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Topic
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Goal: combine dynamical and configurational interpretations of SLE to 
understand multiple radial SLE (two kinds) 

Today’s talk: 
N-Sided Radial Schramm-Loewner Evolution (with Gregory F. Lawler). 
Probab. Theory Relat. Fields 181, pages 451-488 (2021).

Many authors:
• Dubédat ’[07]
• Kozdron, Lawler [’07]
• Kytölä and Peltola [’16]. 
• Jahangoshahi, Lawler [’18]
• Peltola, Wu [’19]
• Zhan [’18, ’19]
• Beffara, Peltola, Wu [’21]

Notes:
• Loop measure will 

be a main tool
• Discrete models are 

motivation
• This talk: κ ≤ 4



Main Result
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Short answer:
• Tilt independent n-radial SLE → locally independent SLE
• Tilt again and take a limit → global n-radial SLE

Obstacle for radial: want to do an analogous construction, but
 (Radon-Nikodym derivative = ∞) × (partition function = 0) = ??

Main tools: Brownian loop measure, analysis of radial Bessel process

Chordal case: 
Known that multiple SLE is absolutely continuous w.r.t. n 
independent SLEs (boundary perturbation property)

Main Result: 
Radial Bessel/Dyson BM naturally appears as the driving function! 
(Different drift for locally independent vs. global)



Contents
I. Background 

• Loewner Equation & SLE
• Interpretations: dynamical vs configurational

• Loop measures 
• Loop-erased random walk
• Restriction property and RW loop measure

• Radial restriction property & Brownian loop measure

II. n-Radial SLE
• Which loops?
• Locally Independent n-radial SLE, connection to radial Bessel
• (Global) n-radial SLE, connection to radial Bessel
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gt
))�(t)

U(t)

                         simple curve, γ : (0,T ] → ℍ γ(0) ∈ ℝ .

Composition property: gs,t ∘ gs(z) = gt(z) .

I. Background

Loewner (1920s): gt satisfies

ġt(z) =
ḃ(t)

gt(z) � U(t) , g0(z) = z.

b(t) = hcap γt,
U(t) called the

driving function

Chordal Loewner Equation
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Radial Loewner Equation (one curve)
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! """""                  a simple curve starting on unit circle.γ : (0,T ] → 𝔻

gt⟶

z0 = e2iθ0 zt = e2iθt

γt

·gt(w) = 2a gt(w)
zt + gt(w)
zt − gt(w)

.

! Conformal mappings                            satisfy gt : 𝔻 ∖ γt → 𝔻

! Parameterized so that g′ t(0) = e2at .

Radial Loewner equation: (from a boundary point to 0)



Schramm-Loewner Evolution
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Dynamical interpretation

·gt(z) =
2a

gt(z) − Bt
, g0(z) = z .

• Chordal:

• Radial:

·gt(w) = 2a gt(w)
e2iBt + gt(w)
e2iBt − gt(w)

, g0(w) = w .

Results usually stated in terms of , where . κ a = 2/κ
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• Conformal invariance/covariance
• Idea: f (SLE in D) = SLE in f (D)
• Measures with total mass:

• Domain Markov property
• Idea: curve views its own past as part of the boundary

• Partition functions (i.e. total mass)

ΨD(z,0) = | f′ (z) |b | f′ (0) |b̃ Ψ f(D)( f(z),0) .

f ∘ μD(z,0) = | f′ (z) |b | f′ (0) |b̃ μ f(D)( f(z),0) .

SLE measure
on curves from z to 0 b =

6 − κ
2κ

b̃ =
b(1 − a)

2a
a = 2/κ

Configurational interpretation
Non-probability measures:

keep more information as we 
change the domain 

Schramm-Loewner Evolution



Schramm-Loewner Evolution

✤ Universal scaling limit of many
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Critical percolation: Oded Schramm ‘99

•  Loop-erased random walk

•  Critical Ising model

•  Uniform spanning tree

•  Critical percolation

discrete proceses, including:

✤ Today: use discrete models to build intuition

✤ We’ll look at loop-erased random walk to understand loop measures



Loop measure and LERW

γ

Κ

D\Κ How does the 
measure of γ in D 
compare to its 
measure in D\K?
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Loop-erased random walk:

z

w



Loop measure and LERW
Loop-erased random walk:

Need to reweight 
the measure by 
m{ℓ ∈ D : ℓ ∩ K ≠ ∅} .

How does the 
measure of γ in D 
compare to its 
measure in D\K?

LERW path carries 
measure of SRW 
loops that intersect 
γ and K. 

γ

Κ

D\Κ

ℓ

11z

w



Random Walk Loop Measure in 
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ℤ2

• Why this def? Limit = Brownian loop measure. (Want SLE results.)
[Lawler-Werner-Trujillo Ferreras]

• (Unrooted) loop measure: 

m(ℓ) =
K(ℓ)

|ℓ | ⋅ 4|ℓ|
.

                                                K(ℓ) = # of representatives of ℓ

Length of loop Prob. of a simple random 
walk making the loop 

• Brownian loop measure        on unrooted loops given by                mℂ

(duration 1 Brownian bridge) × (Area meas.) × ( 1
2πt2

dt)
Basepoint (i.e. root)Base loop time duration     root location          ×



Restriction
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• Want to study: SLE paths weighted by Brownian loop measure

- Need stochastic calculus to make sense of this

Measure on paths in D Measure on paths in D\K

• LERW • weight by m{ℓ ∈ D : ℓ ∩ K ≠ ∅}

Random walk loop measure

• SLEκ • weight by m{ℓ ∈ D : ℓ ∩ K ≠ ∅}

Brownian loop measure



Girsanov Theorem (stoch. calc.)
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Girsanov Theorem: (giving drift to Bt via change of measure)
• Bt Brownian motion under probability measure 
• Mt  a non-negative martingale wrt    , M0 = 1,

• Let 

ℙ .
ℙ

dMt = At Mt dBt .
dℙ̃t

dℙ
= Mt .

• Then Bt satisfies
dBt = At dt + dWt,

for Wt Brownian motion wrt ℙ̃ .

Application to SLE:

• SLEκ has driving function 

• new measure → new driving function.

κBt .

Idea: gives a way to 
condition on measure 0 

events.



Restriction property for radial SLEκ
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• γ radial SLEκ from 1 to 0 in    .

•                         simply connected

• Let

𝔻

Ψt =
ΨUt(γ(t),0)
ΨDt(γ(t),0)

.

Dt = 𝔻∖γt, Ut = U∖γt,

U = 𝔻∖K ⊂ 𝔻

γt = γ[0,t] .

• SLEκ in  is SLEκ in  “weighted locally” by    

• Find a local martingale  , where At is differentiable.

• Use Girsanov theorem.

U 𝔻 Ψt

Mt = AtΨt

Total mass of paths in Ut

Total mass of paths in Dt

• Can calculate: At = 1{γt ⊂ U}exp{ c
2

mD(γt, K)} . Proof: Jahangoshahi & Lawler ’18, 
earlier folklore?

Initial segment



Multiple Radial SLEκ
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• Radial Loewner equation: (from a boundary point to 0)

·gt(z) = 2a gt(z)
n

∑
j=1

zj
t + gt(z)

zj
t − gt(z)

• SLE = a measure on paths (with partition function).

• SLE also = a measure on parametrized curves with killing.

• Curves are growing: keep time parameter t

• Process up to a stopping time t < T.

• Paths killed, so not a probability measure:

• Total mass at time t = partition function Ψ𝔻∖γt
(γ(t),0) .

• Can use both “configurational” and “dynamical” information!

II. n-Radial SLE



Multiple Radial SLEκ
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• n curves in the disk from unit circle to origin.

• Procedure works for chordal case 

[Jahangoshahi & Lawler ’18]

Q: Use restriction to define multiple radial SLE?

• Grow all curves at the “same rate.” 
• Measure on parametrized curves, not just paths.

• Weight by loops that hit multiple curves



Multiple Radial SLEκ
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• n curves in the disk from unit circle to origin.

• Procedure works for chordal case 

[Jahangoshahi & Lawler ’18]

Q: Use restriction to define multiple radial SLE?

• Grow all curves at the “same rate.” 
• Measure on parametrized curves, not just paths.

• Weight by loops that hit multiple curves

• But in radial case, this measure is infinite! (tiny red loops)

• We’ll need to define it as a limit process.



SLEκ Results [H-Lawler, ’21]
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Setup

• n points on the unit circle:
zj

t = exp{2iθ j
t}, j = 1,…, n .

• Killing:                   stop process when any γ j
t ∩ γk

t ≠ ∅ .0 ≤ t ≤ T

e2iθ1

e2iθ2

e2iθn

γ1(T )

γ2(t)

γn(T )

• Define h by:

·ht(ζ) = a
n

∑
j=1

cot(ht(ζ) − θ j
t ) .

gt(e2iζ) = e2iht(ζ) .

Then



Loop notation setup
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• Define
ℒ̂t = ̂It exp{ c

2

n

∑
j=1

m𝔻 (L̂j
t)} .

• Denote the n-tuple of curves 

• Let  be the set of loops that hit  after hitting another .

γt = (γ1
t , …, γn

t )

L̂j
t = L̂j

t (γ) γ j
t γk

t

e2iθ1

e2iθ2

e2iθn

γ1(t)

γ2(t)

γn(t)
Indicator that curves 

don’t intersect
Brownian 

loop measure



Which loops?
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Locally independent SLE

Loops used for ℒ̂t

• At time t, each curve  sees 
the past of every other curve

• t-measurable loops

γ j
t

Loops used for ℒt

Truncation whose limit is 
global n-radial SLE

• Future loops also included

• Truncate by assuming one 
hit is before time t.



“Theorem” (Locally independent SLEκ) [H-Lawler ’21]: 

Locally Independent SLEκ
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for  independent Brownian motions.W1
t , …, Wn

t

Radial Bessel equation with parameter a = 2/κ 
generates locally independent SLEκ.

dθ j
t = a ∑

k:k≠j

cot(θ j
t − θk

t ) dt + dWj
t ,

a = 2/κ

If each of the n SLE curves grows as if in the domain D\γt, then the driving 
functions satisfy



Theorem (Locally independent SLEκ) [H-Lawler ’21]:
If γt ~ independent n-path SLEκ, then

Locally Independent SLEκ
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If      is defined byℙ*
dℙ*

dℙ
= Mt,

then
dθ j

t = a ∑
k:k≠j

cot(θ j
t − θk

t ) dt + dWj
t ,

is a local martingale for 

Mt = ℒ̂t Ψt exp{ − 2ab̃n(n − 1)t + ab∫
t

0
ϕ(θs)ds}

0 ≤ t ≤ T .

for                    independent Brownian motions under      . ℙ*W1
t , …, Wn

t

Radial Bessel equation with parameter a = 2/κ 
generates locally independent SLEκ.

b =
6 − κ

2κ

b̃ =
b(1 − a)

2a

a = 2/κ

ϕ(θt) =
n

∑
j=1

∑
k:k≠j

csc2(θ j − θk)

Ratio of part. functions

Loop term



Idea of Proof
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Can express  

•  is just the “j-version” of every term in :

• After tilting by , the curve  at time t is locally growing as SLE 
in  
• Reason for the name locally independent SLE

• Computation verifies local mart; Girsanov finishes the proof.

Mt =
n

∏
j=1

Mj
t

Mj
t Mt

Mj
t = Ij

t Ψj
t exp { c

2
m𝔻(L̂j

t)} exp ab∫
t

0
∑
k≠j

csc2(θ j
s − θk

s )ds

Mj
t γ j

Dt = 𝔻∖γt



• Drift strong enough to guarantee non-intersection of driving 
functions, but paths could collide.

•      doesn’t see any loops that hit in the future.

• Idea:      only “planning” to avoid past of other curves 

ℒ̂t

γ j
t

Locally independent SLEκ: In the measure      , the paths                  
locally grow like independent SLE in slit domain.
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ℙ*

• Driving functions satisfy

dθ j
t = a ∑

k:k≠j

cot(θ j
t − θk

t ) dt + dWj
t .

• Need to tilt again!

γ1
t , …, γn

t

Locally Independent SLEκ



Then as ,   converges in variation distance to a prob measure 
under which the driving functions satisfy

T → ∞ μT

dθ j
t = 2a ∑

k:k≠j

cot(θ j
t − θk

t ) dt + dŴ j
t ,

for                    independent Brownian motions. Ŵ1
t , …, Ŵn

t

Global n-radial SLEκ
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Theorem (Global n-radial SLEκ) [H-Lawler ’21]: 
Let t be fixed, and let  ~ independent n-path SLEκ.
For T > t, let  denote the measure on  whose Radon-Nikodym 
derivative with respect to     is

γt
μT = μT,t γt

ℙ
ℒT

𝔼θ0 [ℒT]

Radial Bessel equation with parameter 2a = 4/κ 
generates n-radial SLEκ.

.



Idea of Proof
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• Define martingale

• Tilting by  gives a prob measure  with 

• Define 

• This is a -martingale.
• Tilting by  and then by  gives .

Mt,α = ∏
1≤ j<k≤n

|sin(θk − θ j) |α exp { α2n(n2 − 1)
6

t} exp { α − α2

2 ∫
t

0
ψ(θs)ds}

Mt,α ℙα

dθ j
t = α ∑

k:k≠j

cot(θ j
t − θk

t ) dt + dWj
t .

Nt,α,2α = ∏
1≤ j<k≤n

|sin(θk − θ j) |α exp { α2n(n2 − 1)
2

t} exp {−
α(3α − 1)

2 ∫
t

0
ψ(θs)ds}

ℙα
Mt,α Nt,α,2α ℙ2α

Radial Bessel calculations:

Locally indep SLE 
if  α = a



Idea of Proof
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• On the other hand, the truncations we need are obtained by tilting 
by .

• Compute that
.

• Prove an exponential rate of convergence:
 .

• Compare with the previous calculation. 

Ñt,T = 𝔼θ0 [ℒT | γt]

Ñt,T = ℒ̂t Ψt 𝔼θt[ℒT−t]

𝔼θ0[ℒT] = e−2anβtℱa(θ)[1 + O(e−uT)]

□

Truncations



Open Questions

✤ How to unify loop-measure approach with PDE/pure partition 
function approach to multiple SLE?

✤ Take the number of curves to infinity? Use random matrix 
theory.
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e2iθ1

e2iθ2

e2iθn

γ1(t)

γ2(t)

γn(t)
Thank you!

✤ Understanding  (loop interp does not apply, but Bessel 
results do)

4 < κ < 8


