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Historical motivation

MSRI, September 2002:
Recent Progress In Random Matrix Theory And Its Applications

n

DysoN, "RANDOM MATRICES, NEUTRON CAPTURE LEVELS, QUASICRYSTALS AND ZETA-FUNCTION",
How to detect missing or spurious eigenvalues of a random matrix?

See https://www.msri.org/workshops/220/schedules/1385.

About his work in the 1960-1970s, comparing nuclear physics data with
random matrix eigenvalues: "But we had to expect that a small percentage of genuine

levels would be missed and a small percentage of spurious levels would be included in the
data. [...] It would be a great triumph for mathematics if an error-correcting code could
correct Nature's mistakes as well as our own. [...] Now, thirty years later,| am no longer
interested in the nuclear level data. | am interested in the general question, whether error-
correcting codes for random matrix eigenvalues are possible in principle. | suspect that they

might lead you to some interesting mathematics.”
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Randomly incomplete spectra

Question

Suppose that we see an incomplete sample of a determinantal point process
(DPP) on R, what can we say about the missing part?

The rule to obtain the incomplete sample may be A

v deterministic, e.g., we see all pointsin A C R -&—’(—Eo—o—-a—:}+

v random, e.g., we see all points with probability 1/2 (cf. BoHiGas-
Pato '06).

——— NN ————Y———)—O—

Independent position-dependent thinning of the DPP

We see each point x in the random point configuration independently with
probability f(x) for some Borel measurable 6§ : R — [0, 1].
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Determinantal point processes

Correlation functions and average multiplicative statistics of a DPP

A DPP on R is a random point process on R such that

1. Correlation functions are expressed in terms of a
correlation kernel K(z,y):

pm(ml, . oo ,CBm) = det (K(CBZ, azj))?;.:l.

2. Average multiplicative statistics are Fredholm
determinants:

E]]J(1—¢(z)) = det(1 — MyK)

OO1 1?’L n
_y (5D / det (K (x1,2)))};_, | | 6(x5)dz;
j=1

n!

(See e.g. MaccHI '75, SosHNikov '00, Lyons 'O 3, SHIRAI-T AkaHASHI '0 3, JoHAaNSsON ‘06,
HouGH-KRISHNAPUR-PERES-VIRAG '0 6, BOorRODIN '11.)
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DPPs: main examples

1. Orthogonal Polynomial Ensembles

N points with symmetric joint probability distribution

1 ;=
Z— H (ZCj—CBZ') gw(w])d:cj

N 1<i<j<N j
Eigenvalue jpdf of unitary invariant random matrices if w(z) = e VV(®@),

Correlation kernel expressed in terms of orthonormal polynomials with
respect to w:

N-1

Kn(2,9) = \Jw(@)w(y) > pi(@)p;(y).

7=0
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DPPs: main examples

2. DPPs induced by orthogonal projections

Correlation kernel K for which the associated integral operator
Kf(@) = [ Kao)fuly)dy

is an orthogonal projection (of finite or infinite rank).

Particular cases: OPEs and scaling limits of OPEs:

sin(x — y)

| KAi(zc,y) _ Ai(z)Ai' (y) — Ai'(z)Ai(y)

Ksin (CI;’, y) _
m(z — y) T —y

Y

Bessel kernels, Painlevé kernels, ...

General property (Sosunikov '00): Number of points is a.s. equal to rank(K).
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DPPs: main examples

3. Integrable kernels

A kernel is k-integrable (in the sense of ITs-1zerGcIN-KOREPIN-SLAVNOV '93, DEIFT-
ITs-ZHou '97) if it is of the form

K(z,y) = ' | with ij(a:)hj(:c) = 0.

For instance: OPEs (by the Christoffel-Darboux identity), Airy, Sine, Bessel,
Painlevé kernel DPPs.

A random thinning of a DPP with k-integrable kernel K, in which each point x
is observed independently with probability 8(x), is also k-integrable, with
kernel (Lavancier-MoLLER-RuBAk '15)

O(x)K(z,y), 0:R —|[0,1].
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Number rigidity

Definition (GHosH "16, GHOSH-PERES '17)

A point process is number rigid if for any bounded set B C R, the
configuration of points outside B almost surely determines the number of

points in B. B

B I DR
C

Properties

DPPs induced by finite rank projections are trivially number rigid, since
number of points is a.s. equal to the rank of the projection.

DPPs can only be number rigid if they are induced by a projection operator
(GHosH-KRISHNAPUR "15).

What about DPPs induced by infinite rank projections?
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Number rigidity

Sufficient condition for number rigidity (GHosH "16, GHOSH-PERES "17)

A point process is number rigid if for any € > 0 and for any bounded set

B C R, there exists a bounded function f with bounded ?u.;sport which is
X

such that A

fls=1, Var Y f(z;) <e.

Theorem (Buretov '16)

DPPs induced by orthogonal projections with sufficiently regular 2-integrable
kernels

fi(z)g1(y) + f2(x)92(y)
x—y

K(z,y) =

are number rigid (e.g., Sine, Airy, Bessel).
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Marked point process

Given a point processPon Rand 0: R — [O, 1], we define a marked point
process P’ on R x {O, 1} by assigning to each point x independently mark 1
with probability f(x) and mark 0 with probability 1 — ().

54 Mark

___.__E‘Z_____Marho

Property

If P is the DPP with kernel K(x,y) and reference measure y, then so is PY, but
with reference measure

dp’ (z,b) = 0(z)dp(z)ddp—1y + (1 — 0)(z)du(x)ddp—or on R x {0,1}.
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No observed particles

Given a configuration &, we write §; for the configuration of mark j
points. f“__‘ ¢

The probability to observe no particles is §
]
—0- r 3 e _O -

PY(& = 0) = det(1 — MgK).

If this is non-zero, we can define the conditional ensemble Pf@ (on R)

by conditioning P’ on the event £1 = 0.

Conditional ensemble

If I” is the DPP with kernel K of the operator K, then IP’|9® is the DPP with kernel

of the operator
M;_¢K(1 — MgK)™" on L*(R,dpu), or

K(1 —MgK)™ on L2(R, (1 — 6)dp).
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Finite number of observed particles

The probability to observe particles (only) at positions
vV = {vl,'vz, ‘o ,fuk} will typically be 0. Conditional ensembles can still
be defined via disintegration.

Palm measures

The reduced Palm DPP represents the conditioning of I” on particles (among
others) at vy,...,v;, and then removing these particles, and is the DPP with
kernel (SHIRAI-T AkAHASHI '03)

K, (z,v) = det
(z,y) e(K

We want to define a conditional ensemble IP’?V which represents the

conditioning of P on particles at v{,...,v;,and on no other mark 1
particles.
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Finite number of observed particles

Conditional ensemble

Let P be a DPP with kernel K of the operator K, and suppose that
PY(#& = k) > 0. For P’-a.e. k-point mark 1 configuration v = {vy,..., v},
P? is the DPP with kernel of the operator

v

K, (1 —MgK,)™' on L%(R, (1 — 6)dp).

Compare this to the Poisson process P with intensity p on (R, du): then
IP’?Q is the Poisson point process with intensity p on (R, (1 — 8)du), which

is the same as the unconditioned distribution of mark O points.

AL AL £

A
o— —& ® -9 ,?
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Orthogonal polynomial ensembles

Conditional ensembles of OPEs

If P is an N-point OPE with density > [],_,_._y(z; — z:)? T[]}, w(z;)dz;,
then IP’|V isan n = (N — k)-point OPE with density

n k
Zi,,g I @—=)* 1] (H(l‘j — ’Ue)2) (1 = 0)(z;)w(z;)dz;.

Forw(z) = e,k =0,1—6(z) = e " for W > 0, P, is the OPE

with confining potential 2 replaced by r? + W( ) sO any unitary
invariant ensemble with confining potential > z? is a condltlw

ensemble of the GUE. _NW(x) \ 1\ x

Q) =4~

..'
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DPPs associated to orthogonal projections

Conditional ensembles of orthogonal projection DPPs

Let I be a DPP with kernel K of an orthogonal projection operator K onto a

closed L?-subspace H.

P? is the DPP with kernel K|9V of the orthogonal projection onto the closure of

v
M, ¢H,, Hy = {h € H:h|, = 0}.

(There is a similar result for skew projection DPPs.)

Caveat: this is not true in general for infinite mark 1 configurations v!
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DPPs with integrable kernels

Conditional ensembles of integrable kernel DPPs

If P is a DPP with k-integrable kernel

1 j\L)Gj &
K(a,y) = 2080 S @) — o,

x— p

then the method of ITs-1zercIN-KoOREPIN-SLAVNOV 93, DEIFT-lITS-ZHOU '97, BERTOLA-
CaFasso "14 implies that Pf@ is also a DPP with k-integrable kernel, which can

be characterized in terms of a Riemann-Hilbert problem.

The same is true for ]P’fv, but then the Riemann-Hilbert problem has

singularities at v{,..., V.

This opens the door for asymptotic analysis and for deriving integrable
differential equations.
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Integrable operators

Jacobi's identity in terms of the conditional ensembles

For a smooth deformation 6;, Jacobi's variational formula implies that

8;logdet(1 — My K) = —Tr [Mg, K(1 — Mp,K)!| = —Tr Matet Kfq’;

In probabilistic terms,
O; logE H(l — 0i(z;)) Eet Zat log(1 — 6¢(z:))),

so the logarithmic derivative of an average multiplicotive statistic in P is
equal to the average of a linear statistic in Pl(ﬂ

If one allows for continuous marks in |0, 1], one can interpret this in
terms of the hazard rate function.
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Infinite rank projection operators

If Tr MoK = 00, we have PY(#£; = 00) = 1.

Theorem (Buretov-Qiu-SHamov '16)

If ° is a DPP defined by an orthogonal projection K and Tr MyK = oo, one

can still a.s. define IP’?V, and IP’?V is a DPP defined by a locally trace class

Hermitian operator K|0V (but not necessarily a projection!).

Question

0

A%

number of points in the conditional ensemble deterministic?

Under which conditions is K. a projection, or under which conditions is the
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Rigidity

Definition

A point process P is marking rigid if for any measurable 8 : R — [0,1]| and for
P?-a.e. mark 1 configuration v, there exists ¢, € NU {0, 00} such that

Py, (#& = £v) = 1.

(Note that marking rigidity implies number rigidity, by setting 8 = 15c.)

o—0 o o —o - +&+§4
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Rigidity

Recall: Sufficient condition for number rigidity

For any € > (0 and for any bounded set B C R, there exists g bounded

function f with bounded support which is such that

flg=1, Var ) f(z;) <e.

Theorem (C-GLESNER '21)

If P satisfies the sufficient condition for number rigidity and if for any 0,
PY (& (R) < 0) is either 0 or 1, then [P is marking rigid.
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Rigidity

Sketch of the proof (cf. GHosH "16, GHOSH-PERES "17)

11 PY(&(R) < 00) = 0, then & (R) = oo as.
2. 1f PY(&(R) < 00) =L let A; C Ay C ---be an

exhausting sequence of erel subsets of R.

l " \
———|—0— - L

M

*+—o >
- 4
First observation: §g(R\ A,;,) — 0 as n — oo.

Second observation: sufficient condition implies
existence of bounded measurable functions fi, fo,...
with bounded support such that fn|An — 1 and

lim Var ) = fn(z;) =0, lm (Z o (@) —EY  fo, (a:z-)) — 0 a.s.

n— 00 k— 00

—— 1—?4

Se

4- -
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Rigidity

Sketch of the proof (cf. GHosH "16, GHOSH-PERES 17)

3. Then,

0 1
(S hte ) S
0,1
‘|‘Z ]-_fnk uz ank(vl

4. Taking the limit £k — oo, we obtain (using the
disintegration property)

IP’|9V (50( — kll_)Iilo (EZ fr (24) ank (vz))) —= 1 for PY-a.e. V.
1
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Rigidity

Marking rigidity of Sine, Airy, Bessel point processes

If P is a DPP, then P (£ (R) < 00) is 0 or 1 (Sosknikov '00). As a consequence,
DPPs satisfying the sufficient condition for number rigidity, including Sine,
Airy, Bessel point processes, are marking rigid.

Dependence on 0

Depending on the marking function 6, the number of invisible points is either

oo or equal to

k— 00

lim (EZ]"’W (i) = > fu (vi)) .

This does not depend explicitly on 6.
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Conclusion

Marked and conditional DPPs

Already appeared implicitly in:

v IIKS method to study Fredholm determinants,
v unitary invariant random matrix ensembles,
v study of number rigidity.

Why study conditional ensembles?

v/ Natural in view of the search for error-correcting
codes/spectrum completion codes,

v useful in asymptotic analysis of Fredholm determinants
of the form det(1 — MyK) via the IIKS method, where it
helps to guess a convenient g-function,

N

allows to study refined notion of number rigidity,

N

well-behaving transformation of sufficiently regular point
processes and DPPs in particular.
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The end

Thank you for your attention!
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