
Two periodic Aztec diamond
and matrix valued orthogo-
nality

Arno Kuijlaars
KU Leuven, Belgium
Integrable Structures in Random Matrix Theory and
Beyond, MSRI, October 20, 2021



0 References

Based on
I M. Duits and A.B.J. Kuijlaars

The two periodic Aztec diamond and matrix valued
orthogonal polynomials,
J. Eur. Math. Soc. 23 (2021), 1075–1131.

I C. Charlier, M. Duits, A.B.J. Kuijlaars, and J. Lenells
A periodic hexagon tiling model and non-Hermitian
orthogonal polynomials,
Comm. Math. Phys. 378 (2020), 401–466.

1 Two periodic Aztec diamond and matrix valued orthogonality



1 Outline

1 Aztec diamond

2 Hexagon tilings

3 Matrix Valued Orthogonal Polynomials (MVOP)

4 The two periodic Aztec diamond

5 Non-intersecting paths

6 Results for the Aztec diamond

2 Two periodic Aztec diamond and matrix valued orthogonality



1 Aztec diamond

West

North

South

East

3 Two periodic Aztec diamond and matrix valued orthogonality



1 Tiling of an Aztec diamond
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North

South

East

I Tiling with 2× 1 and 1× 2 rectangles (dominos)
I Four types of dominos
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1 Aztec diamond: Large random tiling

Deterministic pat-
tern near corners
Solid region
or Frozen region

Disorder in the mid-
dle Liquid region
or Rough region

Boundary curve
Arctic circle

Jockush, Propp,
Shor (1995)
Johansson (2002)
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1 Aztec diamond: two periodic weighting

Chhita, Johansson (2016)
Beffara, Chhita, Johansson (2018)
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1 Aztec diamond; two-periodic weighting

New phase within liquid region: gas region (or smooth region)
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1 Two periodic Aztec diamond: Phase diagram
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2 Lozenge tiling of a hexagon

three types of lozenges
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2 Arctic circle phenomenon
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2 Two periodic hexagon

Hexagon tiling with
two periodic weighting
depends on parameter

0 < α < 1

There is no gas region

Instead there is a
phase transition

Liquid region consists
of two disjoint ellipses
if α < αcrit
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2 Two periodic hexagon

Ellipses come together
at αcrit

For α > αcrit the liquid
region is connected

The boundary is more
complicated algebraic
curve
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3 Matrix valued orthogonal polynomials

∫
X
Pk(x)Pj(x)w(x)dx = hjδj,k hj 6= 0

Matrix valued extension (size p× p)
I W (x) is p× p matrix for every x
I Pk is matrix valued polynomial

Pk(x) = C0x
k + C1x

k−1 + · · · , Ci is p× p matrix.

Orthogonality�



�
	

∫
X
Pk(x)W (x)P Tj (x)dx = Hjδj,k, detHj 6= 0
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3 Matrix valued orthogonal polynomials

�



�
	

∫
X
Pk(x)W (x)P Tj (x)dx = Hjδj,k detHj 6= 0

Questions
I Existence and uniqueness, examples

I Algebraic properties: recurrence relations, generating
functions, differential equations

I Asymptotic properties

I Applications: do MVOP appear in ”real life” problems?
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3 Our setting

MVOP that we encounter in random tiling problems have the
form �

�
�



1
2πi

∮
γ
Pk(z)WN (z)P Tj (z)dz = Hjδj,k

I γ is closed contour in the complex plane
I WN is rational and varies with N

I orthogonality is non-Hermitian

Of interest is the reproducing kernel

RN (w, z) =
N−1∑
j=0

P Tj (w)H−1
j Pj(z)
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4 Aztec diamond as a dimer model

A domino tiling of the Aztec diamond is a dimer configuration
on part of the square lattice (a.k.a. perfect matching)

survey on dimer model Kenyon (2006)
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4 Aztec diamond with periodic weights

Put weights on the faces

Weight of a dimer (domino) is the
product of the weights of adjacent
faces

Weight of a domino tiling is the
product of the weights of dominos

Probability of a domino tiling is
proportional to its weight

Prob(T ) = w(T )∑
tilings T ′

w(T ′)

α α α α

β β β

α α

β

β β β

α α

β

Empty faces have weight 1
We may assume αβ = 1

and α > 1
α = 1 is the uniform model
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4 Overview, step 1

Tiling of an Aztec diamond (or hexagon) is equivalent to a
multi-level particle system that is determinantal
I For periodic weightings, the correlation kernel has a double

contour integral representation containing the reproducing
kernel of certain MVOP.

I Double contour integral simplifies for periodic Aztec
diamond.
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4 Overview, step 2

Orthogonality weight WN (z) of MVOP is rational.
I Eigenvalues of W live on spectral curve�� ��y2 = z(z + α2)(z + β2)

that has genus 1
I For a point with asymptotic coordinates (ξ1, ξ2) in the

Aztec diamond there is action function

Φ(z; ξ1, ξ2)

with four saddles on the spectral curve.
I Two saddles are in the gap [−α2,−β2].
I Location of other two saddles determines the phase.
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4 Solid phase: saddles s1 and s2 are in [0,∞)

s3

s4

s1

s2

−α2 −β2 0−∞

−α2 −β2 0−∞
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4 Liquid phase: saddles s1 and s2 are not on the real part

s3

s4

s1

s2

−α2 −β2 0∞

−α2 −β2 0∞
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4 Gas phase: all saddles are in [−α2,−β2]

s3

s4 s1s2

−α2 −β2 0∞

−α2 −β2 0∞
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4 Overview, step 3

Steepest descent analysis.
I Deform contours in the double contour integral

representation to let them pass through the saddles s1 and
s2.

I Leading contributions to the correlation kernel come from
residues at poles that we cross while deforming contours.

Phase diagram
I Phase transition occurs when two (or more) saddles

coalesce
I Degree 8 algebraic curve in ξ1-ξ2 variables.
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4 Phase diagram: degree 8 algebraic curve

solid
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solid
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5 Paths in the Aztec diamond

Line segments on
West, East and South

dominos

North

West East

South
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5 Transformations and extension; particle system

I Rotate the Aztec
diamond

I Extend the tiling to a
double Aztec diamond

I Put particles on the
paths

I Particles are a
determinantal point
process
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5 Non-intersecting paths on a weighted graph
I Apply affine

transformation
Two types of steps
I Bernoulli step

up: weight α/β
I Steps down

followed by
horizontal step:
weight 1

I Weight of a
path system:
product of
weights of
edges 0 0.5 1 1.5 2 2.5 3 3.5 4
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5 Lindström Gessel Viennot lemma

At each level m = 0, 1, . . . , L there are N particles x(m)
j

Proposition [consequence of LGV lemma]

Prob
[(
x

(m)
j

)N−1,L−1

j=0,m=1

]
= 1
Zn

L−1∏
m=0

det
[
Tm

(
x

(m)
j , x

(m+1)
k

)]N−1

j,k=0

with transition matrices
Tm(x, y) = weight on edge from (m,x) to (m+ 1, y)

Corollary The point process is determinantal:
Prob [∃ particle at each (m,x) ∈ A] =

det
[
K((m,x), (m′, x′))

]
(m,x),(m′,x′)∈A

for finite A ⊂ {0, 1, . . . , L} × Z Eynard-Mehta
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5 Periodic transition matrices

Suppose each Tm is 2-periodic: Tm(x+ 2, y + 2) = Tm(x, y)

Block Toeplitz matrix

with block symbol

Am(z) =
∞∑

j=−∞
Bjz

j

Tm =



. . . . . . . . .

. . . B0 B1
. . .

. . . B−1 B0 B1
. . .

. . . B−1 B0
. . .

. . . . . . . . .



I Notation A[m′,m](z) =
m−1∏
j=m′

Aj(z) for m′ < m
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5 Double contour integral formula

Theorem (Duits + K for 2-periodic case)

Suppose 2N non-intersecting paths of length L, with
consecutive starting and ending positions, shifted by M . Then(

K(2m, 2x; 2m′, 2y) K(2m, 2x+ 1; 2m′, 2y)
K(2m, 2x; 2m′, 2y + 1) K(2m, 2x+ 1, 2m′, 2y + 1)

)

= −χm>m
′

2πi

∮
γ
A[m′,m](z)zy−x

dz

z

+ 1
(2πi)2

∮
γ

∮
γ
A[m′,L](w)RN (w, z)A[0,m](z)

wy

zx+1wM+N dzdw

where RN (w, z) is the reproducing kernel for MVOP with matrix
weight �

�
�

W (z) =

A[0,L](z)
zM+N
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6 Two periodic Aztec diamond

α
α

α
α

β
β

β
β

Bernoulli step with
symbol(

α α
0 β

)
+
(

0 0
β 0

)
z

=
(
α α
βz β

)

1

1

1

1

1

1

1

1

1

Geometric step down with symbol(
1 0
1 1

)
+
(

1 1
1 1

)
z−1+

(
1 1
1 1

)
z−2+· · ·

= 1
z − 1

(
z 1
z z

)

36 Two periodic Aztec diamond and matrix valued orthogonality



6 Two periodic Aztec diamond

In two periodic Aztec diamond of size 2N , we find L = 2N ,
M = 0, and weight matrix

A[0,L](z)
zM+N = WN (z)

with

W (z) = 1
z(z − 1)2

(
α α
βz β

)(
z 1
z z

)(
α α
βz β

)(
z 1
z z

)

= 1
(z − 1)2

(
(z + 1)2 + 4α2z 2α(α+ β)(z + 1)

2β(α+ β)z(z + 1) (z + 1)2 + 4β2z

)
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6 Matrix valued orthogonal polynomials

W (z) = 1
(z − 1)2

(
(z + 1)2 + 4α2z 2α(α+ β)(z + 1)

2β(α+ β)z(z + 1) (z + 1)2 + 4β2z

)

I MVOP of degree N with respect to WN has explicit
formula (if N is even)�� ��PN (z) = (z − 1)NW (∞)N/2W−N/2(z)

I The double contour integral for the correlation kernel
simplifies considerably

I Different approach is due to Berggren-Duits (2019)
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6 Geometry of the problem

Eigenvalues of

(z − 1)2W (z) =
(

(z + 1)2 + 4α2z 2α(α+ β)(z + 1)
2β(α+ β)z(z + 1) (z + 1)2 + 4β2z

)
are

(α+ β)z ±
√
z(z + α2)(z + β2)

Eigenvalues ”live” on spectral curve
�� ��y2 = z(z + α2)(z + β2)

I The genus is one (unless α = β)
I Similar calculations for a two periodic hexagon tiling lead to

genus zero spectral curve =⇒ no gas region.
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6 Phase diagram Thank you for your attention

solid
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gas
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