On Finite-Rank Non-Hermitian Deformations of Random Matrix Ensembles

Yan V Fyodorov

Department of Mathematics

Project supported by EPSRC grant EP/V002473/1

Dedicated to the memory of **Konstantin Efetov** (1950-2021)

Integrable Structures in Random Matrix Theory and Beyond, 19th of October 2021

RMT approach to chaotic wave scattering:

To describe **generic/universal** properties of the associated **scattering** system by replacing H for the "inner" region supporting classically chaotic dynamics with **random GOE/GUE matrix** H of size $N \gg 1$, and the couplings to M scattering channels with M vectors $\mathbf{w}_a, a = 1, \ldots, M$.

In this framework, **Sokolov-Zelevinsky** '88 demonstrated that the **generic/universal** features of statistics of the **poles** of the scattering matrix $S(E)$ in the complex energy plane (a.k.a. **resonances**) can be modelled by N complex eigenvalues z_n in the lower half-plane $\Im z_n \leq 0, \forall n = 1, \ldots, N$ of the effective **non-selfadjoint** random matrix "Hamiltonian":

> $\mathcal{H} = H - i\Gamma, \hspace{5mm} \Gamma := \sum_a \mathbf{w}_a \otimes \mathbf{w}_a^*$ $a^*_{a} = WW^* \geq 0$ – **rank M**

Note 1: The effective **non-Hermitian** Hamiltonian

 $\mathcal{H} = H - i \Gamma$, $\Gamma = WW^* \geq 0 - \mathbf{rank} \mathbf{M}$

is **non-normal**, hence complex eigenvalues $z_i = X_i - iY_i$ come with two sets of eigenvectors: "right" r_i and "left" ones l_i satisfying

 $\mathcal{H}\bm{r}_i=z_i\bm{r}_i$ and $\mathcal{H}^*\bm{l}_i=\overline{z}_i\bm{l}_i$ as well as the **bi-orthogonality** relation $(\bm{l}_i^*\bm{r}_j)=\delta_{ij}.$ The corresponding **non-orthogonality overlap** matrix

$$
\mathcal{O}_{mn} = (\bm{l}_m^*\bm{l}_n)(\bm{r}_n^*\bm{r}_m)
$$

shows up in various experimental observables of wave-chaotic systems, such as e.g. **decay laws Savin, Sokolov** '97, **excess noise** in laser resonators (**Schomerus et al.** '00), in **sensitivity** of scattering to small perturbations (**YF, Savin** '12), in **transmission** and **reflection** statistics, **Davy, Genack** '19,**YVF, Osman** '21

Characterizing statistics of \mathcal{O}_{mn} **presents a serious challenge.**

Note 2: Finite-rank deformations of random **Hermitian** matrices are closely related to finite-rank deformations of random **unitary** matrices, such as **truncations**.

Note 3: The matrices $H - i \Gamma$ at fixed M are **weakly non-Hermitian** when $N \to \infty$: typically $\Im z_i = Y_i \sim \Delta = O(1/N)$, where $\Delta = (N \rho_{sc}(x))^{-1}$ is the eigenvalue spacing. Distribution of $\Im z_i$ (aka **resonance widths**) is an interesting problem.

Example of rank-one non-Hermitian deformation:

Consider

 $\mathcal{H} = H_N - i\gamma \mathbf{e} \otimes \mathbf{e}^T$ with $N \times N$ matrix $H_N \in GOE/GUE/\beta-Hermite$

The **Joint Probability Density** (JPD) of complex eigenvalues z_i for \mathcal{H}

in the half-plane $\Im z_j \leq 0, \forall j = 1, ..., N$ is known from **N. Ullah** '69, Sokolov-Zelevinsky '88, Seba-Stöckmann 98, **Kozhan** '17.

$$
\mathcal{P}_z \{ z_i \} = \frac{1}{h_{\beta, N}} e^{-\frac{\beta N}{4} \sum_{i=1}^N (Re z_i)^2} \prod_{1 \le j < k \le N} |z_j - z_k|^2
$$
\n
$$
\times \prod_{j,k=1}^N |z_j - \overline{z}_k|^{\frac{\beta}{2} - 1} \, \delta(\sum_{i=1}^N Im z_j + \gamma)
$$

where $h_{\beta,N}=2^{N\left(\frac{\beta}{2}-1\right)}$ $\gamma^{\frac{\beta N}{2}}e^{\frac{\beta N}{4}}$ $\frac{dN}{4}\gamma^2\,Z_{\beta,N}\,C_{\beta,N}.$

In the case $\beta = 2$ the eigenvalues asymptotically, for $N \gg 1$, form a **determinantal process** in the lower half of the complex plane, and all their finiteorder correlation functions (aka marginal densities) can be found via a certain kernel [**YVF, Khoruzhenko** '99]. Moreover, these results can be extended for any **fixed**rank deformations $1 \leq M < \infty$ and $N \to \infty$.

All $\beta \neq 2$, including the cases $\beta = 1\&4$, present a serious challenge.

 $\beta=2$, fixed rank deformation $-i\Gamma:=-i\sum_{c=1}^M\gamma_c{\bf e}_a\otimes{\bf e}_a^*$ $\frac{1}{a}$

Define " **renormalized** coupling strengths" $g_c = \frac{1}{2}$ 2 $\sqrt{ }$ $\gamma_c + \frac{1}{\gamma_c}$ γ_c \setminus for all $c=1,\ldots,M.$ Then

$$
\lim_{N \to \infty} \frac{1}{N^{2n}} R_n(z_1 = x + \frac{\zeta_1}{N}, \dots, z_n = x + \frac{\zeta_n}{N}) \to \det \{ K(\zeta_j, \zeta_k) \}
$$

$$
K(\zeta_1, \zeta_2) = F^{1/2}(\zeta_1) F^{1/2}(\zeta_2) \int_{-1}^1 e^{-i\pi \rho \lambda(\zeta_1 - \overline{\zeta}_2)} \prod_{c=1}^M (g_c + \pi \rho \lambda) d\lambda
$$

where $\rho:=\frac{1}{4\pi}$ $\overline{4-x^2}$ is the mean density of GUE eigenvalues around E and $F(\zeta) = \sum_{c=1}^{M}$ $e^{-2g_c|\mathsf{Im}\zeta|}$ $\overline{\prod_{s \neq c}^{M}(g_c-g_s)}$

In particular, the probability density of the scaled **imaginary parts** $y_n = \pi \Im z_n / \Delta$ is given for M equivalent channels with $g_1 = \ldots = g_M \equiv g$ by (**YF, Sommers**'96)

$$
\mathcal{P}_M^{(\beta)}(y) = \frac{(-1)^M}{(M-1)!} y^{M-1} \frac{d^M}{dy^M} \left\{ e^{-yg} \left(\frac{\sinh y}{y} \right) \right\}
$$

For $\gamma \neq 1$ we have the exponential tail: $\mathcal{P}_M^{(\beta)}(y\gg 1)\propto e^{-(g-1)y}$. In contrast, for the **perfect coupling** case $g = 1$ the **power-law tail** emerges:

$$
\mathcal{P}_M^{(\beta)}(y>>1)\propto 1/y^2.
$$

Experimental data **L Chen, S. M. Anlage** & **YVF** *arXiv:2106.15469* vs. theoretical prediction **YVF, H.-J. Sommers** '96

 $\beta = 1$, fixed $M < \infty$:

For $\beta = 1$ the eigv. density in the complex plane can be found by **Efetov SUSY** approach (**Sommers, YF, Titov**'99). Defining $y_n = \pi \Im z_n / \Delta$ one finds for $M = 1$

$$
\mathcal{P}_{M=1}^{(\beta=1)}(y) = \frac{1}{4\pi} \frac{d^2}{dy^2} \int_{-1}^{1} (1 - \lambda^2) e^{2\lambda y} (g - \lambda) \mathcal{F}(\lambda, y) d\lambda
$$

where

$$
\mathcal{F}(\lambda, y) = \int_{g}^{\infty} dp_1 \frac{e^{-yp_1}}{(\lambda - p_1)^2 \sqrt{(p_1^2 - 1)(p_1 - g)}} \int_{1}^{g} dp_2 \frac{e^{-yp_2}}{(\lambda - p_2)^2 \sqrt{(p_2^2 - 1)(g - p_2)}}
$$

and even more complicated expressions for $M > 1$.

Very recently an alternative method for $M = 1$ was proposed in **YVF, Osman**'21 and is based on exploiting the known **eigenvalue JPD** with **non-Efetov SuSy**

$$
\mathcal{P}_N^{\beta=1}(z_1,\ldots,z_N) \propto \frac{e^{-\frac{N}{4}\left(\gamma^2 + \sum_{j=1}^N (\Re z_j^2)\right)}}{\frac{N}{\gamma^{2}-1}} \prod_{j,k=1}^N \frac{1}{\sqrt{|z_j - z_k^*|}} \prod_{j < k}^N |z_j - z_k|^2 \delta(\sum_{j=1}^N \Im z_j + \gamma)
$$

which gives instead

$$
\mathcal{P}_{M=1}^{(\beta=1)}(y) = \frac{1}{4\sqrt{2}} e^{-gy} \, \mathbb{L}_1 \int_1^\infty da \, e^{-gay} \, \frac{(a-1)}{\sqrt{a+1}} I_0 \left(y \sqrt{(g^2 - 1)(a^2 - 1)} \right)
$$

where \mathbb{L}_1 is the following differential operator:

$$
\mathbb{L}_1 = 2\sinh 2y - \left(\cosh\left(2y\right) - \frac{\sinh 2y}{2y}\right)\left(\frac{3}{y} + 2\frac{d}{dy}\right)
$$

Numerically the two expressions are **indistinguishable**, but we haven't found a way to prove it yet.

Diagonal non-orthogonality factors for rank-one non-Hermitian deformations:

Theorem YVF, M. Osman , '21

 \mathcal{L} onsider $\mathcal{H} = H - i \gamma \mathbf{e} \otimes \mathbf{e}^T$, with $H \in GUE$ or $H \in GOE$ and define the non-orthogonality *factor* $\mathcal{O}_n = (\boldsymbol{l}_n^*)$ $\pi_n^* \bm{l}_n) (\bm{r}_n^* \bm{r}_n)$ for eigenvalues z_n . Define the probability density of $t\ =\ O_{nn}\ -\ 1$ *corresponding to eigenvalues in the vicinity of a point* $z = X - iY$, $Y > 0$ *in the complex plane:*

$$
\mathcal{P}(t;z) = \left\langle \frac{1}{N} \sum_{i=1}^{N} \delta(O_{nn} - 1 - t) \delta(z - z_n) \right\rangle
$$

Then for $H \in GUE$ *as* $N \rightarrow \infty$ *the limiting density* $\mathcal{P}_u^{(2)}$ $y^{(2)}_y(t):=\lim_{N\to\infty}\frac{1}{\pi\rho N}\mathcal{P}(t;z=X-i\frac{y}{\pi\rho N})$ takes the following form

$$
\mathcal{P}_y^{(2)}(t) = \frac{16}{t^3} e^{-2gy} \mathbb{L}_2 e^{-2gy(1+\frac{2}{t})} I_0 \left(\frac{4y}{t} \sqrt{(g^2 - 1)(1+t)} \right)
$$

where we defined $g=\frac{1}{2\pi\rho_{sc}(x)}$ $\left(\gamma + \frac{1}{\gamma}\right)$ $\big)$, $I_0(x)$ stands for the modified Bessel function *and* L_2 *is a differential operator acting on functions* $f(y)$ *as*

$$
\mathbb{L}_2 f(y) = \left\{ 1 + \left(\frac{\sinh 2y}{2y} \right)^2 + \frac{1}{2y} \left(1 - \frac{\sinh 4y}{4y} \right) \frac{d}{dy} + \frac{1}{4} \left(\left(\frac{\sinh 2y}{2y} \right)^2 - 1 \right) \frac{d^2}{dy^2} \right\} y^2 f(y).
$$

For $H \in GOE$ we have a similar result:

$$
\mathcal{P}_y^{(1)}(t) = \frac{1}{2} \frac{e^{-gy}}{\sqrt{t^5(1+t)}} \, \mathbb{L}_1 \, e^{-gy(1+\frac{2}{t})} I_0 \left(\frac{2y}{t} \sqrt{(g^2 - 1)(1+t)} \right)
$$

where

$$
\mathbb{L}_1 = 2 \sinh 2y - \left(\cosh 2y - \frac{\sinh 2y}{2y}\right) \left(\frac{3}{y} + 2\frac{d}{dy}\right)
$$

Main object to be evaluated:

$$
\mathcal{M}_p^{(\beta)}(z) = \left\langle \frac{\left[\det(z - \tilde{\mathcal{H}}) \det(\overline{z} - \tilde{\mathcal{H}}^{\dagger}) \right]^{p+1}}{\left[\det(z - \tilde{\mathcal{H}}^{\dagger}) \det(\overline{z} - \tilde{\mathcal{H}}) \right]^{p+1-\frac{\beta}{2}}} \right\rangle
$$

For $\beta = 2$ can be reduced to **YF, Strahov**'03 or **Borodin, Strahov**'04 formulas. For $\beta = 1$ can be reduced to a result of **YF, Nock**'15.

Off-diagonal non-orthogonality correlator, β = 2**:**

One can also study the off-diagonal non-orthogonality factors $\mathcal{O}_{mn} \ = \ (\bm{l}_m^*\bm{l}_n)(\bm{r}_n^*\bm{r}_m).$ Consider **microscopic** eigenvalue separation $\Re(z_a - z_b)/2 = \Omega \sim \Delta = O(1/N)$. Introducing $\omega =$ $\frac{\pi\Re(z_a-z_b)}{2}$ $\frac{z_a - z_b)}{\Delta}$ and $y_{a,b} = \frac{\pi \Im z_a}{\Delta}$ $\frac{\Im z_a}{\Delta}$ one gets (**YVF, Mehlig**'02):

$$
O(z_a, z_b) := \left\langle \frac{1}{N} \sum_{n \neq m} O_{nm} \delta(z_a - z_n) \delta(z_b - z_m) \right\rangle_{H \in GUE}
$$

= $N(\pi \rho_{sc}(x)/\Delta)^2 e^{-2g(y_a + y_b)} \det \begin{pmatrix} F(i\omega + y_a - y_b) & F(i\omega + y_a + y_b) \\ F(i\omega - y_a - y_b) & F(i\omega - y_a + y_b) \end{pmatrix}$

with

$$
F(u) = 2\left(g + \frac{d}{du}\right)\frac{\sinh u}{u}.
$$

Most probably indication of a **determinantal structure** for conditional overlaps holds, similar to one found for complex Ginibre in **Akemann, Tribe, Tsareas, and Zaboronski**'19.

Scattering in quasi 1D **systems with Anderson localization:**

Physical system: a **disordered wire** of length L with random potential inside, characterized by a **localization length** ξ, and attached to the scattering channels at one of edges.

Mathematical model: a random **banded matrix** of size N ∼ L and the **localization length** $\xi\sim b^2\gg 1$ deformed by adding the anti-Hermitian diagonal matrix $-i\Gamma:=-i\sum_{c=1}^M\gamma_c{\bf e}_a\otimes{\bf e}_a^*$ $\frac{1}{a}$.

For the "complete localization" limit $N/b^2 \rightarrow \infty$ the density of imaginary parts $\Im z_n$ of complex eigenvalues can be calculated in the framework of the **Efetov SUSY** approach.

Defining Δ_{ξ} to be the eigv. spacing at the sample of localization length ξ , the probability density of the properly re-scaled $y_n = \pi \Im z_n / \Delta_\xi$ for M perfectly coupled channels $\gamma_c = 1, c = 1, \ldots, M$ is given by (**YVF, M. Skvortsov, K. Tikhonov** '21):

$$
\rho(y) = -\frac{4}{\pi^2 \kappa} \frac{\partial}{\partial \kappa} \left[\frac{1}{\kappa} \sum_{n=0}^{M-1} K_n(\kappa) I_{n+1}(\kappa) \right]
$$
 where $\kappa = \sqrt{\frac{8y}{\pi}}$

Analysis at $M \gg 1$ shows that

$$
\rho(\Im z) \sim \begin{cases} \Delta_{\xi}/\Im z & \text{for } \Im z \ll \Delta_{\xi} \\ (\Delta_{\xi}/\Im z)^{3/2} & \text{for } \Delta_{\xi} \ll \Im z \ll M^{2}\Delta_{\xi} \\ M(\Delta_{\xi}/\Im z)^{2} & \text{for } \Im z \gg M^{2}\Delta_{\xi} \end{cases}
$$

The results agree with numerics for **banded matrices** and with "**quantum kicked rotator**" behaviour observed in **Borgonovi, Guarneri, and Shepelyansky** '91

Challenge: to describe ρ(Γ) close to the **Anderson localization** transition.