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Abstract The role of (bi/multi/matrix) orthogonal polynomials in random matrices, integrable systems and combinatorics is well known.

Our goal is to report on recent progress in the definition of suitable extensions of the notion of orthogonality where the polynomials are

replaced by sections of appropriate line bundles on Riemann surfaces. We discuss their definition in the spirit of various generalizations of

the Padé problem and the formulation of appropriate matrix Riemann Hilbert problems that allow to characterize them as well as control

their asymptotic behaviour. Applications to Matrix Orthogonal Polynomials and the KP hierarchy will also be discussed.
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Introduction

OPs are famously intertwined with Toda lattice equations; the Moser map linearizes the Toda flow

in the space of (formal) measures.

µjptq :“

ż

R
x
j
e
ř

t`x
`

dµpxq;

Dnptq :“ det

„

µa`b´2ptq

n

a,b“1

ÞÑ Toda tau function τpn, tq and KP.

The OPs

ż

R
PnpxqPmpxq dµpx; tq “ hnptqδnm

There are “biorthogonal” extension; famous one is the one for the two–matrix model:

ż

R2
PnpxqQmpyqe

ř

t`x
``

ř

s`y
`´xy

dµpxq dνpyq “ hnpt, sqδnm.

OTOH: Algebro–geometric solutions of KP (Krichever).

Can we merge these two worlds? (B)OPs on RSs?

Very little literature: recent work of Fasondini-Olver-Xu (2020) arXiv:2011.10884.
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Padé and OPs: an old story

Given a measure the Weyl-(Stiltjes) function (or generating function of moments):

W pzq :“

ż

ewpxq dx

z ´ x
“

ÿ

jě0

µj

zj`1

The Padé approximation is a rational approximation scheme:

W pzq “
Qn´1pzq

Pnpzq
`Opz´2n`1

q, |z| Ñ 8.

Fact:

The denominators are the orthogonal polynomials for the measure.
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Two generalization directions

Generalizations: either via meromorphic functions or meromorphic half–differentials.

ż

PnpzqPmpzqe
wpxq

dx “

ż

Pnpzq
?

dx
loooooomoooooon

ϕn

Pmpzq
?

dx
loooooomoooooon

ϕm

e
wpxq

Meromorphic functions with pole at a given point.

(1)

I am going to describe only the second setting here. The first one is necessary for application to

MOPs: also generalizes nicely multi–point Padé approximations.
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Padé on Riemann surfaces

We need the following data:

A smooth R.S. C of genus g;

a (generic) divisor D of degree g;

a fixed chosen point 8 P C;

a local coordinate z : D8 Ñ C such that 1
zp8q “ 0.

a curve γ Ă C;

a density (measure) dµ on γ.

The (scalar) Cauchy kernel

C8pp, qq is a differential in p and function in q such that:

1 as a differential w.r.t. p it has poles at q,8 and residues `1,´1; zeros at p P D;

2 as a function w.r.t. q it has poles at p,D and zero at 8.

Such object exists and is unique.

Example (genus 1)

C8pz, wq “ pζpz ´ wq ` ζ pw ´ aq ´ ζpzq ` ζpaqq dz.

8 is z “ 0 and D “ a.
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Definition (Weyl differential)

We define it by

Wppq “
ż

qPγ

C8pp, qq dµpqq

The space of polynomials of degree n is now replaced by the line bundle L pn8`Dq (of

dimension n` 1 like the space of polynomials by Riemann–Roch).

Problem (Padé approximation problem)

Find Pn P L pD ` n8q and Qn´1 P Kppn` 1q8q

ˆ

Qn´1

Pn
´W

˙

ě 2D ` p2n´ 1q8.

Theorem (”Orthogonality”)

ż

γ

PnppqPmppq dµppq “ hnδnm.
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What survives?

We now use a local coordinate z and define a reference basis of sections;

ζjpqq :“ res
p“8

zppq
j
Cpp, qq “ z

j
`Opz´1

q.

1 Pseudo–moments µj,k (not Hankel!):

µj,k “

¿

γ

ζjppqζkppq dµppq “ ´ res
q“8

¿

pPγ

ζjpqqCpq, pqζkppq dµppq

Dn :“ det

„

µj,k

n´1

j,k“0

2 Heine formula

Pnppq :“
1

Dn

ż

γn
det

”

ζa´1ppbq
ın`1

a,b“1
det

”

ζa´1ppbq
ın

a,b“1

n
ź

j“1

dµppjq, pn`1 “ p.

3 Riemann–Hilbert problem (see next).

The departed

1 Three term recurrence relation;
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Problem

Let Yn be a 2ˆ 2 matrix with functions in the first column and differentials in the second column,

meromorphic in Czγ

Ynpp`q “ Ynpp´q

„

1 dµppq

0 1



, p P γ.

In addition we require that the matrix is such that it has poles at D in the first column and zeros

in the second column, and also the following growth condition at 8:

Ynppq “

„

OpD ` n8q Kp´D ´ pn´ 1q8q

OpD ` pn´ 1q8q Kp´D ´ pn´ 2q8q



. (2)

Ynppq “
´

1`Opzppq´1
q

¯

«

znppq 0

0
dzppq
znppq

ff

, pÑ 8. (3)

detYn P Kp28q; it has 2g zeros! How to prove uniqueness? Existence? Tyurin divisor....
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Theorem

The solution of the RHP exists and is unique if and only if Dn ‰ 0.

Note that it is different from genus 0; the solution if it exists is unique. Now it may exist and be

not unique (if Dn “ 0).

Ynppq “

«

Pnppq Rnppq
rPn´1ppq rRn´1ppq

ff

Rnppq :“

ż

γ

Cpp, qqPnpqq dµpqq rRn´1ppq :“

ż

γ

Cpp, qq rPn´1pqq dµpqq.

Pnppq “
1

Dn
det

»

—

—

—

—

–

µ0,0 µ1,0 ¨ ¨ ¨ µn,0
µ0,1 µ1,1 ¨ ¨ ¨ µn,1

.

.

.
.
.
.

ζ0ppq ζ1ppq ¨ ¨ ¨ ζnppq

fi

ffi

ffi

ffi

ffi

fl

P L pD ` n8q

rPn´1ppq “
1

Dn
det

»

—

—

—

—

–

µ0,0 µ1,0 ¨ ¨ ¨ µn´1,0

µ0,1 µ1,1 ¨ ¨ ¨ µn´1,1

.

.

.
.
.
.

ζ0ppq ζ1ppq ¨ ¨ ¨ ζn´1ppq

fi

ffi

ffi

ffi

ffi

fl

P L pD ` pn´ 1q8q.
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Guaranteed existence: Harnack-curves I

If C has antiholomorphic involution fixing γ and dµ is a positive measure, then Dn ą 0 (easy to

show).

Genus 1. Elliptic curve Eτ “ C{2ω1Z` 2ω2Z, In Weierstraß form the elliptic curve is

Y
2
“ 4X

3
´ g2X ´ g3 “ 4pX ´ e1qpX ´ e2qpX ´ e3q

with e1 ` e2 ` e3 “ 0 and e1 ă e2 ă e3.

Antiholomorphic involution z Ñ
ω1
ω1
z “ z. We choose 8 “ t0u and D “ tau, with

a P p0, 2ω1q.

L pD ` n8q “ C
!

1, ζ pzq ´ ζ pz ´ aq ´ ζ paq , ℘pzq, ℘
1
pzq, . . . , ℘

pn´2q
pzq

)

.

Real–analytic: fpzq “ fpzq.

Theorem

The orthogonal sections πn exist and have n` 1 zeros. These lie all on γ for pn` 1q even, while

for pn` 1q odd one zero belongs to α.

Question

Interlacing?

10 / 22



Guaranteed existence: Harnack-curves II

τ
2 γ

αD0

τ τ ` 1

1

X

W

γ

D

e3 e2 e1

α

Figure: An example of real elliptic curve (specifically W2 “ 4pX ´ 1qpX ´ 2qpX ` 3q). On the left pane we have the “elliptic”
parametrization as the quotient of C by the lattice Λτ . On the right the representation of the real section of Eτ in the Weierstrass
parametrization. The divisor D consists of a single point on the real oval of the α cycle (in this example D “ 1{3 in the elliptic
parametrization), while the measure of orthogonality is defined on the cycle γ and it is given by an arbitrary smooth positive function

wppq on γ times the holomorphic normalized differential dp “ dX
2ω1W

. Also plotted are the zeros of the orthogonal section π6

with respect to the “flat” measure with wppq ” 1. Note that the zero on α is already (for n “ 6) extremely close to e1 : it is shown
in Sec. ?? that this zero, for even n converges to e1 exponentially fast.
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Nonlinear Steepest descent analysis

In genus 1 no practical difference between functions/differentials.

Problem

Let Y “ Ynppq be the 2ˆ 2 matrix, meromorphic on Eτ zγ and with poles at p “ 0,D, such that

1 Near p “ 0 ” Λτ we have the behaviour

Y ppq “ p1`Oppqq
„

p´n 0

0 pn´2



, pÑ 0 mod Λτ

2 Near p “ D mod Λτ we have that

Y ppq “

„

Oppp´Dq´1
q Opp´Dq

Oppp´Dq´1
q Opp´Dq



3 The boundary values at p P γ are bounded and satisfy:

Y pp`q “ Y pp´q

«

1 ewppq

0 1

ff

Note that detY ppq has 2 zeros: usual argument for uniqueness fails. But the theorem earlier

guarantees existence since (using Andreief) one sees Dn ą 0.
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A quick rundown of the DZ method and novelties

1 The g–function is found explicitly and along similar lines;

2 the steps of (i) normalization (using the g–function) of the singularity and (ii) opening lenses

is also without major surprises.

3 The “model problem” (aka “outer parametrix”) is found explicitly Mppq; alas, its

determinant has also 2 zeros div detM “ p1{4q ` p3{4q. These zeros and the

corresponding kernel spaces are the Tyurin data.

4 The issue is in the error analysis: to see consider the prototype

Y`pzq “ Y´pzqJpzq, |z| “ 1, Y p8q “ 1.

Y pzq “ 1`
1

2iπ

¿

|w|“1

Y´pwq
`

Jpwq ´ 1
˘ dw

w ´ z
.

The latter expression needs a matrix Cauchy kernel that is defined given the Tyurin data:
C0pp, qq dp is a matrix–valued differential with respect to the variable p and meromorphic
function with respect to the variable q satisfying the following properties

1 It has a simple pole for p “ q and p “ 0 and no other poles with respect to p;
2 The residue matrix for p “ q is 1 (and hence at p “ 0 is ´1)
3 It has a simple pole for q “ p and at the Tyurin divisor T “ p1{4q ` p3{4q and all

entries vanish for q “ 0.
4 The expression M´1

ppqC0pp, qqMpqq is locally analytic with respect to q and p at T .
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Figure: The first few monic orthogonal sections plotted as a function of s P r0, 1s via p “ τ
2
` s; here πnppq P Pn are the

“monic” sections behaving like πnppq “ p´np1 ` Oppqq. The elliptic curve is

W2 “ 4X3 ´ 19X ` 15 “ 4pX ´ 1qpX ´ 3{2qpX ` 5{2q. Here τ » 0.6563i. We have set D “ 1{3 P R and
8 “ 0. The contour γ is the segment rτ{2, τ{2 ` 1s in Eτ ; in the X–plane this is the segment X P re3, e2s (on both sheets).
The thick line is the plot of the orthogonal section obtained by computing explicitly the moments. The thin line is the approximation.
Observe that the approximation is almost perfect starting from n “ 2, confirming the exponential rate of convergence discussed in the
text.
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Asymptotic results I

1 For every compact subset of Eτ zγ we have

πnppq “ e
´S8M11ppqe

pn´1qgppq`Sppq`
1`Ope´nc0 q

˘

.

M11ppq “ e
´iπp θ1pD; 2τqθ1pp´D ´ τ ; 2τqθ11p0; 2τqθt2,3upp; 2τq

θ1pD ` τ ; 2τqθ1pp´D; 2τqθ1pp; 2τqθt2,3up0; 2τq
, (4)

where the choice between θ2, θ3 is according to the parity of n. The function Sppq is the

“Szegö” function and:

e
gppq

“ e
`

$

’

’

’

’

&

’

’

’

’

%

e
iπpp´ τ2 q´

iπ
2

θ1pp; 2τq

θ1pp´ τ ; 2τq
= τ

2 ă =p ă =τ

e
´iπpp´ τ2 q`

iπ
2
θ1pp´ τ ; 2τq

θ1pp; 2τq
0 ă =p ă 1

2=τ.

e
`
“ ´i

θ11p0; 2τq

θ1pτ ; 2τq
e
´iπ τ

2 ą 0

2 For p P γ we have the modulated oscillatory behaviour for p “ s` τ
2 ` i0:

πnppq “ 2e
pn´1q`´S8<

ˆ

M11pp`qe
Spp`q

˜

e
iπs´ iπ

2
θ1

`

s` τ
2 ; 2τ

˘

θ1
`

s´ τ
2 ; 2τ

˘

¸n´1 ˙

`

1`Ope´nc0 q
˘
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Asymptotic results II

3 For every continuous function φ defined on γ Ă Eτ

lim
nÑ8

1

n

2t
n`1

2
u

ÿ

j“1

φpz
pnq
j q “

ż

γ

φppq
b

e1 ´ ℘ppq
dp

2π
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

4 The extra zero of πn for n even tends at exponential rate to p “ 1
2 (i.e. X “ e1).

5 The square of the norms of the monic orthogonal sections have the asymptotics

}πn}
2
“ 2πe

2pn´1q`´2S8e
´iπτ e´2iπDθ2

1pD; 2τq

θ2
1pD ` τ ; 2τq

θ11p0; 2τq

θ4p0; 2τq

ˆ

θ3p0; 2τq

θ2p0; 2τq

˙7n
`

1`Ope´nc0 q
˘

where 7n “ 1 for even n and ´1 for odd n.
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Matrix (Bi)Orthogonal Polynomials I

Matrix weight W pzq on the real axis (or contour γ in C ) gives rise to matrix BOPs.

ż

γ

PnpzqW pzqP
_
mpzq dz “ δnmHn,

Notable applications to the Aztec diamond (see Arno’s talk).

Connection with scalar orthogonality on a Riemann surface already recognized by [Charlier ’20]

(implicitly in [Duits-Kuijlaars ’17]).

It is sufficient that the eigenvectors of W pzq live on an algebraic surface C (of genus g).

Example (arxiv:2107.12998)

Z : C Ñ CP1
, div pZq ě ´r8

ż

γ

ψnψ
_
me

w
, ψ

p_q
n P

?
Kppn` 1q8q b X p_q

Ψ
p_q

k pzq :“

»

—

—

—

–

ψ
p_q

rk pz
p1q
q . . . ψ

p_q

rk pz
prq
q

.

.

.
.
.
.

ψ
p_q

rk`r´1pz
p1q
q . . . ψ

p_q

rk`r´1pz
prq
q

fi

ffi

ffi

ffi

fl
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Matrix (Bi)Orthogonal Polynomials II

Theorem

The matrices

Pnpzq :“ ΨkpzqΨ
´1
0 pzq , P

_
n pzq :“ pΨ

_
0 q
´1
pzqΨ

_
k pzq

are polynomials and (bi)-orthogonal for the weight

W pzq “ W pzq dz :“ Ψ0pzqΛpzqΨ
_
0 pzq, Λpzq “ diag

ˆ

Y pz
p1q
q, . . . , Y pz

prq
q

˙

.

Example

It works also if C is the sphere! Zptq “ pt´ cq2 : CP1
Ñ CP1

WLpzq dz “

„

1 α` 1´ c´
?
z

α` 1´ c´
?
z pα` 1´ c´

?
zq2



pc`
?
zq
α e´c´

?
z

2
?
z

dz.

Pjpzq “

»

—

–

res
s“8

Lα2jpsqps`1`α´2cq ds

z´Zpsq res
s“8

Lα2jpsq ds

Zpsq´z

res
s“8

Lα2j`1psqps`1`α´2cq ds

z´Zpsq res
s“8

Lα2j`1psq ds

Zpsq´z

.

fi

ffi

fl

ż

8

c2
PjpzqWLpzqP

t
kpzq dz “ δjk

«

Γp2j`α`1q
p2jq! 0

0
Γp2j`α`2q
p2j`1q!

ff

.
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KP and 2–Toda

Tensor L by a zero-degree bundle with transition function e
ř

t`z
`ppq near 8.

A section of Ltpn8`Dq satisfies:

pψnq ě ´D, ψnppq “ z
n

e
ř

t`z
`ppq

p1`Opz´1
qq.

Note:

For n “ 0 it is the Baker–Akhiezer function of Krichever.

Take

ψ P yLt :“
à

ně0

Ltpn8`Dq

φ P yLs :“
à

ně0

Lspn8`Dq

Pairing:

xφ, ψyt,s “

ż

γ

φppqψppq dµppq

We can construct biorthogonal sections tψn, φnunPN (if non-degenerate!)

A basis is

ζjpp; tq “ z
j
e
ř

t`z
`
p1`Opz´1

qq (similarly for s)
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Tau function

Definition (The Tau function)

The Tau function is defined by

τnpt, sq :“
1

n!
ΘpF ptqqΘpFpsqqeQptq`Qpsq`nAptq`nApsqˆ

ˆ

ż

γn
det

“

ζa´1prb; tq
‰n

a,b“1
det

“

ζa´1prb; sq
‰n

a,b“1

n
ź

j“1

dµprjq “

“τKrptqτKrpsqe
nAptq`nApsq

det

„

µabpt, sq

n´1

a,b“0

The expression Qptq is a quadratic form and Aptq is a linear form in the times.
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Theorem

The tau function

1 Is a KP tau function w.r.t. both sets of times (satisfies HBI):

res
x“8

τnpt´ rxs, sqτnprt` rxs, sqe
ξpx;tq´ξpx;rtq

dzpxq ” 0

2 It is a tau function for 2–Toda Hierarchy (Adler-VanMoerbeke)

res
x“8

τnpt´ rxs; sqτm`1prt` rxs; rsq
eξpx;tq´ξpx;rtq`Aprt´tq dzpxq

zpxqm´n`1
“

“ res
x“8

τn`1pt; s` rxsqτmprt; rs´ rxsq
eξpx;rsq´ξpx;sq`Aps´rsq dzpxq

zpxqn´m`1

3 If Pnpp; t, sq, Qnpp; t, sq are the biorthogonal sections then the Baker and dual Baker

functions are (up to prefactors) Pnpx; t, sq and

Rnpx; t, sq :“

ż

rPγ

Cpx, r; tqQn´1pr; t, sq dµprq

respectively (note that dual BA is a differential).

4 τnpt, sq “ 0 if and only if τKr “ 0 or the pairing is degenerate on

Ltpn8`Dq bLspn8`Dq
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Outlook

1 Varying weights: this requires study of equilibrium problem on RS: we need appropriate Green

functions.

2 One can study DRPF: the projection operator (in the Harnack case) gives a TP kernel

defined on the curve.

3 New integrable systems? Connection with Hitchin systems (higher genus generalization of

Calogero–Moser types).

4 Interface with algebraic geometry of vector bundles.
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