,E%(tk) < Xk) =P, (ﬁ%(tl) <Xy, £%(tk) < Xk) :

Then ]Pl = ]P2.

© Theorem says that a Brownian Gibbsian line ensemble is completely
characterized by its top curve. The (parabolic) Airy line ensemble
{£"12° is characterized by (1) the Brownian Gibbs property and
(2) Ef\iry = (parabolic) Airy process

@ Proof is non-constructive (no formulas for £; etc.)

© Positive temperature analogue recently proved in [D. '21].
Specifically, the KPZ; line ensemble is characterized by its
lowest-indexed curve being the narrow wedge KPZ equation and its
Gibbs property (called H-Brownian Gibbs property)
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Tightness of Gibbsian line ensembles

Theorem (Meta-)

Let €N = {LN}N | be a sequence of Gibbsian line ensembles. Suppose that for
LY (nN?/3)—pnN?/3

some constants p € R and each n € Z the r.v.'s ==—7=—— are tight and
. LN (xN?/3)— pxIv?/3 . .
globally parabolic. Then ~——7=~—— are tight in C(N x R) and all

subsequential limits satisfy the Brownian Gibbs property.

7)\H2N1/3

LY (nN?/3) ;.Iniﬁfiﬂiiifﬁf;:;j':;Vw::'ff—f—fff,.

JUNIO adtl

1-point tightness + Gibbs property = tightness of whole ensemble

Avoiding Bernoulli random walkers (proof of concept)
[D.-Fang-Fesser-Serio- Teitler-Wang-Zhu '20]

(H, HR")-Gibbsian line ensembles (log-gamma polymer) [D.-Wu '21]
Key ingredient: KMT coupling for random walk bridges [D.-Wu "19]
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Framework for proving convergence to the Airy LE

© Show that £} — fd. £ parabolic Airy process.

@ Show that £V is tight and that all subsequential limits satisfy the
Brownian Gibbs property (locally avoiding Brownian bridges).

@ Show that £A™ is the unique line ensemble which satisfies the
Brownian Gibbs property and has the parabolic Airy process on top.

Framework was used to show {£/F4 20— (LA™} a5t — 0.
Step 1 in [Quastel-Sarkar '20], [Virdg '20], Step 2 in [Wu '21], and Step 3
in [D.-Matetski '20].

Currently applying it to log-gamma polymer — Step 2 in [D.-Wu '21].
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© Maximal free energy in the log-gamma polymer
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The log-gamma polymer [Seppalainen '09]

d;j are i.i.d. inverse-gamma: fp(x) = 1{x > 0}I(0) " x 9 Lexp(—x1).
Partition functions: ZN(n) = Yot nyomny W), wim) =T jyer dij

Ne e e e @ (n, N)
L ] [ 2 [ ] * L ]
di;
[ ] [ ] [ ] ‘/ [ i)y
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oo o o o : L ;
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Free energies: LY(n) =log Z"(n)

Using geometric RSK [Corwin-O'Connell-Seppaldinen-Zygouras '14] showed that
LY embeds as the lowest indexed curve in a line ensemble with a nice Gibbs
property (uses inverse-gamma weights - very special)
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Maximal free energy Fp

Z(XY)= > wi(m), w(r) =1 j)ex dij

T X=Y
Maximal free energy: Fy = (1’1)§X23¢S(N’N) log Z(X;Y).
Y ( )
Py(m) = [ Zg =y w(r)
__,_IJ_ weld
Py(r: X = v) = 2XY)
Zy
X

o) "—E[d,'d']—" 0
Why study Fp?
@ Interesting phase transition for Fy from 6 < 6. to 6 > 0. (next slide).

@ Fy is related to the smallest singular value of a random operator on the
honeycomb lattice [Kotowski-Virdg '19].

© Fy is a proxy for studying a free directed polymer path measure.
22/31



Maximal free energy Fp

Theorem (Barraquand-Corwin-D. '21abc)
If 6. = 2W=1(0) > 0 (V is the digamma function) then

@ For® < 6., Fy +2W(0/2)N has order N*/3 GUE Tracy-Widom fluctuations;
@ For® =0., Fy = O(N3(log N)?/3);
@ Forf > 0., Fy = O(logN).

Subcritical Critical Supercritical

N3 Tracy-Widom
1 GUE fluctuations
N'Fy

Fy = O(N31log(N)*?)

\ Fy = O(log(N))

\ =

C

Theorem extends [Kotowski-Virdg '19], which considers 6 < 6./2.
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|deas behind the proof: subcritical case 6 < 6,

max log Z(X; Y).
(LX< Y(N,N)
Lower bound: Fy > log Z(1,1; N, N) and log Z(1,1; N, N) + 2W(0/2)N has order
N/3 GUE Tracy-Widom fluctuations [Borodin-Corwin-Remenik '13],
[Krishnan-Quastel '18] and [Barraquand-Corwin-D. '21a].
Upper bound: N=Y/3(Fy + 2W(6/2)N).

Maximal free energy: Fy =

NL/2 I J Key ingredients:

@ Moderate deviation estimates for log Z(X; Y)

N1/2 from [Barraquand-Corwin-D. '21a]

1 @ Tightness of log Z(X;---) and log Z(X;:)
[Barraquand-Corwin-D. '21b] and [D.-Wu '21]

@ Polymer structure
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@ B-corners processes
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[-corners processes

Gaussian Unitary Ensemble.{&;, n;}75_; are i.i.d. N(0,1) variables.

& ifi=j
X; = {21/2(5,] +v/=Iny)  ifi<j X12| X13
2*1/2(5-- —/=1n; ifi>j
i i) Xo1 X22| Xo3
X31 X32 X33
N N N N
A A3 AMA a L%N’l\ """""""" % N A
® @® @ VAN—I/ \\AN—l ;LNAL/ VZ’N~IL/
2 A2 L R S
A2 1 -2 v;LN—Z/
N-2 1
O . @ S L
Al .éiu.ulll
7
® Al

GUE-corners process: (/3 = 2 corners process). Gibbs property:
POAL, .. AL K) = A 1OV, ALY with 1) AHD) = T{N < A1}
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[-corners processes

Gaussian Orthogonal/Unitary/Symplectic Ensemble Xj; are real (8 = 1),
complex (8 = 2) and quaternion (5 = 4).
Continuous B-corners process:
k=1
PO AN =TTV A

i=1

o . ) i o g1 j ; i+1) 8 _
IV V) = 1V SV T cpeagy (% = M) Ty TT5 1Y = X7
Discrete B-corners process:

k—1
PO AT = TT IOV A
i=1

IV, N H1) = Jysa /(1) (skew) Jack symmetric function with 6 = 3/2. When

B = 2 then J)\j+1/>\j(1) = 5/\j+1/>\j(1) = 1{)\j = )\j+1}.

Discrete S-corners process are integrable discretizations of continuous S-corners
processes. Special cases of ascending Macdonald processes [Borodin-Corwin '14].

Appear in distributions on irreducible representations [Bufetov-Gorin '18].
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Discrete (5-ensembles

Projecting [-corners processes to their top level we ge‘fv
Continuous: P(Ay,...,Ay) x H1<,<J<N(/\ )\j)2ﬁ H_=1 e V(X))

1

Discrete: P(1,...,¢n) < [T Qo(li — 4TI, e~ W), Qp(x) := %.
1<i<j<N

(-log gas and Discrete [3-ensembles - [Borodin-Gorin-Guionnet '17]

@ Law of large numbers: puy = N~ Z, 10,/ concentrate near fieq
(Wigner's Semicircle Law)

@ Global Central Limit Theorem: SN f(4;/N) —E | N, f(ﬁ,-//v)} is
asymptotically Gaussian [Borodin-Gorin-Guionnet '17]
@ Edge universality: [Bourgade-Erd8s-Yau '14],[Guionnet-Huang '19]
@ Edge large deviations: [Johansson '98, '00], [Féral '08]
Theorem (Das-D. '21) J

For general Viy's the random variables ¢1 /N satisfy a large deviation principle.

Upper tail rate is N and lower tail rate is N°. Rate functions are explicit but
different from continuous S-log gases (due to discreteness of the model).
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Global asymptotics for [5-corners processes

ii 14_1 3 21‘1 1 |0 B-corners process = height function H(x,y)
4 3 2 1 0 Conjecture: H(x,y) converges to a suitable
3] 2 [ 1 [0

2 1[0
0

pullback of the Gaussian Free field on H.

J Known for Wigner matrices [Borodin '10].

Stieltjes transform: G(z,s) = Y7 15.
[D.-Knizel '21]: multi-level loop equations or Nekrasov equations [Nekrasov '16]

= functional equations relating joint cumulants of G(z,s1), ..., G(z«, sk).

@ Generalize single level loop equations in [Borot-Guionnet '13] and Nekrasov
equations in [Borodin-Gorin-Guionnet '17]

@ [D.-Knizel '19]: G(z1, N), G(zo, N — 1), N*/2[G(z3, N) — G(z3, N — 1)] have
joint Gaussian limits.

Explanation: Top two levels converge to the same 1D slice of the 2D GFF, and
their difference to a certain directional derivative of the GFF. The analogue for
Wigner matrices is proved in [Erdés-Schroder '18].

29/31



Gibbs properties + integrable (algebraic) input + analytic tools
@ KPZ universality for Gibbsian line ensembles
@ Asymptotics for polymer models
@ Asymptotics for 5-corners processes

e (Did not discuss) Convergence of six-vertex models to the GUE
cornerss process [D. '18], [D.-Rychnovsky '20]
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Thank you!

The Pea

Xa1 X22| X3

Xa1 X32 X33
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