Multiple SLE_{κ} from a loop measure perspective

Vivian Olsiewski Healey

Texas State University

Joint work with Gregory F. Lawler

Connections Workshop: The Analysis and Geometry of Random Spaces, MSRI January 19, 2022

Goal: combine dynamical and configurational interpretations of *SLE* to understand multiple radial *SLE* (two kinds)

Today's talk:

N-Sided Radial Schramm-Loewner Evolution (with Gregory F. Lawler). *Probab. Theory Relat. Fields* **181**, pages 451-488 (2021).

Many authors:

- Dubédat '[07]
- Kozdron, Lawler ['07]
- Kytölä and Peltola ['16].
- Jahangoshahi, Lawler ['18]
- Peltola, Wu ['19]
- Zhan ['18, '19]
- Beffara, Peltola, Wu ['21]

Notes:

- Loop measure will be a main tool
- Discrete models are motivation
- This talk: $\kappa \leq 4$

Main Result

Chordal case:

Known that multiple *SLE* is absolutely continuous w.r.t. *n* independent *SLEs* (boundary perturbation property)

Obstacle for radial: want to do an analogous construction, but (Radon-Nikodym derivative = ∞) × (partition function = 0) = ??

Short answer:

- Tilt independent *n*-radial SLE → locally independent SLE
- Tilt again and *take a limit* \rightarrow global n-radial SLE

Main tools: Brownian loop measure, analysis of radial Bessel process

Main Result:

Radial Bessel/Dyson BM naturally appears as the driving function! (Different drift for locally independent vs. global)

Contents

- I. Background
 - Loewner Equation & SLE
 - Interpretations: dynamical vs configurational
 - Loop measures
 - Loop-erased random walk
 - Restriction property and RW loop measure
 - Radial restriction property & Brownian loop measure
- II. *n*-Radial SLE
 - Which loops?
 - Locally Independent *n*-radial *SLE*, connection to radial Bessel
 - (Global) *n*-radial *SLE*, connection to radial Bessel

I. Background Chordal Loewner Equation

 $\gamma: (0,T] \to \mathbb{H}$ simple curve, $\gamma(0) \in \mathbb{R}$.

Composition property: $g_{s,t} \circ g_s(z) = g_t(z)$.

 $b(t) = hcap \gamma_t$, U(t) called the driving function

Loewner (1920s): g_t satisfies $\dot{g}_t(z) = \frac{\dot{b}(t)}{g_t(z) - U(t)}, \quad g_0(z) = z.$

Radial Loewner Equation (one curve)

Radial Loewner equation: (from a boundary point to 0) • $\gamma : (0,T] \rightarrow \mathbb{D}$ a simple curve starting on unit circle.

• Conformal mappings $g_t : \mathbb{D} \setminus \gamma_t \to \mathbb{D}$ satisfy

$$\dot{g}_t(w) = 2a g_t(w) \frac{z_t + g_t(w)}{z_t - g_t(w)}.$$

• Parameterized so that $g'_t(0) = e^{2at}$.

Schramm-Loewner Evolution

Dynamical interpretation

Chordal: $\dot{g}_t(z) = \frac{2a}{g_t(z) - B_t}, \qquad g_0(z) = z.$

Radial:

$$\dot{g}_t(w) = 2a g_t(w) \frac{e^{2iB_t} + g_t(w)}{e^{2iB_t} - g_t(w)}, \quad g_0(w) = w.$$

Results usually stated in terms of κ , where $a = 2/\kappa$.

Schramm-Loewner Evolution

Configurational interpretation

- Conformal invariance/covariance
 - Idea: f(SLE in D) = SLE in f(D)
 - Measures with total mass:

 $f \circ \mu_D(z,0) = |f'(z)|^b |f'(0)|^{\tilde{b}} \mu_{f(D)}(f(z),0).$

SLE measure on curves from *z* to 0

Partition functions (i.e. total mass)

 $\Psi_D(z,0) = |f'(z)|^b |f'(0)|^{\tilde{b}} \Psi_{f(D)}(f(z),0).$

Domain Markov property

•

• Idea: curve views its own past as part of the boundary

Non-probability measures: keep more information as we change the domain

$$b = \frac{6 - \kappa}{2\kappa}$$
$$\tilde{b} = \frac{b(1 - a)}{2a}$$
$$a = 2/\kappa$$

Schramm-Loewner Evolution

- Universal scaling limit of many discrete processes, including:
 - Loop-erased random walk
 - Critical Ising model
 - Uniform spanning tree
 - Critical percolation

Critical percolation: Oded Schramm '99

- Today: use discrete models to build intuition
- We'll look at loop-erased random walk to understand loop measures

Loop measure and LERW

Loop-erased random walk:

Z

How does the measure of γ in D compare to its measure in $D \setminus K$?

Loop measure and LERW

Loop-erased random walk:

Z

How does the measure of γ in D compare to its measure in $D \setminus K$?

LERW path carries measure of SRW loops that intersect γ and *K*.

Need to reweight the measure by $m\{\ell \in D : \ell \cap K \neq \emptyset\}$.

Random Walk Loop Measure in \mathbb{Z}^2

- Why this def? Limit = Brownian loop measure. (Want SLE results.) [Lawler-Werner-Trujillo Ferreras]
- Brownian loop measure $m_{\mathbb{C}}$ on unrooted loops given by

(duration 1 Brownian bridge) × (Area meas.) × $\left(\frac{1}{2\pi t^2} dt\right)$ Base loop Basepoint (i.e. root) time duration × root location

Restriction

Measure on paths in *D*

Measure on paths in $D \setminus K$

• LERW

- weight by $m\{\ell \in D : \ell \cap K \neq \emptyset\}$ Random walk loop measure
- SLE_{κ} weight by $m\{\ell \in D : \ell \cap K \neq \emptyset\}$ Brownian loop measure
- Want to study: *SLE* paths weighted by **Brownian loop measure**
 - Need stochastic calculus to make sense of this

Girsanov Theorem (stoch. calc.)

Girsanov Theorem: (giving drift to *B_t* via change of measure)

- B_t Brownian motion under probability measure \mathbb{P} .
- M_t a non-negative martingale wrt \mathbb{P} , $M_0 = 1$,

• Let
$$\frac{d\tilde{\mathbb{P}}_t}{d\mathbb{P}} = M_t$$
.

$$dM_t = A_t M_t dB_t.$$

Idea: gives a way to condition on measure 0 events.

• Then B_t satisfies

 $dB_t = A_t \, dt + dW_t,$

for W_t Brownian motion wrt $\tilde{\mathbb{P}}$.

Application to SLE:

- SLE_{κ} has driving function $\sqrt{\kappa}B_t$.
- new measure \rightarrow new driving function.

Restriction property for radial SLE_{κ}

- γ radial SLE_{κ} from 1 to 0 in \mathbb{D} . $\gamma_t = \gamma[0,t]$.
- $U = \mathbb{D} \setminus K \subset \mathbb{D}$ simply connected

• Let
$$D_t = \mathbb{D} \setminus \gamma_t$$
, $U_t = U \setminus \gamma_t$,
 $\Psi_t = \frac{\Psi_{U_t}(\gamma(t), 0)}{\Psi_{D_t}(\gamma(t), 0)}$. Total mass of paths in U_t
Total mass of paths in D_t

SLE_{κ} in U is SLE_{κ} in D "weighted locally" by Ψ_{t} •

- Find a local martingale $M_t = A_t \Psi_t$, where A_t is differentiable. •
- Use Girsanov theorem.
- Can calculate: $A_t = 1\{\gamma_t \subset U\}\exp\left\{\frac{\mathbf{c}}{2}m_D(\gamma_t, K)\right\}$. Proof: Jahangoshahi & Lawler '18, earlier folklore?

Initial segment

II. n-Radial SLE Multiple Radial SLE_{κ}

• **Radial Loewner equation**: (from a boundary point to 0)

$$\dot{g}_t(z) = 2a \, g_t(z) \sum_{j=1}^n \frac{z_t^j + g_t(z)}{z_t^j - g_t(z)}$$

- *SLE* = a measure on paths (with partition function).
- *SLE* also = a measure on parametrized curves with killing.
 - Curves are growing: keep time parameter *t*
 - Process up to a stopping time t < T.
 - Paths killed, so not a probability measure:
 - Total mass at time $t = \text{partition function } \Psi_{\mathbb{D}\setminus\gamma_t}(\gamma(t), 0)$.
- Can use both "configurational" and "dynamical" information!

Multiple Radial SLE_k

Q: Use restriction to define multiple radial SLE?

- *n* curves in the disk from unit circle to origin.
- Grow all curves at the "same rate."
 - Measure on parametrized curves, not just paths.
 - Weight by loops that hit multiple curves
- Procedure works for chordal case
 [Jahangoshahi & Lawler '18]

Multiple Radial SLE_k

Q: Use restriction to define multiple radial SLE?

- *n* curves in the disk from unit circle to origin.
- Grow all curves at the "same rate."
 - Measure on parametrized curves, not just paths.
 - Weight by loops that hit multiple curves
- Procedure works for chordal case
 [Jahangoshahi & Lawler '18]
- But in radial case, this measure is infinite! (tiny red loops)
- We'll need to define it as a limit process.

SLE_{κ} Results [H-Lawler, '21]

Setup

• *n* points on the unit circle:

$$z_t^j = \exp\{2i\theta_t^j\}, \quad j = 1,...,n.$$

• Define *h* by:

$$g_t(e^{2i\zeta})=e^{2ih_t(\zeta)}\,.$$

Then

$$\dot{h}_t(\zeta) = a \sum_{j=1}^n \cot(h_t(\zeta) - \theta_t^j).$$

• Killing: $0 \le t \le T$ stop process when any $\gamma_t^j \cap \gamma_t^k \ne \emptyset$.

Loop notation setup

- Denote the *n*-tuple of curves $\gamma_t = (\gamma_t^1, ..., \gamma_t^n)$
- Let $\hat{L}_t^j = \hat{L}_t^j(\gamma)$ be the set of loops that hit γ_t^j after hitting another γ_t^k .

Which loops?

Locally independent SLE

Loops used for $\hat{\mathscr{L}}_t$

- At time *t*, each curve γ_t^j sees the **past** of every other curve
- *t*-measurable loops

Truncation whose limit is global *n*-radial *SLE*

Loops used for \mathscr{L}_t

- Future loops also included
- Truncate by assuming one hit is before time *t*.

Locally Independent SLE_k

"Theorem" (Locally independent *SLE*_{κ}) [H-Lawler '21]: If each of the *n* SLE curves grows as if in the domain $D \setminus \gamma_{t}$, then the driving functions satisfy

$$d\theta_t^j = a \sum_{k:k \neq j} \cot(\theta_t^j - \theta_t^k) dt + dW_t^j, \qquad a = 2/\kappa$$

for W_t^1, \ldots, W_t^n independent Brownian motions.

Radial Bessel equation with parameter $a = 2/\kappa$ generates locally independent SLE_{κ} .

Locally Independent SLE_k

Radial Bessel equation with parameter $a = 2/\kappa$ generates locally independent SLE_{κ} .

 $\tilde{b} = \frac{b(1-a)}{a}$

Idea of Proof

Can express
$$M_t = \prod_{j=1}^n M_t^j$$

• M_t^j is just the "j-version" of every term in M_t :

$$M_t^j = I_t^j \Psi_t^j \exp\left\{\frac{\mathbf{c}}{2}m_{\mathbb{D}}(\hat{L}_t^j)\right\} \exp\left\{ab\int_0^t \sum_{k\neq j} \csc^2(\theta_s^j - \theta_s^k)ds\right\}$$

- After tilting by M_t^j , the curve γ^j at time *t* is locally growing as *SLE* in $D_t = \mathbb{D} \setminus \gamma_t$
 - Reason for the name locally independent *SLE*
- Computation verifies local mart; Girsanov finishes the proof.

Locally Independent SLE_k

Locally independent *SLE*_{κ}: In the measure \mathbb{P}_* , the paths $\gamma_t^1, ..., \gamma_t^n$ locally grow like independent *SLE* in slit domain.

Driving functions satisfy

$$d\theta_t^j = a \sum_{k:k\neq j} \cot(\theta_t^j - \theta_t^k) dt + dW_t^j.$$

- Drift strong enough to guarantee non-intersection of driving functions, but *paths* could collide.
 - $\hat{\mathscr{L}}_t$ doesn't see any loops that hit in the future.
 - Idea: γ_t^j only "planning" to avoid past of other curves
- Need to tilt again!

Theorem (Global *n***-radial** *SLE***_κ) [H-Lawler '21]:**

Let *t* be fixed, and let $\gamma_t \sim$ independent *n*-path SLE_{κ} .

For T > t, let $\mu_T = \mu_{T,t}$ denote the measure on γ_t whose Radon-Nikodym derivative with respect to \mathbb{P} is

 $\frac{\mathscr{L}_T}{\mathbb{E}^{\theta_0}[\mathscr{L}_T]} \cdot$

Then as $T \rightarrow \infty$, μ_T converges in variation distance to a prob measure under which the driving functions satisfy

$$d\theta_t^j = 2a \sum_{k:k \neq j} \cot(\theta_t^j - \theta_t^k) dt + d\hat{W}_t^j,$$

for $\hat{W}_t^1, \ldots, \hat{W}_t^n$ independent Brownian motions.

Radial Bessel equation with parameter $2a = 4/\kappa$ generates *n*-radial SLE_{κ} .

Idea of Proof

Radial Bessel calculations:

Define martingale $M_{t,\alpha} = \prod_{1 \le j < k \le n} |\sin(\theta^k - \theta^j)|^{\alpha} \exp\left\{\frac{\alpha^2 n(n^2 - 1)}{6}t\right\} \exp\left\{\frac{\alpha - \alpha^2}{2}\int_0^t \psi(\theta_s) ds\right\}$ Tilting by $M_{t,\alpha}$ gives a prob measure \mathbb{P}_{α} with $d\theta_t^j = \alpha \sum_{k:k \ne j} \cot(\theta_t^j - \theta_t^k) dt + dW_t^j$.
Define

$$N_{t,\alpha,2\alpha} = \prod_{1 \le j < k \le n} |\sin(\theta^k - \theta^j)|^{\alpha} \exp\left\{\frac{\alpha^2 n(n^2 - 1)}{2}t\right\} \exp\left\{-\frac{\alpha(3\alpha - 1)}{2}\int_0^t \psi(\theta_s)ds\right\}$$

- This is a \mathbb{P}_{α} -martingale.
- Tilting by $M_{t,\alpha}$ and then by $N_{t,\alpha,2\alpha}$ gives $\mathbb{P}_{2\alpha}$.

Idea of Proof

Truncations

- On the other hand, the truncations we need are obtained by tilting by $\tilde{N}_{t,T} = \mathbb{E}^{\theta_0} [\mathcal{L}_T | \gamma_t].$
- Compute that $\tilde{N}_{t,T} = \hat{\mathscr{L}}_t \Psi_t \mathbb{E}^{\theta_t} [\mathscr{L}_{T-t}].$
- Prove an exponential rate of convergence: $\mathbb{E}^{\theta_0}[\mathscr{L}_T] = e^{-2an\beta t} \mathscr{F}_a(\theta) [1 + O(e^{-uT})].$
- Compare with the previous calculation. □

Open Questions

- Understanding $4 < \kappa < 8$ (loop interp does not apply, but Bessel results do)
- Take the number of curves to infinity? Use random matrix theory.
- How to unify loop-measure approach with PDE/pure partition function approach to multiple SLE?

Thank you!

