The Riemann—Hilbert Problem in Higher Genus and Some
Applications

Marco Bertola

Mathematics and Statistics, Concordia University, Montréal
Area of Mathematics, SISSA-ISAS, Trieste, Italy
Centre de recherches mathématiques (CRM), UdeM

MSRI " Integrable Structures in Random Matrix Theory and Beyond”, October 22, 2021

@ "Nonlinear steepest descent approach to orthogonality on elliptic curves”, arXiv:2108.11576
@ " Abelianization of Matrix Orthogonal Polynomials”, arXiv:2107.12998

© "Padé approximants on Riemann surfaces and KP tau functions”, arXiv:2101.09557, Anal.
Math. Phys. 11 (2021), no. 4, Paper No. 149, 38 pp

Abstract The role of (bi/multi/matrix) orthogonal polynomials in random matrices, integrable systems and combinatorics is well known.
Our goal is to report on recent progress in the definition of suitable extensions of the notion of orthogonality where the polynomials are
replaced by sections of appropriate line bundles on Riemann surfaces. We discuss their definition in the spirit of various generalizations of
the Padé problem and the formulation of appropriate matrix Riemann Hilbert problems that allow to characterize them as well as control

their asymptotic behaviour. Applications to Matrix Orthogonal Polynomials and the KP hierarchy will also be discussed.
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Introduction

OPs are famously intertwined with Toda lattice equations; the Moser map linearizes the Toda flow
in the space of (formal) measures.

Lo £
hj (t) :=J al 2T dp(a);
R

n

D, (t) := det [,uaer,g(t)] — Toda tau function 7(n, t) and KP.
a,b=1
The OPs
J]R Py () Py, () dp(x; t) = h (£)0nm
There are "biorthogonal” extension; famous one is the one for the two—matrix model:
|, Pe@)@u )= = 0 = (o) du ) = bt )5

OTOH: Algebro—geometric solutions of KP (Krichever).

Can we merge these two worlds? (B)OPs on RSs?

Very little literature: recent work of Fasondini-Olver-Xu (2020) arXiv:2011.10884.
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Padé and OPs: an old story

Given a measure the Weyl-(Stiltjes) function (or generating function of moments):

(@) qp )
W(z) = fi -y
z—x 507
The Padé approximation is a rational approximation scheme:
_1(z _on
Wiz = oot oty g
P (2)

The denominators are the orthogonal polynomials for the measure.




Two generalization directions

Generalizations: either via meromorphic functions or meromorphic half—differentials.

JPTL (2)Vdz P (2)Vdz e*®
—_— ———
an(z)Pm(z)ew(T’) do = en em (1)

Meromorphic functions with pole at a given point.

| am going to describe only the second setting here. The first one is necessary for application to
MOPs: also generalizes nicely multi-point Padé approximations.
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Padé on Riemann surfaces

We need the following data:

@ A smooth R.S. C of genus g;

@ a (generic) divisor 2 of degree g;

@ a fixed chosen point « € C;

@ a local coordinate z : Dy, — C such that z(ic) = 0.
@ acurveycCC;

@ a density (measure) du on .

The (scalar) Cauchy kernel

Cw (p, q) is a differential in p and function in ¢ such that:
@ as a differential w.r.t. p it has poles at g, 00 and residues +1, —1; zeros at p € Z,
@ as a function w.r.t. g it has poles at p, 2 and zero at 0.

Such object exists and is unique.

\

Example (genus 1)

Co (2, w) = (((z —w) + ¢ (w — a) = ((2) + ((a)) dz.

wisz=0and 2 = a.
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Definition (Wey! differential)

We define it by

W(p) = Cox(p, q) du(q)
qey

The space of polynomials of degree n is now replaced by the line bundle £ (noo + 2) (of
dimension n + 1 like the space of polynomials by Riemann—Roch).

Problem (Padé approximation problem)

Find P, € £ (2 + nw) and Q,,—1 € K((n + 1))

(Q;’l = W) > 29 + (2n — 1)o0.

Theorem (" Orthogonality”)

|| Pa)Pr#) du(o) = .
]




What survives?

We now use a local coordinate z and define a reference basis of sections;

Gi(9) == res 2(p)Cp,a) = 5/ +O(=71).

@ Pseudo-moments 11 5 (not Hankell!):

ik = § &GP due) = = res § G@Ca PG (P) dulr)
¥ pPEY
n—1
D, := det |i}l,j1k:|
j.k=0
@ Heine formula

n

[T dutws),  pnyr=p.

n+
a,b =1j=1

P, (p) := Din Ln det [<a_1(pb)] 1=1 det [Cn,—l(Pb)]:b

© Riemann-Hilbert problem (see next).

The departed
@ Three term recurrence relation;




Let Y,, be a 2 x 2 matrix with functions in the first column and differentials in the second column,
meromorphic in C\~y

V) =vao)| o P | wen

In addition we require that the matrix is such that it has poles at 2 in the first column and zeros
in the second column, and also the following growth condition at co:

B O(2 +nw)  K(-2 — (n— 1))
6.0=| ot Ko (2 |- @)
Yap) = (1+0G:m™) [ - O(p) ax(r) ] , p—ooo. 3)

det Y,, € K(200); it has 2g zeros! How to prove uniqueness? Existence? Tyurin divisor....
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The solution of the RHP exists and is unique if and only if D,, # 0. ,

Note that it is different from genus 0; the solution if it exists is unique. Now it may exist and be

not unique (if D,, = 0).

Pnlp) R (p)

)= { Paca(®) Huma (@)

|

Ra) = [ Cr0Pa@dna)  Roci) = [ Cloa)Pacs (@) dula).
vy vy

[ o,
1 Ho,1
Pu(p) = —det | .
n :
L Co(p)
[ ro,o
- 1 Ho,1
P,_1(p) = Do det
" :
L Co(p)

H1,0
M1

¢i(p)

H1,0
Hi,1

¢1(p)

Hn,0
Mn,1

€ L(2 + nw)
¢n(p)
Hn—1,0

Hn—1,1
€ L(P+ (n—1)w).

o ()



Guaranteed existence: Harnack-curves |

If C has antiholomorphic involution fixing v and d is a positive measure, then D,, > 0 (easy to
show).
Genus 1. Elliptic curve E; = C/2w1Z + 2wsZ, In WeierstraB form the elliptic curve is

Y2 =4X? — goX — g3 = 4(X —e1)(X — e2)(X —e3)
with e;1 +e2 +e3 =0and e; < ez < es.

Antiholomorphic involution z — %E = Z. We choose @0 = {0} and 2 = {a}, with
a € (0,2wq).

L2 +nw) = C{L,¢(2) = ¢ (= —a) = ¢ (@) 9(2), (), ..., 0" ()]

Real-analytic: f(z) = f(Z).

The orthogonal sections T, exist and have n + 1 zeros. These lie all on ~y for (n + 1) even, while
for (n + 1) odd one zero belongs to a.

Interlacing?
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Guaranteed existence: Harnack-curves Il

w
T T+ 1

es es

S5}
2
Y

Y

Figure: An example of real elliptic curve (specifically w2 = 4(X — 1)(X — 2)(X + 3)). On the left pane we have the “elliptic”
parametrization as the quotient of C by the lattice A. On the right the representation of the real section of £+ in the Weierstrass
parametrization. The divisor 2 consists of a single point on the real oval of the c cycle (in this example 2 = 1/3 in the elliptic
parametrization), while the measure of orthogonality is defined on the cycle -y and it is given by an arbitrary smooth positive function

w(p) on ~ times the holomorphic normalized differential dp = %. Also plotted are the zeros of the orthogonal section ¢
with respect to the “flat” measure with w(p) = 1. Note that the zero on « is already (for n = 6) extremely close to e : it is shown

in Sec. ?? that this zero, for even n converges to e exponentially fast.



Nonlinear Steepest descent analysis

In genus 1 no practical difference between functions/differentials.

Let Y = Y, (p) be the 2 X 2 matrix, meromorphic on £\ and with poles at p = 0, 2, such that
© Near p = 0 = A, we have the behaviour

v =a+own| 7" 2] po0 moda,

@ Near p = 2 mod A, we have that

[ O-2) Om-2)
Y“’)’[ ollr—2)"") O@m-2) ]

© The boundary values at p € v are bounded and satisfy:

1 ew(®
Y(p+) =Y (p-) [ 0 1 ]

Note that det Y (p) has 2 zeros: usual argument for uniqueness fails. But the theorem earlier
guarantees existence since (using Andreief) one sees D,, > 0.

o
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A quick rundown of the DZ method and novelties

o
(2]

o

The g—function is found explicitly and along similar lines;

the steps of (i) normalization (using the g—function) of the singularity and (ii) opening lenses
is also without major surprises.

The “model problem” (aka “outer parametrix™) is found explicitly M (p); alas, its
determinant has also 2 zeros div det M = (1/4) + (3/4). These zeros and the
corresponding kernel spaces are the Tyurin data.

The issue is in the error analysis: to see consider the prototype

Yi(2) = Yo(2)J(2), |zl =1, Y(w)=1.

dw

w — z

Y(z) =1+ i § Y_(w)(J(w) — 1)
lwi=1

The latter expression needs a matrix Cauchy kernel that is defined given the Tyurin data:
Co(p, q) dp is a matrix—valued differential with respect to the variable p and meromorphic
function with respect to the variable g satisfying the following properties

@ It has a simple pole for p = g and p = 0 and no other poles with respect to p;

@ The residue matrix for p = ¢ is 1 (and hence at p = 0 is —1)

@ It has a simple pole for ¢ = p and at the Tyurin divisor 7 = (1/4) + (3/4) and all

entries vanish for ¢ = 0.
@ The expression Mfl(p)Cg(p, q) M (q) is locally analytic with respect to g and p at 7.
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Figure: The first few monic orthogonal sections plotted as a function of s € [0, 1] via p = % + s; here 7wy, (p) € Py, are the

“monic” sections behaving like 7wy, (p) = p~ " (1 + O(p)). The elliptic curve is

W2 = 4X3 — 19X + 15 = 4(X — 1)(X — 3/2)(X + 5/2). Here 7 ~ 0.65634. We have set 2 = 1/3 € R and

00 = 0. The contour -y is the segment [7/2, 7/2 4+ 1] in £+ in the X —plane this is the segment X € [e3, ea] (on both sheets).
The thick line is the plot of the orthogonal section obtained by computing explicitly the moments. The thin line is the approximation.
Observe that the approximation is almost perfect starting from n. = 2, confirming the exponential rate of convergence discussed in the
text.
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Asymptotic results |

@ For every compact subset of £\ we have

mn(p) = e S» Mll(p)e(n—l)g(p)+s(p)(1 + O(e_nco)).

01(2;27)01(p — 2 — 7327)07(0;27) 02,3y (p; 27)

M _ —imp ,
u(p) =e 01(2 + 7;27)01(p — 2;27)01(p; 27) 02,33 (05 27)

(4)

where the choice between 63, 03 is according to the parity of n. The function S(p) is the
“Szegd" function and:

Ciﬂ'(p*%)f%" ; fl (p;27) ) Sz
1(p—7;27 (0 o
Q9@ _ ot of = ;1 (027) _irz

61(7;27)

< Qp < ST

>
e—iw(p—%)-f—% 01 (p — T 2T)
61(p; 27)

0<SQp< 59T

Nl

@ For p € v we have the modulated oscillatory behaviour for p = s + & + i0:

n—1
; ir 6 Z:2
mn(p) = 26("_1)£_S°°%<M11(p+)es(p+) gims— 1 (s + 33 T) >(1 T O(e_nco))
01 (s — %3527)

4
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Asymptotic results Il

@ For every continuous function ¢ defined on v < £,

2124

lim p(z{") = j d(p)y/er — p(p)
v

n—w n

dp
= 2m
@ The extra zero of 7, for n even tends at exponential rate to p = % (ie. X =e1).

© The square of the norms of the monic orthogonal sections have the asymptotics

2
lenl™ =

ppo2(n—1)t=25cp —imr € "2 03(2327) 01 (0;27) (03(0; 27)

in
(2 + r2r) 6a(0:27) 02<o;2r>> (1+0(7)

where #,, = 1 for even n and —1 for odd n.
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Matrix (Bi)Orthogonal Polynomials |

Matrix weight W (z) on the real axis (or contour ~ in C ) gives rise to matrix BOPs.
j P, (2)W(2)P, (z)dz = §pnmHn,

Notable applications to the Aztec diamond (see Arno’s talk).

Connection with scalar orthogonality on a Riemann surface already recognized by [Charlier '20]
(implicitly in [Duits-Kuijlaars '17]).

It is sufficient that the eigenvectors of W (z) live on an algebraic surface C (of genus g).

Example (arxiv:2107.12998)

Z:C—CP', div(Z) = —ro
f ntre?, i) e VE((n + 1)) ® A
-

vPE®) L ")
\IJ,(CV)(Z) =

wrk+r 1 (2 AV w'r‘k+7‘ 1(2(”)



https://arxiv.org/pdf/2107.12998.pdf

Matrix (Bi)Orthogonal Polynomials Il

The matrices
Pu(2) = Tx(2)¥5'(2), P (2):= (¥5) (¥ (2)

are polynomials and (bi)-orthogonal for the weight

W (2) = W(z)dz i= Uo(2)A(2)T (2), A(z) = diag(Y(z(l)), o y(z(”))

It works also if C is the sphere! Z(t) = (t —¢)? : CP! — CP!
_ 1 at+l—c—+/z e TV
WL(Z)‘“*[QH?E*\/E (a+1—c—ﬁ)2](c+ﬁ) e

Lg1(s)(s+1+a—2c)ds Lg‘](s)ds

=3 E=A0) oS Z(G)—=
Pj(z) = s OOng+1(s)(s+1+a—2c) ds ° ooLéxj+1(s)ds g

Fiey =—Z(s) % T Z()—=

0 " w 0
J'2 P;j(2)Wi (2) Py (2) dz = §ji ( 6) T(2j+a+2)
¢ (L]




KP and 2-Toda

i
Tensor £ by a zero-degree bundle with transition function eX %= (P) near oo.
A section of Z;(noo + 2) satisfies:

Wn) > =D, $alp) = 2" P (14 0.

For n = 0 it is the Baker—Akhiezer function of Krichever. l

Take
pe L= P Li(no + 2)
n=0
pe Ly = P ZLs(nwo + 2)
n=0
Pairing:

@00 = [ SV dutr)
v

We can construct biorthogonal sections {1, , ¢ }nen (if non-degenerate!)
A basis is

Ci(pst) = 2 e tfz[(l +0(z7Y) (similarly for s)
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Tau function

Definition (The Tau function)

The Tau function is defined by

1
Tn(t, 8) ::;@(F(t))@(F(s))eQ(tHQ(SH"A("‘H"A(5)><

x [ det [Cama(rui ],y det[Cam(roio)] oy [T datry)
¥ j=1

n—1

=TKr(t)TKr(s)enA(t)+nA(s) det |:/J4ab(t7 8):|
a,b=0

The expression Q(t) is a quadratic form and A(t) is a linear form in the times.
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Theorem

The tau function

© Is a KP tau function w.r.t. both sets of times (satisfies HBI):
res 7 (t — [z], 8)7n (E + [z], s)eg(m;t)_g(qu) dz(z) =0
=00

@ It is a tau function for 2—Toda Hierarchy (Adler-VanMoerbeke)

E(zit)—&(zit) + A(E—t)

. o € dz(x)
Jes Tn (t — [z]; 8)Tm+1(t + [z]; 8 @) =
& (@;8)—&(wis)+A(s—3) dz(z)

z(z)n—m+1

= wri:gc Tn+1(t; 8 + [x])Tm (Z, s — [z])

@ If P, (p;t,s),Qn(p;t,s) are the biorthogonal sections then the Baker and dual Baker
functions are (up to prefactors) Py (z;t, s) and

R, (25 t, 8) := J. C(z,m;t)Qn—1(r;t,s)du(r)
TEY

respectively (note that dual BA is a differential).

©Q 7,(t,s8) =0 if and only if Tk, = O or the pairing is degenerate on

L (nw + 2) ® ZLs(nwo + 2)

N
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Outlook

© Varying weights: this requires study of equilibrium problem on RS: we need appropriate Green
functions.

@ One can study DRPF: the projection operator (in the Harnack case) gives a TP kernel
defined on the curve.

© New integrable systems? Connection with Hitchin systems (higher genus generalization of
Calogero—Moser types).

@ Interface with algebraic geometry of vector bundles.




