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Gibbs measures

Gibbs property = internal consistency condition of a random model.
Uniform lozenge tilings of the hexagon
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Gibbsian line ensembles

Line ensemble (LE) = finite or countably infinite collection of random
continuous curves, defined on the same probability space.

Tiling Gibbs property =⇒ LE Gibbs property.
LE Gibbs property = locally avoiding Bernoulli random walks (or bridges).
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Gibbsian line ensembles

Gibbsian line ensembles = finite or countably infinite collection of random
walk trajectories with local interactions

Gibbsian LEs appear in random tilings, last passage percolation and
directed random polymers. 6 / 31



Asymptotics of Gibbsian line ensembles

Q: What happens when to a Gibbsian line ensemble {LN
i }Ni=1 as N → ∞?

Figure: Simulation due to L. Petrov

We enter the Kardar-Parisi-Zhang (KPZ) universality class

Limiting object: (Parabolic) Airy line ensemble {LAiry
i }∞i=1
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The parabolic Airy line ensemble

(Parabolic) Airy line ensemble {LAiry
i }∞i=1

LAiry
1 = (parabolic) Airy process LAiry

1 (0) = GUE Tracy-Widom dist.

{LAiry
i }∞i=1 has the Brownian Gibbs property (locally avoiding Brownian bridges)
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Key questions for Gibbsian line ensembles

1 Tightness

2 Characterization
3 Convergence

Zero temperature: {LAiry
i }∞i=1

Positive temperature: {LKPZ ,t
i }∞i=1

4 Properties

5 Applications
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Framework for proving convergence to the Airy LE

To prove LN u.c.−−−→ LAiry one needs

1 Show that LN f.d.−−→ LAiry .

2 Show that LN is tight

Zero temperature

PNG [Prähofer-Spohn ’02]

Domino tilings Aztec diamond
[Johansson ’02]

Schur processes
[Okounkov-Reshetikhin ’03]

TASEP [Johansson ’03]

Expon. LPP [Borodin-Péché ’08]

Brownian watermellons
[Corwin-Hammond ’14]

Positive temperature Until 2020 most

work was on LN
1

1.p.−−−→ LAiry
1 :

ASEP [Tracy-Widom ’08]

KPZ eqn. [Sasamoto-Spohn ’10]

Macdonald processes
[Borodin-Corwin ’14]

Log-gamma polymer
[Borodin-Corwin-Remenik ’13]

S6V [Borodin-Corwin-Gorin ’16]

Until 2020: LN
1

f.d.−−→ LAiry
1

Physics: replica approach
(non-rigorous)

Math: [Nguyen-Zygouras ’16]
(incomplete)
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Finite dimensional convergence

Theorem (D. ’20)

Let LN = {LNi }Ni=1 be the Hall-Littlewood Gibbsian LE (M,N, a, t). The

two-point distribution of LN1 converges to the two-point distribution of LAiry
1 .

1 Result is limited to two points and parameter restrictions

2 When reflected LN1 has the law of the height function of the stochastic
six-vertex model [Borodin-Bufetov-Wheeler ’16]

3 The first multi-point convergence result for a non-determinantal (positive
temperature) model. Softer techniques were later developed by
[Quastel-Sarkar ’20] (ASEP and KPZ) and [Virág ’20] (polymer models).
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Finite dimensional convergence

Theorem (D. ’20)

Let LN = {LNi }Ni=1 be the Hall-Littlewood Gibbsian LE (M,N, a, t). The

two-point distribution of LN1 converges to the two-point distribution of LAiry
1 .

Use the method of Macdonald difference operators [Borodin-Corwin ’14]
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Framework for proving convergence to the Airy LE

To prove LN u.c.−−−→ LAiry one needs

1 Show that LN f.d.−−→ LAiry .

2 Show that LN is tight

In [D.-Matetski ’20] we proposed the following alternate framework.

1 Show that LN
1

f.d.−−→ LAiry
1 parabolic Airy process.

2 Show that LN is tight and that all subsequential limits satisfy the Brownian
Gibbs property (locally avoiding Brownian bridges).

3 Show that LAiry is the unique line ensemble which satisfies the Brownian
Gibbs property and has the parabolic Airy process as its top curve.

The framework reduces the quantitative information we need from LN to
LN
1 (useful for models that are non-determinantal)

LN
1 is frequently special: KPZ line ensemble {LKPZ ,t

i }∞i=1 (LKPZ ,t
1 is the

solution to the narrow wedge KPZ equation at time t)
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The Princess and the Pea

Q: Can the Princess feel the pea? A: Yes, and more!
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Classification of Brownian Gibbsian line ensembles

Theorem (D.-Matetski ’20)

Suppose that L1 and L2 are Brownian Gibbsian line ensembles with laws P1 and
P2, respectively. Suppose further that for every k ∈ N, t1 < t2 < · · · < tk and
x1, . . . , xk ∈ R we have

P1

(
L1
1(t1) ≤ x1, . . . ,L1

1(tk) ≤ xk
)
= P2

(
L2
1(t1) ≤ x1, . . . ,L2

1(tk) ≤ xk
)
.

Then P1 = P2.

1 Theorem says that a Brownian Gibbsian line ensemble is completely
characterized by its top curve. The (parabolic) Airy line ensemble

{LAiry
i }∞i=1 is characterized by (1) the Brownian Gibbs property and

(2) LAiry
1 = (parabolic) Airy process

2 Proof is non-constructive (no formulas for L2 etc.)
3 Positive temperature analogue recently proved in [D. ’21].

Specifically, the KPZt line ensemble is characterized by its
lowest-indexed curve being the narrow wedge KPZ equation and its
Gibbs property (called H-Brownian Gibbs property)
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Tightness of Gibbsian line ensembles

Theorem (Meta-)

Let LN = {LNi }Ni=1 be a sequence of Gibbsian line ensembles. Suppose that for

some constants p ∈ R and each n ∈ Z the r.v.’s
LN
1 (nN

2/3)−pnN2/3

N1/3 are tight and

globally parabolic. Then
LN
i (xN

2/3)−pxN2/3

N1/3 are tight in C (N× R) and all
subsequential limits satisfy the Brownian Gibbs property.

1-point tightness + Gibbs property =⇒ tightness of whole ensemble

Avoiding Bernoulli random walkers (proof of concept)
[D.-Fang-Fesser-Serio-Teitler-Wang-Zhu ’20]

(H,HRW )-Gibbsian line ensembles (log-gamma polymer) [D.-Wu ’21]

Key ingredient: KMT coupling for random walk bridges [D.-Wu ’19]
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Framework for proving convergence to the Airy LE

1 Show that LN
1

f.d.−−→ LAiry
1 parabolic Airy process.

2 Show that LN is tight and that all subsequential limits satisfy the
Brownian Gibbs property (locally avoiding Brownian bridges).

3 Show that LAiry is the unique line ensemble which satisfies the
Brownian Gibbs property and has the parabolic Airy process on top.

Framework was used to show {LKPZ ,t
i }∞i=1 =⇒ {LAiry

i }∞i=1 as t → ∞.
Step 1 in [Quastel-Sarkar ’20], [Virág ’20], Step 2 in [Wu ’21], and Step 3
in [D.-Matetski ’20].
Currently applying it to log-gamma polymer – Step 2 in [D.-Wu ’21].
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The log-gamma polymer [Seppäläinen ’09]

di,j are i.i.d. inverse-gamma: fθ(x) = 1{x > 0}Γ(θ)−1x−θ−1 exp(−x−1).
Partition functions: ZN(n) =

∑
π:(1,1)→(n,N) w(π), w(π) =

∏
(i,j)∈π di,j

Free energies: LN1 (n) = logZN(n)
Using geometric RSK [Corwin-O’Connell-Seppäläinen-Zygouras ’14] showed that
LN1 embeds as the lowest indexed curve in a line ensemble with a nice Gibbs
property (uses inverse-gamma weights - very special)
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Maximal free energy FN

Z (X ;Y ) =
∑

π:X→Y

w(π), w(π) =
∏

(i ,j)∈π di ,j

Maximal free energy: FN = max
(1,1)≤X≤Y≤(N,N)

logZ (X ;Y ).

Why study FN?

1 Interesting phase transition for FN from θ < θc to θ > θc (next slide).

2 FN is related to the smallest singular value of a random operator on the
honeycomb lattice [Kotowski-Virág ’19].

3 FN is a proxy for studying a free directed polymer path measure.
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Maximal free energy FN

Theorem (Barraquand-Corwin-D. ’21abc)

If θc = 2Ψ−1(0) > 0 (Ψ is the digamma function) then

For θ < θc , FN + 2Ψ(θ/2)N has order N1/3 GUE Tracy-Widom fluctuations;

For θ = θc , FN = Θ(N1/3(logN)2/3);

For θ > θc , FN = Θ(logN).

θc

N−1
FN

N 1=3 Tracy-Widom
GUE fluctuations

FN = Θ(N 1=3 log(N )2=3)

FN = Θ(log(N))

Subcritical Critical Supercritical

Theorem extends [Kotowski-Virág ’19], which considers θ < θc/2. 23 / 31



Ideas behind the proof: subcritical case θ < θc

Maximal free energy: FN = max
(1,1)≤X≤Y≤(N,N)

logZ (X ;Y ).

Lower bound: FN ≥ logZ (1, 1;N,N) and logZ (1, 1;N,N) + 2Ψ(θ/2)N has order
N1/3 GUE Tracy-Widom fluctuations [Borodin-Corwin-Remenik ’13],
[Krishnan-Quastel ’18] and [Barraquand-Corwin-D. ’21a].

Upper bound: N−1/3(FN + 2Ψ(θ/2)N).

Key ingredients:

Moderate deviation estimates for logZ (X ;Y )
from [Barraquand-Corwin-D. ’21a]

Tightness of logZ (X ; · · · ) and logZ (X ;
...)

[Barraquand-Corwin-D. ’21b] and [D.-Wu ’21]

Polymer structure
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β-corners processes

Gaussian Unitary Ensemble.{ξij , ηij}∞i ,j=1 are i.i.d. N(0, 1) variables.

GUE-corners process: (β = 2 corners process). Gibbs property:
P(λ1, . . . , λk−1|λk) =

∏k−1
i=1 I (λi , λi+1) with I (λi , λi+1) = 1{λi ⪯ λi+1}
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β-corners processes

Gaussian Orthogonal/Unitary/Symplectic Ensemble Xij are real (β = 1),
complex (β = 2) and quaternion (β = 4).
Continuous β-corners process:

P(λ1, . . . , λk−1|λk) =
k−1∏
i=1

I (λi , λi+1)

I (λj , λj+1) = 1{λj ⪯ λj+1}
∏

1≤b<a≤j(λ
j
b − λj

a)
2−β

∏j
a=1

∏j+1
b=1 |λj

a − λj+1
b |

β
2 −1

Discrete β-corners process:

P(λ1, . . . , λk−1|λk) =
k−1∏
i=1

I (λi , λi+1)

I (λj , λj+1) = Jλj+1/λj (1) (skew) Jack symmetric function with θ = β/2. When

β = 2 then Jλj+1/λj (1) = Sλj+1/λj (1) = 1{λj ⪯ λj+1}.
Discrete β-corners process are integrable discretizations of continuous β-corners

processes. Special cases of ascending Macdonald processes [Borodin-Corwin ’14].

Appear in distributions on irreducible representations [Bufetov-Gorin ’18].
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Discrete β-ensembles

Projecting β-corners processes to their top level we get
Continuous: P(λ1, . . . , λN) ∝

∏
1≤i<j≤N(λi − λj)

2β
∏N

i=1 e
−VN (λi ).

Discrete: P(ℓ1, . . . , ℓN) ∝
∏

1≤i<j≤N

Qθ(ℓi − ℓj)
∏N

i=1 e
−VN (ℓi ),Qθ(x) :=

Γ(x+1)Γ(x+θ)
Γ(x)Γ(x+1−θ) .

β-log gas and Discrete β-ensembles - [Borodin-Gorin-Guionnet ’17]

Law of large numbers: µN = N−1
∑N

i=1 δℓi/N concentrate near µeq

(Wigner’s Semicircle Law)

Global Central Limit Theorem:
∑N

i=1 f (ℓi/N)− E
[∑N

i=1 f (ℓi/N)
]
is

asymptotically Gaussian [Borodin-Gorin-Guionnet ’17]

Edge universality: [Bourgade-Erdős-Yau ’14],[Guionnet-Huang ’19]

Edge large deviations: [Johansson ’98, ’00], [Féral ’08]

Theorem (Das-D. ’21)

For general VN ’s the random variables ℓ1/N satisfy a large deviation principle.

Upper tail rate is N and lower tail rate is N2. Rate functions are explicit but
different from continuous β-log gases (due to discreteness of the model).
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Global asymptotics for β-corners processes

β-corners process =⇒ height function H(x , y)
Conjecture: H(x , y) converges to a suitable
pullback of the Gaussian Free field on H.

Known for Wigner matrices [Borodin ’10].

Stieltjes transform: G (z , s) =
∑s

i=1
1

z−ℓsi
.

[D.-Knizel ’21]: multi-level loop equations or Nekrasov equations [Nekrasov ’16]
= functional equations relating joint cumulants of G (z1, s1), . . . ,G (zk , sk).

1 Generalize single level loop equations in [Borot-Guionnet ’13] and Nekrasov
equations in [Borodin-Gorin-Guionnet ’17]

2 [D.-Knizel ’19]: G (z1,N),G (z2,N − 1),N1/2[G (z3,N)− G (z3,N − 1)] have
joint Gaussian limits.

Explanation: Top two levels converge to the same 1D slice of the 2D GFF, and

their difference to a certain directional derivative of the GFF. The analogue for

Wigner matrices is proved in [Erdős-Schröder ’18].
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Summary

Gibbs properties + integrable (algebraic) input + analytic tools

KPZ universality for Gibbsian line ensembles

Asymptotics for polymer models

Asymptotics for β-corners processes

(Did not discuss) Convergence of six-vertex models to the GUE
cornerss process [D. ’18], [D.-Rychnovsky ’20]

30 / 31



Thank you!
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