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1. Introduction



Introduction

A Young diagram Y, with

A= (8,7,7,7,5,4,2).
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Introduction

A skew Young diagram Y)/,,
with

A=(8,7,7,7,5,4,2), pn=(44221).



Introduction

©| We assign each NW corner a
clock &5 ‘ which rings after an in-
dependent waiting time with pa-
rameter ~1, and each SE corner a
clock which rings after an in-
dependent waiting time with pa-
(% rameter v».




Introduction

If any clock rings, the associated

box melts.
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Introduction

It might be possible that one box
has two clocks, or the shape be-
comes disconnected.
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Introduction
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Introduction

Question:  Where is the last
melted box and when does it

melt?
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2. Corner growth model



Corner growth model

Why are we interested in the random melting skew Young diagram?
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Corner growth model

Why are we interested in the random melting skew Young diagram?

Reason 1: It is a natural generalization of the corner growth model
(1 =00r72=0).

Corner growth model: imagine that you burn a paper from a corner.
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Corner growth model

Why are we interested in the random melting skew Young diagram?

Reason 1: It is a natural generalization of the corner growth model
(1 =00r72=0).

Corner growth model: imagine that you burn a paper from a corner.

Random melting skew Young diagram: imagine that you burn a paper
from two corners.
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Corner growth model

blue arrow: spatial direc-
tion

red arrow: temporal direc-

tion

green line: height func-
tion h(x, t)
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Corner growth model

The limiting fluctuations of h(x, t) depend on the initial condition h(x, 0).
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Corner growth model

The limiting fluctuations of h(x, t) depend on the initial condition h(x, 0).

Step IC:
h(XvO) = ‘X|
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Corner growth model

The limiting fluctuations of h(x, t) depend on the initial condition h(x, 0).

Step IC:
h(XvO) = ‘X|

Flat IC:

h(x, 0) 1, x=2n+1 neZ,
x,0) =
[x —2n|, 2n—1<x<2n+1, neZ.
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Corner growth model

The limiting fluctuations of h(x, t) depend on the initial condition h(x, 0).

Step IC:
h(XvO) = ‘X|

Flat IC:

h(x, 0) 1, x=2n+1 neZ,
x,0) =
[x —2n|, 2n—1<x<2n+1, neZ.

Stationary IC, Step-flat IC, Step-Stationary IC, Flat-Stationary IC, etc.
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Corner growth model

For step IC, it is known [Johansson00, Johansson03]

h(xt?/3,t) — cit
I t1/3

— A (x) — x°

as t — 0o, where Aj is the Airy, process [Prahofer-Spohn02].

17



Corner growth model

For flat IC, [Baik-Rains01], [Borodin,Ferrari,Prahofer,Sasamoto,05-08]

h(xt?/3,t) — cit
C2t1/3

— Al(X)

as t — oo, where A; is the Airy; process.
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Corner growth model

e Other classic initial conditions: Astat(x) [Baik-Ferrari-Péché10],
Aj_,» [Borodin-Ferrari-Sasamoto08], Az stat
[Corwin-Ferrari-Péchél10], A;_stat [Borodin-Ferrari-Sasamoto09].
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Corner growth model

e Other classic initial conditions: Astat(x) [Baik-Ferrari-Péché10],
Aj_,» [Borodin-Ferrari-Sasamoto08], Az stat
[Corwin-Ferrari-Péchél10], A;_stat [Borodin-Ferrari-Sasamoto09].

e General initial conditions: [Matetski-Quastel-Remenik16].
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Corner growth model

e Other classic initial conditions: Astat(x) [Baik-Ferrari-Péché10],
Aj_,» [Borodin-Ferrari-Sasamoto08], Az stat
[Corwin-Ferrari-Péchél10], A;_stat [Borodin-Ferrari-Sasamoto09].

e General initial conditions: [Matetski-Quastel-Remenik16].

e Two-time or more generally multi-time/multi-point in the space-time
plane: [Johanssonl7, Johansson-Rahman19, Liul9].
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Corner growth model

Other classic initial conditions: Agat(x) [Baik-Ferrari-Péchél10],
Aj_,» [Borodin-Ferrari-Sasamoto08], Az stat
[Corwin-Ferrari-Péchél10], A;_stat [Borodin-Ferrari-Sasamoto09].

General initial conditions: [Matetski-Quastel-Remenik16].

Two-time or more generally multi-time/multi-point in the space-time
plane: [Johanssonl7, Johansson-Rahman19, Liul9].

e More generally, there is a limiting four-parameter random field, the
so-called the directed landscape/Airy sheet constructed recently by
[Dauvergne-Ortmann-Viragl8].
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Corner growth model

The random melting skew Young diagram can be viewed two independent
corner growth models growing towards each other.
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Corner growth model

The last melting box corresponds to the last box which is not covered by
green or blue.

Heuristically, when time becomes infinity, the location of the last melting
box is related to the argmax of the sum of two Airy-type processes.
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3. Geodesic in the directed last
passage percolation




Geodesic in DLPP

The corner growth model is equivalent to a directed last passage
percolation model.

Last passage time

W51 (W52 |Ws5 3 |Ws 4 |WY 5
L ‘= max E w,
Wy 1 |Wa 2 |\W4 3 |Wa 4 |W4 s p(q) mp—q '
rem
W31 (WEZTW3 3 W3 23,5 More generally,

Wo 1 |W3 2 W2 3 |Woa|Wo s

4

W1 T2 W13 |W1,4 W15 Ls(E) := max E W;.
TPES—YE

w;j ~ exp(1), i.i.d.
The maximizer is called the geodesic. We denote it by G,(q) (or Gs(E)).
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Geodesic in DLPP

A box (m, n) is on the geodesic Gs(E) if and only if (m, n) is the only box
which does not belong to

{r: Ls(r) < t}U{r: L,(E) <s}

for some t,s > 0.
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Geodesic in DLPP

A box (m, n) is on the geodesic Gs(E) if and only if (m, n) is the only box
which does not belong to

{r: Ls(r) < t}U{r: L,(E) < s}

for some t,s > 0.
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Geodesic in DLPP

A box (m, n) is on the geodesic Gs(E) if and only if (m, n) is the only box
which does not belong to

{r: Ls(r) < t}U{r: L,(E) <s}

for some t,s > 0.
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Geodesic in DLPP

A box (m, n) is on the geodesic Gs(E) if and only if (m, n) is the only box
which does not belong to

{r: Ls(r) < t}U{r: L,(E) <s}

for some t,s > 0.

Heuristically the limiting location of the geodesic location is related to

the argmax of two independent Airy-type processes. -



Geodesic in DLPP

The distribution of the location of the point-to-point geodesic Gy(q) was
only obtained very recently [Liu21]. However, the approach in [Liu21]
seems not applicable for the geodesic Gs(E).
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4. Main results




we use lattice points (x,y) € Z2>1 to represent the boxes in the skew
Young diagrams, here we let the y-axis goes towards to the south for
convenience.
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we use lattice points (x,y) € Z2>1 to represent the boxes in the skew
Young diagrams, here we let the y-axis goes towards to the south for
convenience.

We denote Y'(t) the random melting skew Young diagram with initial
condition

Y(O): Y)\/M:{(ivj)::u‘j<i§)\j}a A:(AI:AZV")? M:(ul?u%"')'
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we use lattice points (x,y) € Z2>1 to represent the boxes in the skew
Young diagrams, here we let the y-axis goes towards to the south for
convenience.

We denote Y'(t) the random melting skew Young diagram with initial
condition

Y(O): Y)\/M:{(ivj)::u‘j<i§)\j}a A:(AI:AZV")? M:(ul?u%"')'

Definition
Define tue1r to be the smallest time t such that Y (t) = 0. In other words,

ety = rpzlg{t 1Y (t) =0}

We call tyer the melting time. We also define Yye1c the last melted box,
ie.,

Ymelt = ||m Y(tmelt — E).
€l0

27



Finite time formula

Theorem (Liu21+)
We have
IP>/\/,u, (tmelt S (ty t+ 6)7 Ymelt = (n7 m))

t+e
= (le +72) / pk/;t(Vltvr}Qta m, n)dta
Jt

where the function py,,(t1, t2, m, n) is defined in later slides.
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Kernels K, and RﬁN)

The information of Y}/, is encoded in two kernels.

Suppose (= (p1,---) is a partition. Let ¢, . be the unique coefficient
satisfying the following symmetric function expansion

) N

det [W,-ﬂ(w,- + 1)“1} -

g,u,(Wla"' >WN) = — ij= :ZCH’RPFL(WM"' -,WN)
det {Wf’} "

ihj=1

where N is an arbitrary positive integer satisfying N > . u1j, and the
summation on the right hand side is running over all possible partitions
k = (k1,---), and the function p,(wy, -+, wy) = HJ-:KJ_>0 Z,N:l w” is
the power sum symmetric function.

The function G, (wy, - - , wy) is related to the inhomoegeneous Schur
polynomial defined by Borodin in [Borl7], and the dual Grothendieck
polynomial [Motegi-Sakail3].
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Kernels K, and RﬁN)

Define

(v,u) =1+ Z (e H (u — v
Jikj>0
It is easy to show that

X}L(Va U) - g#(uv V£7 ngv Ty VfN_l)

where ¢ = e2™/N is the N-th root of unity provided N > |u|.
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Kernels K, and RﬁN)

Definition
Suppose = (u1,---) is a partition and u, v are two complex numbers.
We define the kernel (v. )
XulV, U
K.(v,u) ==—~——"-=
(v, u) D

Suppose A is a partition and N is an integer satisfying A\j = 0 for all
j > N. We also define

N+1 A
Ny 4 1
u, V) = 7K(A1—)\N7)\1—>\N—17"' ,>\1—>\270)(V’ Ll) ' m

S

K,, does not depend on N, but R/gN) depends on the parameter N.
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Definition of p,/,

Suppose A and p are two partitions satisfying A; > p; > 0 for all i, and
(m,n) € Y. We define

dz 1
p)\,/L(tlvt27m7 n) - %0277_1(1_2)2 Z (k1|k2|)2 Tkl,kz(Z; tlatZ;ma n)v
: ki,ka>1
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Definition of p,/,

where

Tkl,kz(z' t1, to; m, n)

du?
_ i
H <1 — 7 ‘/;L,‘ 7Ti 1 — 7z ) ] /ZL 27i

=1
e
] 1—7z7 TR.out 27r1 1 —Z Jspim 27r1 o e 27

U 1). U(2))A( 1 ’ \/2 )
-(—1)(?)+(§)det [Ku(v.(ll), u.ll) r det { RM (@, ,@)]"

’ /
Jz 2 = l
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Definition of p,/,

The contours
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Definition of p,/,

The functions f; and f, are defined by
filw) = i(w; t;,m,n) =e"™"w"(w+1)""
fy(w) = fo(w; to, m, n) == 2w "(w +1)"1
The function H is defined by
(U(l) U(2)-\/(1) V@)
(uj; )+ 1) OOy N @ o)
= H ’1 (Z(“h =% ) — Z( U, =V )—1
fi=1 Uq ( It n\iz =1
ha (1)+1 ko (2)“)

1 1o

,'11"()“‘1,21,2 +1
v () + 1) m_ W NN
B E)T Z(uh Vi ) Z(ub -V )+ 1
] “,2 (v,”+1) \iza ]

St

=1 11

1%

v 15 0P 41

P R
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1. Although R)(\N) has the parameter N, the function py/, does not
depend on N.
2. We are able to numerically verify the following cases.
(1) A=()and p=(0), m=n=1. p(s,t) = te *"".
(2) A=(2,2),u=(0), m=n=1. p(s,t) = e *"H(t* -2t +2—2e"").
(3) A=(2,2),p=(0), m=1,n=2.
p(s,t)=e " (st—1+e *+e t—e ")
(4) A=3)and p=(0), m=n=1. p(s, t) =3 t2e75 £
(5) A=(3)and p=(0), m=2,n=1. p(s, )_ste
(6) A=1(2,1), u=(0), m=n=1. p(s,t) =e °~ t(2t —2+2e7Y).
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Limit theorems

Theorem (Step case)
When A = (M, --- M) and pn = (0), with the following scaling
———

N
M = aN,

t=(14+ V)N +t-a~ Y51 4+ Va)*3NV/3,

m— 71 aN—x-a2/3(1+\/E)_1/3N2/3—y~a5/6(1+\/a)_2/3N1/3,

Mt
n— gi! N+X.a1/6(1+\/a)—1/3/v2/3_y.a—1/6(1+\/a)—2/3,v1/3
M+ 72
then
lim a3(1+ a)*3N4/3 ( i t, 2 t7m,n>
N—sc0 (1+va) PA/u M+ M+

- (txy' 71 )
s/s 77,71_"_,72 .
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Limit theorems

AbL/30
L)

‘Ai2/3
I‘.‘

>
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The function p,/,

dz 1
Ps/s (&%, yi7) = 7%;27Ti(1 —2)? Z (kl!kQ!)2Tk1,k2(Z;t,X,y;’)/)
ke ko>1

Tk17k2(Z; 6, X, ¥; FY)

(S Ry
e 1-z Jr,,, 27 1—Zrum

ae?
H/r omi

=1 =1
ﬁ 1 / dnl(ll) _ Z d’l]’z
- 11—z Jr, . 27 l—z M 27T1 FR 27i
h= ,in out
k

1\ Y )h(E" )
l_ZbO_> H(EW, p0), @) @
(1-7) e SNETE =) i, ;60,9

(AE) (AM)* A, @)am0; @)
iy (A(é(e); 77(‘3)))2 A(ED; €P)A(nD); n@)
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The function p,/,

The contours
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The function p,/,

The vectors £ = (&%, &) and n(® = (4, - 7)) for
¢ € {1,2}, the functions f1, f; are defined by

f1(¢; ) = exp (z@ — %Xéz +(y +vt)C) :

£2(¢; ) == exp (—z@ + %X<2 + (—y +t) C) ,

and the function H is defined by
1 1 1
with
Se = Se(eW, 1V 6@, 7)

-3 (@)~ () -

ih=1 =1

(@)-(2)),
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The function p,/,

Corollary
Let Agl) and Af) be two independent Airy, processes. Denote
Age)(x) = Ag)(x) —x2, £ =1,2. Denote

- 1/3 4 (X 1—~BAD (X
T = argmax, (’y A5 (272/3> + (1 =7)7"A; (2(1_7)2/3 .

Then pg/s (h1 + ho, x, (1 — v)hy — yho; ) is the joint probability density

function at
330 (T _owsa@ (T _
(7 Az (272/3> 7(1 '7) Az (2(1—W)2/3 T —(hl,hz,X).
This is consistent with the known result in [Liu21].
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Limit theorems

Theorem (Flat case)
When A = (N, N —1,--- ,1) and = (0), under the following scaling

t=2N +t-2Y3NL/3,

_ ge! —4/37j2/3 —5/301/3
m=—t N x.2743NR/3 27533
2071 + 72) !
N —4/372/3 —5/3p/1/3
—N+x-2 N2 —y -2 N
2(71 +72) Y
then
lim 2%/3N4/3 ( i t, i t,m, n) = Dt/s (t,x. ; 2 )
N—+00 P\ 3+ Pt/ AR
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The function py/,

dz 1
mw@&w7%:£2mu_@2§:(M%Dﬂ%h@mxww
ki ko>1

Tkl,kz(Z; t,x,y; 7)

B kq 1 / dgl(ll) 7 df(l
. 1—z Jr,,, 2« 1fzrum

H/r df;;

=1 =1
ﬁ 1 / dnfll) Z d77,1 dn,
] 1-2 Jry,, 2m 1—7z FR ouy 2mi 27i

ky (1) ( ) _

d [5 ] ﬁ (A(E(@)))Z (A(n(l)))Q A(é.(l); 77(2))A(77(1); 5(2))
- det — :
0 i (A(g(f); n(z)))Z A(EW; €Y A(n®); @)
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The function py/,

The contours
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The function py/,

The vectors £ = (&%, &) and n(® = (4, - 7)) for
¢ € {1,2}, the functions f1, f; are defined by

f(Gin) = exp (~ 26 = x4 3 (570 )

f2(¢;v) = exp (—243 + %X@ & % (—y +7t)C) ;

and the function H is defined by
1 1 1
with
Se = Se(eW, 1V 6@, 7)

-5 (@) -6) -3

ih=1 =1

(@)-(2)),

47



The function py/,

Corollary (?)
Let A, and A; be independent Airy, and Airy; processes respectively.

Denote A;(x) = Ax(x) — x2. Denote

- 137 (X _\L/3 o x
T = argmax, ((7/2) As (24/%2/3) +2(1 =) A (4(1 — 7)2/3>> .

Then py /s (hy + ha, x, (1 —v)hy —~vhy; ) is the joint probability density
function at

X

((7/2)1/%212 <24/3sz/3> L2(1 — 7)3A, (4(1—7)2/3> ,T) = (hy, hy, x).
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5. Applications




Rigidity of the geodesic

Denote L(y,s; x, t) the directed landscape, the limiting four-parameter
random field of the directed last passage percolation. We fix two points
(0,0) and (0,1). Denote [(s) the geodesic from (0,0) to (0,1). We also
denote L(s) = £(0,0;M(s), s)

Theorem (Liu21)
The random variables

2N(s)L(MV* L(s )*55( )
Vs(1—5s) " \/s(1—s)L(1)1/4

conditioned on L(1) — oo, converge to two independent standard

Gaussian random variables in distribution.
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Rigidity of the geodesic

iy

i
il
i

Two imaginary figures of the directed landscape £(0,0; x, t)
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Other related works in progress

Conditioned on £(0,0;0,1) = L is large, what is the limiting behavior of

£(0,0; x,t)?

(a) When t < 1, there is a limiting field L=1/4(£(0,0; xL™Y/4 ) — tL)
whose finite dimensional distribution along the time direction can be
described in terms of two independent Brownian bridges.
[Liu-Wang21+]

(b) When t > 1, £(0,0;0,t) — £(0,0;0,1) behaves like a Tracy-Widom
random variable, plus explicit perturbations. [Nissim-Zhang21+]
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6. Open problems




1. Fluctuations of the geodesic I(s) when £(1) - —c0

When L(1) — oo, we know that l(s) becomes very rigid and the limiting
fluctuations are given by the Gaussian distributions.

What happens when £(1) — —oo? Intuitively, the geodesic M(s) will
have a higher order of fluctuation. It is related to the left tail of our
formula, which seems much more difficult.
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2. Coalescence of geodesics

In the random melting skew Young diagram model, suppose © = (0) and
A=(N,--- N, N — cN?/3, ... ,N—cN2/3).
——

N—N2/3 N2/3

Intuitively this problem s

equivalent to the coalan-

scence of two geodesics from

the northwest corner to the

southeast corners in the

corresponding DLPP model.

The key is to analyze the ker-
nel RiN)(v, u), but it seems
not easy!
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Thank you!
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