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Ordinary partition
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λ = (5, 4, 4, 3, 1, 1, 1)

λ = (λ1 ≥ λ2 ≥ λ3 . . . ≥ 0)

λi = 0 for i� 0

The partition λ =(8, 5, 4, 2, 2, 1); λ ←→ {λi − i+ 1
2}
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Plane partition Skew plane partition Cylindric partition



Random tiling/partition

Uniform measure: uniformly random tilings.

qvol measure: P[tiling] ∝ qvol(tiling), 0 < q < 1



Cylindric partition
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2N

Let qN = t ∈ (0, 1),
qvol measure on cylindric partitions: P(λ) ∝ qvol(λ).



Lozenge tilings on a cylinder

1 2 3 4 5 6 79 107 8 1 2 3 4 5 6 79 107 8

lozenge tilings of the cylinder = shifted cylindric partitions

shift-mixed qvol measure: P(λ,S) ∝ (uSqNS2
)qvol(λ),

u > 0, S is a vertical shift of the wall-floor interface



Height function
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The height function H(τ, y) vanishes for all sufficiently negative y
and H(τ, y) = y − S for all sufficiently large positive y .

The key questions: the large-scale behavior of

(a) the limit shape of the height function,

(b) fluctuations of the height function.



Limit shape

Let qN = t ∈ (0, 1)

Theorem (Ahn, R., Van Peski ’21)
The height function hN of a qvol-distributed cylindric partition of width
2N converges in probability to the following limit shape uniformly:

1

N
hN(Nτ,Ny)→ H(y) =





0 y ≤ log 2
log t ,

y∫
log 2
log t

2 arctan(
√

4t−2u−1)
π du y ≥ log 2

log t .

• [Borodin ’07] showed result on local statistics which also computes
the limit shape; our only real input here is showing concentration.

• The shift-mixed qvol measure has the same limit shape above, as
the distribution of the shift is independent of the tiling and is
finite-order independent of N.



Fluctuations

Theorem (Ahn, R., Van Peski ’21)
The fluctuations of the height function of a qvol-distributed cylindric
partition converges on the liquid region to the Gaussian free field in the
Kenyon-Okounkov complex structure.

Theorem (Ahn, R., Van Peski ’21)
The fluctuations of the height function of a shift-mixed qvol-distributed
cylindric tiling are given by the same Gaussian free field with an
additional discrete Gaussian shift component.



Simple random walk
• Limit shape:

As X ,T →∞, X
T = const,

ZbsTc
X → s uniformly over s ∈ [0, 1].

• Fluctuations:
ZbsTc−E[ZbsTc]

C
√
T

→ Bs , where Bs is a standard Brownian bridge.

G (s, s ′) := Cov(Bs ,Bs′) = min(s, s ′)(1−max(s, s ′))

is the Green’s function for Laplacian ∆ = ∂2/∂s2 on [0, 1] with zero

Dirichlet boundary conditions.



Gaussian Free Field
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GFF with zero boundary
conditions on a domain D ⊂ C
is a conformally invariant
random generalized function:

Φ(z) =
∑

k

ξk
φk(z)√
λk

, [1d analog: Brownian Bridge]

where φk are eigenfunctions of −∆ on D with zero boundary conditions,
λk is the corresp. eigenvalue, and ξk are i.i.d. standard Gaussians.

The GFF is not a random function, but a random distribution.

GFF is a Gaussian process on D with Green’s function of the
Laplacian as the covariance kernel.



Conjecture [Kenyon-Okounkov ’05]
For lozenge tilings of simply connected planar regions, there exists
a map ζ on liquid region L so that

√
π(H(xδ, y δ)− E[H(xδ, y δ)])→ Φ ◦ ζ(x , y)

where Φ is the GFF and ζ is a local diffeomorphism onto its image.



Theorem (Kenyon-Okounkov ’05)

In the liquid region (i.e. where p♦ , p ♦, p ♦ > 0), there exists a
function z(x , y) taking values in the upper half plane such that

∇H =
1

π
(arg z ,− arg(1− z)) and

−zx
1− z

+
zy
z

= 0.

Uniform measure: ζ = z .

qvol measure (volume-constrain): let q = e−cδ, then ζ = ecxz .



Known results

Limit shape Fluctuations

[Cohn-Kenyon-Propp ’00] proved a.s. convergence to
certain entropy-maximizers for uniformly random domino

tilings of simply connected domains in R2.
[Kenyon-Okounkov-Sheffield ’03] showed more generally Certain domains with no frozen regions
(weighted doubly periodic bipartite dimer models on simply (e.g. [Kenyon ’01], [R. ’18], [R. ’19];
connected planar regions). [Kenyon ’08], [Berestycki-Laslier-Ray ’20]).

[Okounkov-Reshetikhin ’01] computed limit shape for qvol [Ahn ’20] qvol plane partitions.
ordinary plane partitions.
[Cerf-Kenyon ’01] Same limit shape for uniform measure
on plane partitions of given volume.

Certain polygonal domains (e.g. [Borodin-Ferrari ’08], [Petrov ’12], [Bufetov-Knizel ’18]).
[Bufetov-Gorin ’17] Hexagon with a hole of fixed height (not simply connected).

[Chelkak-Laslier-R.’20] Certain general (not necessary
doubly periodic) weighted bipartite planar graphs.

[Chelkak-Laslier-R.’21] Appearance of Lorentz-minimal
surfaces in the dimer model context.

Today: qvol-distributed cylindric partitions and
shift-mixed qvol-distributed cylindric partitions.



Model

qvol shift-mixed qvol

measure supported on: cylindric partitions shifted cylindric partitions =
lozenge tilings of the cylinder
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P(λ) ∝ qvol(λ) P(λ, S) ∝ uSqvol(λ,S) = (uSqNS
2

)qvol(λ),
u > 0, S is a vertical shift of the wall-floor interface

periodic Schur process shift-mixed periodic Schur process

determinantal structure, comes from the dimer model

h(τ, y) :=
∑

x<y [there is no lozenge of type ♦ at (τ, x)]

h(τ, y) vanishes for all sufficiently negative y and h(τ, y) = y − S for all sufficiently large positive y



Limit shape

Define a function H : R→ R by

H′(y) =
2 arctan(

√
4t−2y−1)

π 1(0 < ty < 2)

and limy→−∞H(y) = 0.
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Theorem (Ahn, R., Van Peski ’21)
The height function 1

N hN of a qvol / shift-mixed qvol-distributed cylindric
partition of widh 2N converges in probability to the limit shape H
uniformly.

p♦ = p ♦ (symmetry)

H′(y) = 1− p ♦

L = {(τ, y) ∈ (0, 1]× R : 0 < t2y < 4} = {(τ, y) ∈ (0, 1]× R : y > log 2
log t }.



qvol
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Theorem (Ahn, R., Van Peski ’21)
Fix t ∈ (0, 1). Then the height function fluctuations of the unshifted qvol

measure converges as N →∞ to the η-pullback of the Gaussian free field

on the cylinder C = (0, 1
2 )× R/ | log t|

2π with 0-Dirichlet boundary
conditions, where η : L → C is given by

η(τ, y) =
1

2πi
log

(
tτ

2− t2y + i
√

4t2y − t4y

2

)
.

Remark: η defines the same conformal structure as the one conjectured
by Kenyon-Okounkov.



shift-mixed qvol

A discrete Gaussian S ∼ Ndiscrete(C ,m) is the Z-valued random
variable defined by

Pr(S = x) ∝ e−C(x−m)2
.

Theorem (Ahn, R., Van Peski ’21)

Fix u ∈ R>0 and t ∈ (0, 1), set q := q(N) := t1/N . Then the
height function fluctuations of the shift-mixed qvol measure
converges to the η-pullback of the Gaussian free field with a
discrete Gaussian shift S ∼ Ndiscrete

( | log t|
2 , log u

log t

)
,

h(2Nτ , 2Ny)− E[h(2Nτ , 2Ny)]
N→∞−−−−→ Φ(η(τ, y))− SH′(y).



Methods
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• qvol plane partitions are distributed as a certain Schur process
[Okounkov-Reshetikhin ’01]

• (shift-mixed) qvol cylindric partitions are certain (shift-mixed)
periodic Schur process [Borodin ’07]



Methods

• new formulas for joint exponential moments of the height
function of periodic Schur processes

• similar formulas for the joint moments, which obtained
formulas for observables for periodic Macdonald processes
[Koshida ’20]

• similar methods for GFF convergence for random matrices and
random tilings used in e.g. [Borodin-Gorin ’15], [Ahn ’20]

shift-mixed qvol: determinantal structure, Gaussian free field
WITH an additional discrete Gaussian shift component

unshifted qvol: NO determinantal structure, Gaussian free field



Holey hexagon

A domain topologically equivalent to the cylinder:

Height of hole depends on tiling. To choose random tiling either

F allow hole height to vary

F condition random tiling on fixed hole height

Analogy:

unrestricted tilings of cylinder ↔ tilings of holey hexagon

unshifted cylindric partitions ↔ tilings w/ fixed hole height.



Unshifted cylindric partitions ↔ tilings w/ fixed hole height

Theorem (Bufetov-Gorin ’17)
The uniform measure on tilings of the holey
hexagon conditioned on fixed hole height
has Gaussian free field fluctuations in
Kenyon-Okounkov complex structure.

211

Figure 24.2 A typical tiling of a hexagon with a hole. Simulation by Leonid
Petrov.

expectation. Hence, the centered height function is the same at all points of a
frozen region. So picking a point on the outer boundary of the domain to have
centralized height 0, we have that the centralized height function on the outer
frozen region is 0, and the centralized height on the frozen region around the
hole is d , which is the same as the fluctuation h(B)1 of the height of the hole.
Using our GFF heuristic,

P(h(B) = d ) ⇡
ˆ

Wd

exp
✓
�p

2

¨

k—hk2
◆

, (24.1)

1 h(B) stays for “Height of Boundary”.
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Theorem (Ahn, R., Van Peski ’21)
The fluctuations of the height function of a qvol-distributed cylindric
partition of width 2N converges on the liquid region to the Gaussian free
field in the Kenyon-Okounkov complex structure.



Dirichlet energy

Conjecture
For a general planar domain with a hole, the limiting fluctuations of the
hole height are discrete Gaussian Ndiscrete(C ,m). Furthermore

C =
π

2

∫

ζ(L)

‖∇g‖2 dx dy (Dirichlet energy)

of unique harmonic function g which is 0 on outer boundary, 1 on inner
boundary.

Rmk: To be proven for some domains in [Borot-Gorin-Guionnet, in prep.].
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Unrestricted tilings of cylinder ↔ tilings of holey hexagon

For shift-mixed qvol recall independent shift S has

Pr(S = x) ∝ uxqNx
2
.

Equivalently (recall t = qN)

S ∼ Ndiscrete

( | log t|
2

,
log u

log t

)

and

C =
| log t|

2

is exactly the Dirichlet energy in previous conjecture for our case!




