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RMT approach to chaotic wave scattering:

H = - Laplacian (+ Dirichlet B.C.)

Heidelberg Program [Verbaarschot, Weidenmüller, Zirnbauer ’85]:

To describe generic/universal properties of the associated scattering system by replacing H for

the "inner" region supporting classically chaotic dynamics with random GOE/GUE matrix H of size

N � 1, and the couplings to M scattering channels with M vectors wa, a = 1, . . . ,M .

In this framework, Sokolov-Zelevinsky ’88 demonstrated that the generic/universal
features of statistics of the poles of the scattering matrix S(E) in the complex energy
plane (a.k.a. resonances) can be modelled by N complex eigenvalues zn in the
lower half-plane =zn ≤ 0,∀n = 1, . . . , N of the effective non-selfadjoint random
matrix “Hamiltonian":

H = H − iΓ, Γ :=
∑
awa ⊗ w∗a = WW ∗ ≥ 0− rank M



Note 1: The effective non-Hermitian Hamiltonian

H = H − iΓ, Γ = WW ∗ ≥ 0− rank M
is non-normal, hence complex eigenvalues zi = Xi − iYi come with two sets of
eigenvectors: "right" ri and "left" ones li satisfying

Hri = ziri and H∗li = zili as well as the bi-orthogonality relation (l∗irj) = δij.

The corresponding non-orthogonality overlap matrix

Omn = (l∗mln)(r∗nrm)

shows up in various experimental observables of wave-chaotic systems, such as e.g.
decay laws Savin, Sokolov ’97, excess noise in laser resonators (Schomerus et
al. ’00), in sensitivity of scattering to small perturbations (YF, Savin ’12),
in transmission and reflection statistics, Davy, Genack ’19,YVF, Osman ’21

Characterizing statistics of Omn presents a serious challenge.

Note 2: Finite-rank deformations of random Hermitian matrices are closely related
to finite-rank deformations of random unitary matrices, such as truncations.

Note 3: The matrices H− iΓ at fixed M are weakly non-Hermitian when N →∞:

typically =zi = Yi ∼ ∆ = O(1/N), where ∆ = (Nρsc(x))−1 is the eigenvalue
spacing. Distribution of =zi (aka resonance widths) is an interesting problem.



Example of rank-one non-Hermitian deformation:
Consider
H = HN − iγe⊗ eT with N ×N matrix HN ∈ GOE/GUE/β −Hermite

The Joint Probability Density (JPD) of complex eigenvalues zi for H
in the half-plane =zj ≤ 0,∀j = 1, . . . , N is known from N. Ullah ’69, Sokolov-
Zelevinsky ’88, Seba-Stöckmann 98, Kozhan ’17.
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In the case β = 2 the eigenvalues asymptotically, for N � 1, form a
determinantal process in the lower half of the complex plane, and all their finite-
order correlation functions (aka marginal densities) can be found via a certain kernel
[YVF, Khoruzhenko ’99]. Moreover, these results can be extended for any fixed-
rank deformations 1 ≤M <∞ and N →∞.

All β 6= 2, including the cases β = 1&4, present a serious challenge.



β = 2, fixed rank deformation −iΓ := −i
∑M
c=1 γcea ⊗ e∗a:

Define " renormalized coupling strengths" gc = 1
2

(
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)
for all c = 1, . . . ,M .

Then
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In particular, the probability density of the scaled imaginary parts yn = π=zn/∆ is
given for M equivalent channels with g1 = . . . = gM ≡ g by (YF, Sommers’96 )
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For γ 6= 1 we have the exponential tail: P(β)

M (y � 1) ∝ e−(g−1)y.
In contrast, for the perfect coupling case g = 1 the power-law tail emerges:

P(β)
M (y >> 1) ∝ 1/y2.



Experimental data
L Chen, S. M. Anlage & YVF
arXiv:2106.15469

vs. theoretical prediction
YVF, H.-J. Sommers ’96



β = 1, fixed M <∞:
For β = 1 the eigv. density in the complex plane can be found by Efetov SUSY
approach (Sommers, YF, Titov’99 ). Defining yn = π=zn/∆ one finds for M = 1
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and even more complicated expressions for M > 1.

Very recently an alternative method for M = 1 was proposed in YVF, Osman’21 and
is based on exploiting the known eigenvalue JPD with non-Efetov SuSy
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Numerically the two expressions are indistinguishable, but we haven’t found a way to prove it yet.



Diagonal non-orthogonality factors for rank-one non-Hermitian deformations:

Theorem YVF, M. Osman , ’21

ConsiderH = H − iγe ⊗ eT , with H ∈ GUE or H ∈ GOE and define the non-orthogonality
factor On = (l∗nln)(r

∗
nrn) for eigenvalues zn. Define the probability density of t = Onn − 1

corresponding to eigenvalues in the vicinity of a point z = X − iY, Y > 0 in the complex plane:
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For H ∈ GOE we have a similar result:
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Main object to be evaluated:

M(β)
p (z) =

〈 [
det(z−H̃) det(z−H̃†)

]p+1

[det(z−H̃†) det(z−H̃)]
p+1−β2

〉

For β = 2 can be reduced to YF, Strahov’03 or Borodin, Strahov’04 formulas. For β = 1 can be
reduced to a result of YF, Nock’15.

Off-diagonal non-orthogonality correlator, β = 2:

One can also study the off-diagonal non-orthogonality factors Omn = (l∗mln)(r
∗
nrm). Consider

microscopic eigenvalue separation <(za − zb)/2 = Ω ∼ ∆ = O(1/N). Introducing ω =
π<(za−zb)

∆ and ya,b = π=za
∆ one gets (YVF, Mehlig’02):
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Most probably indication of a determinantal structure for conditional overlaps holds, similar to one
found for complex Ginibre in Akemann, Tribe, Tsareas, and Zaboronski’19.



Scattering in quasi 1D systems with Anderson localization:

Physical system: a disordered wire of length L with random potential inside, characterized by a
localization length ξ, and attached to the scattering channels at one of edges.

Mathematical model: a random banded matrix of size N ∼ L and the localization length
ξ ∼ b2 � 1 deformed by adding the anti-Hermitian diagonal matrix−iΓ := −i

∑M
c=1 γcea ⊗ e∗a.

For the ”complete localization” limit N/b2 → ∞ the density of imaginary parts =zn of complex
eigenvalues can be calculated in the framework of the Efetov SUSY approach.
Defining ∆ξ to be the eigv. spacing at the sample of localization length ξ, the probability density of the
properly re-scaled yn = π=zn/∆ξ for M perfectly coupled channels γc = 1, c = 1, . . . ,M is
given by (YVF, M. Skvortsov, K. Tikhonov ’21):
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Analysis at M � 1 shows that

ρ(=z) ∼


∆ξ/=z for =z � ∆ξ

(∆ξ/=z)3/2 for ∆ξ � =z �M2∆ξ

M(∆ξ/=z)2 for =z �M2∆ξ

The results agree with numerics for banded matrices and with "quantum kicked rotator" behaviour
observed in Borgonovi, Guarneri, and Shepelyansky ’91

Challenge: to describe ρ(Γ) close to the Anderson localization transition.


