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Kardar-Parisi-Zhang equation

∂tH = 1
2 ∂2xH︸︷︷︸
smoothing

+ 1
2 (∂xH)2︸ ︷︷ ︸
lateral−speed

+ ξ︸︷︷︸
white−noise

• Introduced by Kardar, Parisi and Zhang in 1986.

• KPZ equation is one of the cornerstones of the KPZ universality
class.

• Immense improvement in understanding the models in the KPZ
universality class and the universal limit in last 35 years.

• Goal is to understand macroscopic fractal geometry of the KPZ
equation.

• Underlying theme: interplay between integrability and
probability.



Background

• KPZ is a paradigm for modeling interface fluctuation of the
random growth models.

• Stochastic Heat Equation (SHE):

∂tZ =
1

2
∂2xZ + ξZ.

The Cole-Hopf solution of the KPZ equation is logZ(t, x).

• The Cole-Hopf solution is a physically relevant solution (Bertini
and Giacomin’ 97) and arises naturally in various renormalization
and regularization scheme.



Motivations & Goals

Denote the Cole-Hopf solution by Hnw when Z(0, x) = δx=0.

• Amir, Corwin & Quastel ’11 showed that

ht(x) :=
Hnw(t, t2/3x) + t

24

t1/3
d→ 2−

1
3 TWGUE −

x2

2
.

• Quastel, Sarkar ’20 showed ht(·) weakly converges to the Airy2

process.

• Broad Question: In the spatio-temporal profile of ht(x), how do
the ‘tall buildings’ (aka tall peaks) and ‘deep tunnels’ (aka deep
valleys) look like and how often they occur?



Goal of this talk

1. Fix x = 0. What are the scaling of the tall peaks and deep
valleys of the ht(0)? How frequent they occur?

2. How frequent the peaks and valleys in the spatio-temporal profile
of Z(t, x)?

3. Why should we be interested?

@ Zimmermann et al. ’00, PRL.
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Peaks and Valleys of Brownian motion and ht(0)

@ Sayan Das.



Limsup LIL

Upper tail: Brownian motion and KPZ

I Bt√
t

d→ N(0, 1).

I P
(

B√
t
> s) ∼ e− 1

2 s
2

.

I ht(0)→ 2−
1
3 TWGUE.

I P
(
TWGUE > s) ∼ e− 4

3 s
3
2 .

LIL (Limsup) of Brownian motion: lim supt→∞
Bt

(t log log t)
1
2

a.s.
= (2)

1
2 .

Theorem (Das & G., 2021)

With probability 1, we have

lim sup
t→∞

ht(0)

(log log t)
2
3

=
( 3

4
√

2

) 2
3 .



Liminf LIL

Lower tail: Brownian motion and KPZ

I Bt√
t

d→ N(0, 1).

I P
(

B√
t
< −s) ∼ e− 1

2 s
2

.

I ht(0)→ 2−
1
3 TWGUE.

I P
(
TWGUE < −s) ∼ e−

1
12 s

3

.

LIL (Liminf) of Brownian motion: lim inft→∞
Bt

(t log log t)
1
2

a.s.
= −(2)

1
2 .

Theorem (Das & G., 2021)

With probability 1, we have

lim inf
t→∞

ht(0)

(log log t)
1
3

= −(6)
1
3 .



Previous Works

1. Chen ’15 showed for any t > 1,

lim sup
x→∞

H(t, x)

(log x)
2/3
+

a.s.
= t

1
3

( 3

4
√

2

) 2
3

when Z(0, x) is positive and uniformly bounded ∀x ∈ R.

2. Paquette and Zeitouni ’15 proved a law of fractional logarithm
for the GUE minor process:

lim sup
n→∞

λ̂n
(log n)2/3

a.s.
=
(1

4

) 2
3 , −c1 < lim inf

n→∞

λ̂n
(log n)1/3

< −c2,

where

λ̂n := (λn −
√

2n)
√

2n1/6
d⇒ TWGUE.

3. Ledoux ’15, Basu-Ganguly-Manjunath-Hegde ’18 showed the law
of iterated logarithms for the last passage percolation.
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Macroscopic Fractality
• Barlow-Taylor ’91 introduced the notion of macroscopic

Hausdorff dimension.

• How does one define it? Via Hausdorff content.
 

νρ,n(E) = inf
Q1,...,Qm

m∑
i=1

(MaxSide(Qi)

en

)ρ
, MinSide(Qi) > 1.



Multi- and Mono-fractality

• ρ-dimensional Hausdorff content :=
∑
n νρ,n.

• Macroscopic Hausdorff dimension of any set E is defined as

DimH(E) = inf
{
ρ > 0 :

∑
n

νρ,n(E) <∞
}
.

• Stoch. process X is multifractal w.r.t a gauge function g if there
are infinitely many scales γ1 > γ2 > . . .

DimH

({
t ≥ 1 :

X(t)

g(t)
≥ γi

})
< DimH

({
t ≥ 1 :

X(t)

g(t)
≥ γi+1

})
.

Otherwise it is called monofractal.



Fractality of the KPZ equation

Theorem (Fractality of peaks, Das & G. ’21)

ht(0) is monofractal w.r.t. the gauge function (log log t)2/3, i.e.,

DimH

({
t ≥ ee :

ht(0)

(log log t)2/3
≥ γ

})
a.s.
=

1 when γ ≤
(

3
4
√
2

) 2
3 ,

0 when γ >
(

3
4
√
2

) 2
3 .

However, het(0) is multifractal w.r.t. the gauge function (log t)2/3,
i.e.,

DimH

({
t ≥ e :

het(0)

(log t)2/3
≥ γ

( 3

4
√

2

) 2
3

})
a.s.
= 1− γ3/2.

Remarks:

• Similar transition occurs for the valleys.

• Brownian motion also exhibits transition from mono- to
multifractality under exponential time change
(Khoshnevisan-Kim-Xiao ’17).



Previous work

Khoshnevisan, Kim and Xiao ’18 proved multifractality of the
spatio-temporal peaks of the SHE.

Theorem (Khoshnevisan, Kim and Xiao ’18)

For Z(0, ·) ∈ L∞(R), the peaks of the spatio-temporal profile of the
SHE is multifractal, i.e., there exists constants A,B > 0 and ε > 0
such that

Aβ3/2γ ≤ 2−DimH

({
(t, x) : Z(γ log t, x) ≥ exp(βγ log t)

})
≤ Bβ2/3γ,

almost surely for all β > − 1
24 and γ ∈ (0, εβ−3/2).

Question: Do the valleys behave similarly?



Fractality of Valleys

Theorem (G. & Yi ’21)

For Z(0, ·) ∈ L∞(R), the valleys of the spatio-temporal profile of the
SHE is monofractal, i.e.,

DimH

({
(t, x) : Z(γ log t, x) ≤ exp(βγ log t)

}) a.s.
=

{
2 0 > β > − 1

24 ,

1 β < − 1
24 .

Conjecture: In the same setting as above, at β = 1
24 ,

DimH

({
(t, x) : Z(et, e2t/3x) ≤ exp

(
− 1

24
et − α(et log t)1/3

)}) a.s.
= 2− Cα3

for α ∈ [0, C−1/3] where C > 0 depends on initial data.
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Key Proof Ideas for LIL

lim sup
t→∞

ht(0)

(log log t)
2
3

a.s.
=
( 3

4
√

2

) 2
3 lim inf

t→∞

ht(0)

(log log t)
1
3

a.s.
= −(6)

1
3 .



Requirements:

I ht1 is approximately independent of ht2 − ht1 when t1 � t2.

I The law of ht2 − ht1 is approximately same as ht2−t1 .

Theorem (Das & G., ’21)

For any 0 = t0 < t1 < t2 < t3 < . . . < tm, there exist independent
random variables Y1, Y2, . . . , Ym such that for all 1 ≤ i ≤ m and large
x,

Yi
d
= (1− e−(ti−ti−1))1/3heti−eti−1 (0),

and
Pr (|heti (0)− Yi| ≥ x) ≤ exp(−cx3/2).



Starting point: Composition Law of KPZ

Proposition (Multipoint composition law, Das & G. ’21)

For any tk > tk−1 > . . . > t1 > t0 = 0, there exist independent spatial
process Hnw

ti↓ti−1
(·) independent of Hnw(ti−1, ·) for k ≥ i ≥ 2 such that

Hnw
ti↓ti−1

(·) d
= Hnw(ti − ti−1, ·)

and,

Hnw(ti, 0)=log
(∫ ∞
−∞

exp
(
Hnw(ti−1, x) +Hnw

ti↓ti−1
(−x)

)
dx
)
.

• Our proof of the composition law relies on the linearity and time
reversal property of the solution of the SHE.

• Two point composition was proved before in the KPZ line
ensemble paper by Corwin and Hammond’14.



Other Tools



Tail Probabilities

Theorem (Corwin & G.’ 18)

There exists s0 such that for all t > 1 and s > s0,

P
(
2

1
3 h2t(0) ≤ −s

)
= Θ

(
exp

(
− 4t

1
3 s

5
2

15π

))
+ Θ

(
exp

(
− s3

12

))
and

P
(
2

1
3 h2t(0) > s

)
= Θ

(
exp

(
− 4

3
s

3
2

))
.

O(t
2
3 )

exp
(
− t

1
3
4s

5
2

15π

)
deep tail

exp
(
− 1

12s3
)

shallow tail

← s

exp
(
− 4

3 (−s)
3
2

)



Tail probabilities via RMT

• We show how lower tail probabilities are obtained from RMT.

• We used Borodin & Gorin’s formula:

E
[

exp
(
− exp(t1/3

(
2

1
3 h2t(0) + s)

))]
= E

[ ∞∏
k=1

1

1 + exp(t1/3(ak + s))

]
for any s ∈ R. Here a1 > a2 > . . . are the Airy point process.

• We note

LHS = P(2
1
3 h2t(0) + t−1/3G ≤ −s) ≈ P

(
2

1
3 h2t(0) ≤ −s

)
when s is a large number and t > 1. G is an independent Gumbel
r.v.



Continued..

• Why 4t1/3s
5
2 /15π? {ak}k≥1 are very close to the zeros of the

Airy function which are located at −(3πk/2)
2
3 .

∞∏
k=1

1

1 + exp
(
t1/3

(
− (3πk/2)

2
3 + s

)) ≈ exp
(
− t1/3

4s
5
2

15π

)
.

• Why s3/12? If a1 < −s, then,

∞∏
k=1

1

1 + exp(t1/3(ak + s))
≈ 1.

But, the corresponding penalty is P(a1 < −s) which is
exp(−s3/12).

• These heuristics are made rigorous by exploring the connections
of the Airy point process with the stochastic Airy operators
and the Ablowitz-Segur solution of the Painlevé II.



Outlook

Summary:

• Obtained law of iterated logarithms for the KPZ equation under
narrow wedge initial data. General initial data case is still open.

• Macroscopic fractal dimension of the peaks and valleys of the
temporal process of KPZ.

• Macroscopic fractal dimension of the valleys of the KPZ equation.

Future directions:

• Fractality of the peaks of the spatial process of the KPZ class
models?

• What happens for the KPZ fixed point? Is there a short time LIL
like as in Brownian motion?

• What happens to intermittency and multifractality when
dimension increases?
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