‘ KU LEUVEN

Two periodic Aztec diamond
and matrix valued orthogo-
nality

Arno Kuijlaars
KU Leuven, Belgium

Integrable Structures in Random Matrix Theory and
Beyond, MSRI, October 20, 2021




0 References

Based on

> M. Duits and A.B.J. Kuijlaars
The two periodic Aztec diamond and matrix valued

orthogonal polynomials,
J. Eur. Math. Soc. 23 (2021), 1075-1131.

> C. Charlier, M. Duits, A.B.J. Kuijlaars, and J. Lenells
A periodic hexagon tiling model and non-Hermitian

orthogonal polynomials,
Comm. Math. Phys. 378 (2020), 401-466.

Two periodic Aztec diamond and matrix valued orthogonality | KU LEUVEN



1 OQOutline

@ Aztec diamond

Two periodic Aztec diamond and matrix valued orthogonality KU LEUVEN



1

3

Aztec diamond

KU LEUVEN

Two periodic Aztec diamond and matrix valued orthogonality



1 Tiling of an Aztec diamond
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» Tiling with 2 x 1 and 1 x 2 rectangles (dominos)

t

> Four types of dominos
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1 Aztec diamond: Large random tiling

Deterministic pat-
tern near corners
Solid region

or Frozen region

Disorder in the mid-
dle Liquid region
or Rough region

Boundary curve
Arctic circle

Jockush, Propp,
Shor (1995)
Johansson (2002)
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Aztec diamond: two periodic weighting

Chhita, Johansson (2016)
Beffara, Chhita, Johansson (2018)
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1 Aztec diamond; two-periodic weighting

New phase within liquid region: gas region (or smooth region)
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1 Two periodic Aztec diamond: Phase diagram

1
solid

-0.57
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2  Outline

@® Hexagon tilings
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2  Lozenge tiling of a hexagon

three types of lozenges
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2  Arctic circle phenomenon
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Two periodic hexagon

2
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Two periodic hexagon
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3  Outline

© Matrix Valued Orthogonal Polynomials (MVOP)
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3  Matrix valued orthogonal polynomials

/X Pu(@)Pj()w(@)de = his by #0
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3  Matrix valued orthogonal polynomials

/Pk Yo(@)de = his, by #0
Matrix valued extension (size p x p)
> W(x) is p X p matrix for every z
» P is matrix valued polynomial

Py(z) = Cox® + Cra*t - | C; is p X p matrix.

Orthogonality

[/XPk(a:)W(x)PJT(x)dx=Hj5j,k, ] det H; # 0
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3  Matrix valued orthogonal polynomials

[ /XP,C(Q;)W(x)PjT(m)dm:Hj&M } det H; # 0

Questions
> Existence and uniqueness, examples

> Algebraic properties: recurrence relations, generating
functions, differential equations

> Asymptotic properties

> Applications: do MVOP appear in "real life” problems?
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3  Our setting

MVOP that we encounter in random tiling problems have the
form
1 T
[ - 75 Pe(z) Wi (2) PT(2)dz = Hyoy j

> ~ is closed contour in the complex plane

> Wy is rational and varies with NV
> orthogonality is non-Hermitian

Of interest is the reproducing kernel

N-1
Ry(w,z) = Z P]T(w)HIIPj(z)
=0
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4  Qutline

O The two periodic Aztec diamond
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4  Aztec diamond as a dimer model
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A domino tiling of the Aztec diamond is a dimer configuration
on part of the square lattice (a.k.a. perfect matching)
survey on dimer model Kenyon (2006)
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4 Aztec diamond with periodic weights

Put weights on the faces ?
Weight of a dimer (domino) is the a a
product of the weights of adjacent 3 3 3
faces
Weight of a domino tiling is the I @ @ ¢ @ I
product of the weights of dominos I} 154 I3

«@ «
Probability of a domino tiling is 3
proportional to its weight I

Empty faces have weight 1
L We may assume af =1
w(T") and o > 1

a =1 is the uniform model

Prob(7) =

tilings 7~
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4  Overview, step 1

Tiling of an Aztec diamond (or hexagon) is equivalent to a
multi-level particle system that is determinantal
> For periodic weightings, the correlation kernel has a double
contour integral representation containing the reproducing
kernel of certain MVOP.
» Double contour integral simplifies for periodic Aztec
diamond.
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4  Overview, step 2

Orthogonality weight W (z) of MVOP is rational.
> Eigenvalues of W live on spectral curve

(P =2G+ad)+6) |

that has genus 1

» For a point with asymptotic coordinates (£1,&2) in the
Aztec diamond there is action function

D(z;€1,&2)

with four saddles on the spectral curve.
» Two saddles are in the gap [—a?, —3?].
> Location of other two saddles determines the phase.
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4  Solid phase: saddles s; and s, are in [0, c0)
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4 Liquid phase: saddles s; and s, are not on the real part
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4  Gas phase: all saddles are in [—a?, —/?]
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4  Overview, step 3

Steepest descent analysis.

» Deform contours in the double contour integral
representation to let them pass through the saddles s; and
S9.

» Leading contributions to the correlation kernel come from
residues at poles that we cross while deforming contours.

Phase diagram

» Phase transition occurs when two (or more) saddles
coalesce

> Degree 8 algebraic curve in £1-&5 variables.
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4 Phase diagram: degree 8 algebraic curve

solid

0.57
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5  Outline

@ Non-intersecting paths
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5 Paths in the Aztec diamond

Line segments on

West, East and South
dominos
M North
m West East
— -~
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5 Transformations and extension; particle system

> Rotate the Aztec
diamond

> Extend the tiling to a
double Aztec diamond

» Put particles on the
paths

> Particles are a
determinantal point

process
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5 Non-intersecting paths on a weighted graph

> Apply affine
transformation

=

Two types of steps

up: weight o/
> Steps down
followed by
horizontal step:
weight 1

> Weight of a
path system: -1 —
product of -2 o 7o Q ol
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edges 0 05115 2 25 3 35 4
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5 Lindstrom Gessel Viennot lemma

At each level m =0,1,..., L there are N particles x§-m)

Proposition [consequence of LGV lemmal]

Prob [(@m))i‘oljz‘j _ Zin :f:[; det [T, (xg.m),x,(cml))]f;

with transition matrices
Tin(z,y) = weight on edge from (m,z) to (m+ 1,y)
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5 Lindstrom Gessel Viennot lemma

At each level m =0,1,..., L there are N particles x§-m)

Proposition [consequence of LGV lemmal]

L-1

prob (o)) | = 7 T dee [ (o)),

j=0,m=1 Zn ;2 J 4,k=0

with transition matrices
Tin(z,y) = weight on edge from (m,z) to (m+ 1,y)
Corollary The point process is determinantal:
Prob [3 particle at each (m,z) € A] =
det [K((m7 33), (m/’ x/))] (m,z),(m’,z")eA
for finite A C {0,1,...,L} xZ Eynard-Mehta
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5 Periodic transition matrices

Suppose each T, is 2-periodic: Ty, (x + 2,y + 2) = T, (z,y)

Block Toeplitz matrix
with block symbol Bo D1
Ty = B_4 BO By
0 . B, B
Am(Z) = Z BjZ‘] . ! . 0
j=—o00
m—1
» Notation A[m/’m](z) = H Aj(Z) for m' <m
Jj=m’
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5 Double contour integral formula

Theorem (Duits + K for 2-periodic case)

Suppose 2N non-intersecting paths of length L, with
consecutive starting and ending positions, shifted by M. Then

K(2m,2z;2m/, 2y +1) K(2m,2z + 1,2m/,2y + 1)

= iy % A[m/’m](z)zy_z%
g

( K(2m, 2x;2m/, 2y) K(2m,2x + 1;2m’, 2y) )

211 z

1 wY
* (27i)? %%A[m' L]( w) Ry (w, Z)A[O m]( )M—M_Hvdzdw

where Ry (w, z) is the reproducing kernel for MVOP with matrix

weight [ W (z A[o )(2) ]
- ZM+N
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6 Outline

@ Results for the Aztec diamond
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6 Two periodic Aztec diamond

1
1
1
1
N
1
N
1
N
Bernoulli step with Geometric step down with symbol
symbol
1o\ (1 1) 4 [1 1\ _,
<a a>+<0 0)2 (1 1)+<1 1>Z +<1 1>Z +
0 0
B B 1 z 1
_ @ ©« Cz—1\z =z
Bz B
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6 Two periodic Aztec diamond

In two periodic Aztec diamond of size 2N, we find L = 2N,
M = 0, and weight matrix
Apr(z)

N
N = W)

1 a a)fz 1 a o)z 1
W(z) = 2(z —1)2 (,Bz ﬂ) (z z) (Bz ﬁ) <z z)

1 (z4+1)? +4a%2  2a(a+B)(z+1)
(z—12\28(a+B)z(z+1) (2+1)*+48%
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6  Matrix valued orthogonal polynomials

W(z) = 1 ( (z+ 1) +4a%2  2a(a+B)(z+ 1)>

(z—12 \28(a+B)2(z+1) (2+1)*+48%

» MVOP of degree N with respect to W has explicit
formula (if N is even)

[ Py(e) = (- DYW ()2 N2(z)

» The double contour integral for the correlation kernel
simplifies considerably

> Different approach is due to Berggren-Duits (2019)
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6 Geometry of the problem

Eigenvalues of

[ +1)2+40%2 2a(a+B)(z+1)
(- VW) = <2ﬁ<a FH)( 1) (2 1)+ 48% )

are

(a+B)z % /2(2 + a2)(z + B?)

Eigenvalues "live” on spectral curve [ y? = z2(z + %) (2 + ?) J

» The genus is one (unless a = 3)

> Similar calculations for a two periodic hexagon tiling lead to
genus zero spectral curve =  no gas region.
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6 Phase diagram

Thank you for your attention

1

0.57

-0.57

solid

solid
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