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Last passage percolation (LPP)

I O, E point in Z2

I ωi,j ∼Exp(1), i.i.d. r.v.’s, i , j ∈ Z
I Directed path π composed of ↖ and ↗ s.t. π(0) = O and π(n) = E

I Last passage time: LO→E = max
π:O→E

∑
1≤k≤n
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LPP and TASEP
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I There is at most one particle per site

I Particles jump independently on the right with rate 1, provided the site is empty

I The dynamics preserves the order of particles

Right-to-left ordering of particles

. . . < x3(0) < x2(0) < x1(0) < 0 ≤ x0(0) < x−1(0) < . . .

xk (t) = position of particle k at time t

P(Lm,n ≤ t) = P(xn(t) ≥ m − n)
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Stationary TASEP

I At time t = 0 occupation variables ηstatx (0) are i.i.d. Bernoulli(ρ) random variables

I Equivalently,

xstat0 (0) ∼ Geom(1− ρ), xstatk (0)− xstatk+1(0)− 1 ∼ Geom(1− ρ)

I Fluctuations of the particle in the origin are asimptotically described by the
Baik–Rains distribution (here ρ = 1/2)

lim
t→∞

P(xstat
t/4−w(t/2)2/3 (t) ≥ 2w(t/2)2/3 − s(t/2)1/3) = FBR,w (s)

where FBR,w (s) = d
ds

[FGUE (s + w2)g(s,w)]

One-point: Baik–Rains ‘00 (PNG with external sources)

Ferrari-Spohn ‘06 (TASEP with Bernoulli IC)

Multi-point: Baik–Ferrari–Péché ‘10 (Airystat process)



Half-space last passage percolation

I LPP in the half-quadrant of Z2

ωi,j ∼
{
Exp(1), i ≥ j + 1

Exp(α), i = j

I Equivalent to LPP on the full quadrant
with weights symmetric w.r.t. the diagonal
ωi,j = ωj,i

Hammersley LPP in half-space
Baik–Rains ‘01

Sasamoto–Imamura ‘04

Symmetrized LPP with geometric weights
Baik–Rains ’01

and exponential weights
Baik–Barraquand–Corwin–Suidan ‘18

Exp(1)

Exp(α)

(N,N)



Ulam’s problem for random involutions

PPP(θ2) in [0, 1]2 with points reflected by the diagonal, PPP(αθ) on the diagonal

L = longest up-right path from (0, 0) to (1, 1)



Ulam’s problem for random involutions
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L is the length of the longest increasing subsequence in the corresponding random
involution



TASEP on the half-line
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Stationary measures
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Stationary half-space LPP

We consider the half-space LPP from the origin to (N,N − n) with the
following weights

ωi,j ∼


Exp( 1

2
+ α) i = j > 1

Exp( 1
2
− α) j = 1, i > 1

0 i = j = 1

Exp(1) otherwise

α ∈ (−1/2, 1/2)

LN,N−n is stationary in the sense of
Balász–Cator–Seppäläinen ‘16:

Lm,n − Lm,n−1 ∼ Exp( 1
2

+ α)

Lm,n − Lm−1,n ∼ Exp( 1
2
− α)

Stationary full-space LPP: Baik–Rains ‘00

(N,N−n)

Exp( 1
2

+ α) Exp(1)

Exp( 1
2
− α)

0



Scaling

Characteristics are lines with slope (( 1
2

+ α)/( 1
2
− α))2

Case α < 0

I E = (N,N) ⇒ Gaussian fluctuations

I E = N(1, (( 1
2

+ α)/( 1
2
− α))2) ⇒ path

visits diagonal in a region O(N2/3) around
the origin

Case α > 0

I E = (N,N) ⇒ path visits horizontal line in
a region O(N) ⇒ Gaussian fluctuations

E

O(N)

N2/3

pictures by P. Ferrari



Scaling

Characteristics are lines with slope (( 1
2

+ α)/( 1
2
− α))2

Case α < 0 Case α > 0

E

O(N)

N2/3

I Critical scaling: α = 2−4/3δN−1/3

I End point: (N,N − n) with n = u25/3N2/3

I Law of large numbers:

LN,N−n ' 4N − 2u25/3N2/3 + δ(2u + δ)24/3N1/3

pictures by P. Ferrari



Limit distribution

Theorem (Betea–Ferrari–O. ‘19)

Let δ ∈ R, u > 0. Let

α = 2−4/3δN−1/3, n = u25/3N2/3.

Then

lim
N→∞

P

(
LN,N−n − 4N + 4u(2N)2/3

24/3N1/3
≤ S

)
= F

(δ,u)
0, half (S)

where
F

(δ,u)
0, half (S) = ∂S

{
pf(J −A)Gδ,u(S)

}
with J =

(
0 1
−1 0

)
and

Gδ,u(S) = eδ,u(S)−
〈
−gδ,u1 gδ,u2

∣∣∣∣∣(1− J−1A)−1

(
−hδ,u1

hδ,u2

)〉

I A = limN→∞ K is the limit kernel of Sasamoto–Imamura ‘04 and
Baik–Barraquand–Corwin–Suidan ‘18 interpolating between the GOE, GSE, GUE
and Gaussian distributions

I Analogue result for the half-line stationary KPZ equation by
Barraquand–Krajenbrink–Le Doussal ‘21



1. A Pfaffian model

Consider the half-space LPP L̃N,N−n with weights

ω̃i,j ∼


Exp( 1

2
+ α) i = j > 1

Exp( 1
2

+ β) j = 1, i > 1

Exp(α+ β) i = j = 1

Exp(1) otherwise

where α ∈ (−1/2, 1/2), β ∈ (0, 1/2) and
α+ β > 0

⇒ the distribution of L̃N,N−n is a Fredholm
pfaffian

P(L̃N,N−n ≤ s) = pf(J − Kα,β)L2(s,∞)

where Kα,β is a 2×2 matrix kernel

Rains ’00

Baik–Barraquand–Corwin–Suidan ’18

(N,N−n)

Exp( 1
2

+ α) Exp(1)

Exp( 1
2

+ β)

Exp(α+ β)



Geometric LPP

Consider the half-space LPP LgeoN,N with weights

wi,j ∼
{
Geom(axi ) i = j

Geom(xixj ) i > j

where 0 < x1, . . . , xN < 1 and 0 ≤ a < mini
1
xi

P(LgeoN,N ≤ l) = Z−1
∑
λ:λ1≤l

aoc(λ)sλ(x1, . . . , xN)

Knuth ‘70, Greene ‘74, Rains ‘00

oc(λ) = number of odd colums of λ

P(LgeoN,N ≤ l) = pf(J − K)`2({l+1,l+2,... })

Rains ‘00

Geom(ax4)

Geom(x4x7)



From geometric to exponential

We consider the case
x1 = b ∈ (0, 1)

x2 = · · · = xN =
√
q for q ∈ (0, 1)

and a > 0 such that a
√
q < 1 and ab < 1

We take the limit for ε→ 0 of

q = 1− ε, (k, `) = ε−1(x , y)

(a, b) = (1− εα, 1− εβ)

⇓

lim
ε→0

εµijK a,b
ij (k, `) = Kα,βij (x , y)

where K a,b is a 2×2 matrix kernel

Geom(a
√
q) Geom(q)

Geom(b
√
q)

Geom(ab)



2. Shift argument

I L̃N,N−n last passage percolation for weights ω̃i,j (integrable case)

LN,N−n last passage percolation for weights ωi,j (stationary case)

I Let L0
N,N−n = L̃N,N−n − ω̃1,1. For α+ β > 0,

P(L0
N,N−n ≤ s) =

(
1 +

1

α+ β
∂s

)
P(L̃N,N−n ≤ s)

I GOAL: obtain LN,N−n = limα+β→0 L
0
N,N−n



3. Kernel decomposition

To isolate the vanishing contribution (α+ β → 0) we split the kernel K of L̃N,N−n as

K = K + (α+ β)R

where

R =

(
|g1〉

〈
fβ
∣∣− ∣∣fβ〉 〈g1|

∣∣fβ〉 〈g2|
− |g2〉

〈
fβ
∣∣ 0

)

with fβ(x) ∼ e−βx

⇓

P(LN,N−n ≤ s) = lim
α+β→0

∂S

{
pf(J − K)

(
1

α+ β
− 〈Y , (1− G)−1X 〉

)}

with X =

∣∣∣∣ 0
fβ

〉
and Y = 〈−g1 g2| and G = J−1K



4. Analytic continuation

I Problem: fβ(x) ∼ e−βx is diverging for β < 0

1

α+ β
− 〈Y , (1− G)−1X 〉 =

1

α+ β
− 〈Y ,X 〉 − 〈Y , (1− G)−1GX 〉

I 〈Y ,GX 〉 contains terms with fβ ⇒ taking the limit β → −α, α ≥ 0 is not possible
for each term

I Solution: Decompose G = Ĝ + O with Ĝ without diverging terms and O
orthogonal to Y

⇓

〈Y , (1− G)−1GX 〉 = 〈Y , (1− G)−1ĜX 〉

I The result is analytic for α, β ∈ (−1/2, 1/2)2



5. Large time asymptotics

I We recall that K (or equivalently G) is a 2×2 matrix kernel whose entries are
expressed as double contour integrals

I Under the scaling (x , y) = 4N − 2u25/3N2/3 + (X ,Y )24/3N1/3 the rescaled kernel
entries have Airy-like decay in both variables X ,Y

I We perform the large time asymptotics of the kernels via steepest descent analysis
(similar to the full-space case)

⇓

lim
N→∞

pf(J − K
resc

)L2(S,∞)×L2(S,∞) = pf(J −A)L2(S,∞)×L2(S,∞)

(∂s produces only polynomial factors)

(The inverse operator in Gδ,u can be written as linear combination of two Fredholm
pfaffians)



Summary of the result

I Two-parameters family of distributions:

u = distance of the end point from the diagonal

δ = limit strength of the diagonal weights

I The distribution has a Pfaffian structure

I A similar strategy leads to the multi-point distribution and the definition of the
half-space Airystat process

Betea–Ferrari–O. ‘21



The half-space Airy stationary process

(N,jm)

...

(N,j2)

(N,j1)

Exp( 1
2

+α)

Exp(1)

Exp( 1
2
−α)

0

Theorem (Betea–Ferrari–O. ‘21)

Let m ≥ 1 and δ ∈ R. Fix m real numbers u1 > u2 > · · · > um ≥ 0 and m real
numbers Sk , 1 ≤ k ≤ m. Consider the stationary last passage times LN,jk in the

N →∞ limit with N − jk = uk25/3N2/3, α = δ2−4/3N−1/3.

We have that

lim
N→∞

P

(
m⋂

k=1

{
LN,jk − 4N + 4uk (2N)2/3

24/3N1/3
≤ Sk

})

=
m∑

k=1

∂Sk

{
pf(J − ĂS ) ·

[
eδ, u1 (S1)−

〈
PSY

∣∣∣(1− J−1ĂS )−1PS (Q− U)
〉]}

where Y,Q and U are column vectors; J is the

2m× 2m matrix with 2× 2 block

(
0 1
−1 0

)
on

the diagonal; ĂS = PS ĂPS with Ă the
2m × 2m matrix kernel having 2× 2 block at
position (k, `) given by an anti-symmetric
extended Airy-like kernel(

Ăuku`
11 (X ,Y ) Ăuku`

12 (X ,Y )

Ăuku`
21 (X ,Y ) Ăuku`

22 (X ,Y )

)



Limit to Baik–Rains distribution

What happens if we look far away from the diagonal?

As δ → −∞, the characteristic line moves from the diagonal

⇒ The path touches the diagonal rarely outside the N2/3-neighborhood of the origin

Theorem (Betea–Ferrari–O. ‘19)

Let S = s + δ(2u + δ) and u + δ = w fixed. Then

lim
u→∞

F
(δ,u)
0, half (S) = FBR,w (s)

where FBR,w (s) is the extended Baik–Rains distribution

FBR,w (s) = ∂s
[
FGUE (s + w2)

(
Rw −

〈
Ψw

∣∣(1− K Ai,w )−1Φw
〉 )]

with K Ai,w the (shifted) Airy kernel.



Thank you
for your attention!


