Lozenge tilings on a cylinder

Marianna Russkikh

MIT

★ ロン → 御 ン → 君 ン → 君 ン → 君 →

 299

Based on joint work with A. Ahn and R. Van Peski.

Ordinary partition

$$
\lambda = (5, 4, 4, 3, 1, 1, 1)
$$

イロト イ部 トイ君 トイ君 トー 重

Random tiling/partition

Uniform measure: uniformly random tilings.

 q^{vol} measure: $\mathbb{P}[\text{tiling}] \propto q^{\text{vol}(\text{tiling})}$, 0 < q < 1

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Cylindric partition

Let
$$
q^N = t \in (0, 1)
$$
,
\n q^{vol} measure on cylindric partitions: $\mathbb{P}(\lambda) \propto q^{\text{vol}(\lambda)}$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Lozenge tilings on a cylinder

lozenge tilings of the cylinder $\qquad = \qquad$ shifted cylindric partitions shift-mixed q^{vol} measure: $\mathbb{P}(\lambda, S) \propto (u^S q^{NS^2}) q^{\text{vol}(\lambda)},$ $u > 0$, S is a vertical shift of the wall-floor interface

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Height function

The height function $H(\tau, y)$ vanishes for all sufficiently negative y and $H(\tau, y) = y - S$ for all sufficiently large positive y.

4 0 1 4 4 5 1 4 5 1 5 1 5

 ORO

The key questions: the large-scale behavior of

- (a) the limit shape of the height function,
- (b) fluctuations of the height function.

Limit shape

Let $q^N = t \in (0,1)$

Theorem (Ahn, R., Van Peski '21)

The height function h_N of a q^{vol}-distributed cylindric partition of width 2N converges in probability to the following limit shape uniformly:

$$
\frac{1}{N}h_N(N\tau, Ny) \to \mathcal{H}(y) = \begin{cases} 0 & y \leq \frac{\log 2}{\log t}, \\ \int\limits_{\frac{\log 2}{\log t}}^{y} \frac{2\arctan(\sqrt{4t^{-2u}-1})}{\pi} du & y \geq \frac{\log 2}{\log t}. \end{cases}
$$

- [Borodin '07] showed result on local statistics which also computes the limit shape; our only real input here is showing concentration.
- The shift-mixed q^{vol} measure has the same limit shape above, as the distribution of the shift is independent of the tiling and is finite-order independent of N.

Fluctuations

Theorem (Ahn, R., Van Peski '21)

The fluctuations of the height function of a q^{vol} -distributed cylindric partition converges on the liquid region to the Gaussian free field in the Kenyon-Okounkov complex structure.

Theorem (Ahn, R., Van Peski '21)

The fluctuations of the height function of a shift-mixed q^{vol} -distributed cylindric tiling are given by the same Gaussian free field with an additional discrete Gaussian shift component.

KORKARYKERKER POLO

Simple random walk

• Limit shape:

• Fluctuations:

 $Z_{\lfloor sT\rfloor}-\mathbb{E}[Z_{\lfloor sT\rfloor}]$ $\frac{-\mathbb{L}[Z_{\lfloor sT \rfloor}]}{C\sqrt{T}} \to B_s$, where B_s is a standard Brownian bridge.

$$
G(s,s'):=\mathsf{Cov}(\mathit{B}_s,\mathit{B}_{s'})=\mathsf{min}(s,s')(1-\mathit{max}(s,s'))
$$

is the Green's function for Laplacian $\Delta=\partial^2/\partial s^2$ on $[0,1]$ with zero Dirichlet boundary conditions.

KORKAR KERKER ST VOOR

Gaussian Free Field

Definition

The Gaussian free field Φ on D is the random distribution such that pairings with test functions $\int_{\mathcal{D}} f \Phi$ are jointly Gaussian with covariance

 $Cov\left(\int_{\mathcal{D}} f_1\Phi, \int_{\mathcal{D}} f_2\Phi\right) = \int_{\mathcal{D}\cup\mathcal{D}} f_1(z)G(z,w)f_2(w).$

GFF with zero boundary conditions on a domain D ⊂ **C** is a conformally invariant random generalized function:

[1d analog: Brownian Bridge]

where ϕ_k are eigenfunctions of $-\Delta$ on D with zero boundary conditions, λ_k is the corresp. eigenvalue, and ξ_k are i.i.d. standard Gaussians. The GFF is not a random function, but a random distribution.

GFF is a Gaussian process on D with Green's function of the Laplacian as the covariance kernel.

Conjecture [Kenyon-Okounkov '05]

For lozenge tilings of simply connected planar regions, there exists a map ζ on liquid region $\mathcal L$ so that

$$
\sqrt{\pi}(H(x^\delta, y^\delta) - \mathbb{E}[H(x^\delta, y^\delta)]) \to \Phi \circ \zeta(x, y)
$$

where Φ is the GFF and ζ is a local diffeomorphism onto its image.

Theorem (Kenyon-Okounkov '05)

In the liquid region (i.e. where $p_{\scriptscriptstyle (\!\!\!\!\beta \, ,\, \!)} p_{\scriptscriptstyle (\!\varsigma\!)}, p_{\scriptscriptstyle (\!\varsigma\!)} > 0)$, there exists a function $z(x, y)$ taking values in the upper half plane such that

$$
\nabla \mathcal{H} = \frac{1}{\pi} (\arg z, -\arg(1-z)) \quad \text{and} \quad \frac{-z_x}{1-z} + \frac{z_y}{z} = 0.
$$

Uniform measure: $\zeta = z$.

 ${\sf q}^{\sf vol}$ measure (volume-constrain): let $q = e^{-c\delta}$, then $\zeta = e^{c{\sf x}}z$.

KORKARYKERKER POLO

Known results

Certain polygonal domains (e.g. [Borodin-Ferrari '08], [Petrov '12], [Bufetov-Knizel '18]). [Bufetov-Gorin '17] Hexagon with a hole of fixed height (not simply connected).

Today: q^{vol} -distributed cylindric partitions and shift-mixed q^{vol} -distributed cylindric partitions.

Model

 $h(\tau,\,y) := \sum_{\chi\,<\,y} [\text{there is no lozenge of type} \diamond \text{at } (\tau,\,x)]$

 $h(\tau, y)$ vanishes for all sufficiently negative y and $h(\tau, y) = y - S$ for all sufficiently large positive y

Limit shape

Define a function
$$
\mathcal{H} : \mathbb{R} \to \mathbb{R}
$$
 by $\mathcal{H}'(y) = \frac{2 \arctan(\sqrt{4t^{-2y}-1})}{\pi} \mathbb{1}(0 < t^y < 2)$ and $\lim_{y \to -\infty} \mathcal{H}(y) = 0.$

KORK EXTERNE PROVIDE

Theorem (Ahn, R., Van Peski '21)

The height function $\frac{1}{N}h_N$ of a q^{vol} / shift-mixed q^{vol} -distributed cylindric partition of widh 2N converges in probability to the limit shape H uniformly.

 $\bm{\mathsf{p}}_{\varnothing} = \bm{\mathsf{p}}_{\scriptscriptstyle \mathsf{Q}} \quad \text{(symmetry)}$ $\mathcal{H}'(y) = 1 - p_{\diamondsuit}$ $\mathcal{L} = \{(\tau, y) \in (0, 1] \times \mathbb{R} : 0 < t^{2y} < 4\} = \{(\tau, y) \in (0, 1] \times \mathbb{R} : y > \frac{\log 2}{\log t}\}.$

.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 Ω

Theorem (Ahn, R., Van Peski '21)

q vol

> Fix $t \in (0,1)$. Then the height function fluctuations of the unshifted q^{vol} measure converges as $N \rightarrow \infty$ to the η -pullback of the Gaussian free field on the cylinder $C = (0, \frac{1}{2}) \times \mathbb{R} / \frac{|\log t|}{2\pi}$ $rac{\log t}{2\pi}$ with 0-Dirichlet boundary conditions, where $\eta : \mathcal{L} \to \mathcal{C}$ is given by

$$
\eta(\tau, y) = \frac{1}{2\pi i} \log \left(t^{\tau} \frac{2 - t^{2y} + i\sqrt{4t^{2y} - t^{4y}}}{2} \right)
$$

Remark: η defines the same conformal structure as the one conjectured by Kenyon-Okounkov.

shift-mixed q^{vol}

A discrete Gaussian $S \sim \mathcal{N}_{discrete}(C, m)$ is the \mathbb{Z} -valued random variable defined by

$$
Pr(S = x) \propto e^{-C(x-m)^2}.
$$

Theorem (Ahn, R., Van Peski '21)

Fix $u \in \mathbb{R}_{>0}$ and $t \in (0,1)$, set $q := q(N) := t^{1/N}$. Then the height function fluctuations of the shift-mixed q^{vol} measure converges to the η -pullback of the Gaussian free field with a discrete Gaussian shift S $\sim \mathcal{N}_\text{discrete}(\frac{|\log t|}{2}, \frac{\log u}{\log t})$ $\frac{\log u}{\log t}$),

$$
h(2N_{\tau}, 2Ny) - \mathbb{E}[h(2N_{\tau}, 2Ny)] \xrightarrow{N \to \infty} \Phi(\eta(\tau, y)) - S\mathcal{H}'(y).
$$

KORKAR KERKER SAGA

Methods

- \bullet q^{vol} plane partitions are distributed as a certain Schur process [Okounkov-Reshetikhin '01]
- (shift-mixed) q^{vol} cylindric partitions are certain (shift-mixed) periodic Schur process [Borodin '07]

KORKARYKERKER POLO

Methods

- new formulas for joint exponential moments of the height function of periodic Schur processes
- similar formulas for the joint moments, which obtained formulas for observables for periodic Macdonald processes [Koshida '20]
- similar methods for GFF convergence for random matrices and random tilings used in e.g. [Borodin-Gorin '15], [Ahn '20]

 $\mathsf{shift}\text{-}\mathsf{mixed}$ $\mathsf{q}^{\mathsf{vol}}\text{:}\,$ determinantal structure, Gaussian free field WITH an additional discrete Gaussian shift component $\boldsymbol{\mathsf{unshifted}}\ q^{\text{vol}}\text{: NO determinantal structure, Gaussian free field}$

Holey hexagon

A domain topologically equivalent to the cylinder:

Height of hole depends on tiling. To choose random tiling either

- \star allow hole height to vary
- \star condition random tiling on fixed hole height

Analogy:

unrestricted tilings of cylinder \leftrightarrow tilings of holey hexagon unshifted cylindric partitions \leftrightarrow tilings w/ fixed hole height.

KORK ERKER ADAM ADA

Theorem (Bufetov-Gorin '17)

The uniform measure on tilings of the holey hexagon conditioned on fixed hole height has Gaussian free field fluctuations in Kenyon-Okounkov complex structure.

Theorem (Ahn, R., Van Peski '21)

The fluctuations of the height function of a q^{vol}-distributed cylindric partition of width 2N converges on the liquid region to the Gaussian free field in the Kenyon-Okounkov complex structure.

Dirichlet energy

Conjecture

For a general planar domain with a hole, the limiting fluctuations of the hole height are discrete Gaussian $\mathcal{N}_{discrete}(C, m)$. Furthermore

$$
C = \frac{\pi}{2} \int_{\zeta(\mathcal{L})} ||\nabla g||^2 \, dx \, dy \qquad \text{(Dirichlet energy)}
$$

of unique harmonic function g which is 0 on outer boundary, 1 on inner boundary.

Rmk: To be proven for some domains in [Borot-Gorin-Guionnet, in prep.].

Unrestricted tilings of cylinder \leftrightarrow tilings of holey hexagon

For shift-mixed q^{vol} recall independent shift S has

$$
\Pr(S = x) \propto u^x q^{Nx^2}.
$$

Equivalently (recall $t = q^N$)

$$
S \sim \mathcal{N}_{\text{discrete}}\left(\frac{|\log t|}{2}, \frac{\log u}{\log t}\right)
$$

and

$$
C=\frac{|\log t|}{2}
$$

is exactly the Dirichlet energy in previous conjecture for our case!

KID KØD KED KED E 1990

メロトメ 倒 トメ ミトメ ミト

È

 299