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Topic

Goal: combine dynamical and configurational interpretations of SLE to
understand multiple radial SLE (two kinds)

Today’s talk:
N-Sided Radial Schramm-Loewner Evolution (with Gregory F. Lawler).

Probab. Theory Relat. Fields 181, pages 451-488 (2021).
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Peltola, Wu ['19] oy aEon

Zhan ['18, '19]

Beffara, Peltola, Wu ['21] - This talk: k < 4



Main Result

Chordal case:
Known that multiple SLE is absolutely continuous w.r.t. n
independent SLEs (boundary perturbation property)

Obstacle for radial: want to do an analogous construction, but
(Radon-Nikodym derivative = o) x (partition function = 0) = ??

Short answer:
- Tilt independent n-radial SLE — locally independent SLE
- Tilt again and take a limit — global n-radial SLE

Main tools: Brownian loop measure, analysis of radial Bessel process

Main Result:
Radial Bessel/ Dyson BM naturally appears as the driving function!
(Different drift for locally independent vs. global)




[. Background
Loewner Equation & SLE
Interpretations: dynamical vs configurational
Loop measures
Loop-erased random walk
Restriction property and RW loop measure

Radial restriction property & Brownian loop measure

n-Radial SLE
Which loops?
Locally Independent n-radial SLE, connection to radial Bessel

(Global) n-radial SLE, connection to radial Bessel



I. Background
Chordal Loewner Equation

y : (0,T] - H simple curve, y(0) € R.

gt

C(t)
b(t) = hcap 4,

Composition property: g, o g(z) = g(2). LIte) allo it

driving function

Loewner (1920s): g satisfies

gt(z) e gt(z) - u(t)7 g()(Z) — Z.




Radial Loewner Equation (one curve)

Radial Loewner equation: (from a boundary point to 0)

*y:(0,7] —» D a simple curve starting on unit circle.

Z0=ei0 Zt:e t

* Conformal mappings g, : D \ y, —» D satisty

z,+ g (w)
7 — &(w) .

g t(W) = 2a g t(W)

> Parameterized so that g/(0) = e** .



Schramm-Loewner Evolution

Dynamical interpretation

- Chordal: )
£,(2) = . gy(2) = z.
: £/2) — B,
- Radial:
e2iBt L gt(w)

gw) = 2a g(w) gow) =w.

e%'8: — g(w) :

Results usually stated in terms of k, where a = 2/k.



Schramm-Loewner Evolution

Configurational interpretation

Conformal invariance/ covariance Non-probability measures:
Idea: f(SLE in D) = SLE in f(D) keep more information as we

change the domain

- Measures with total mass:

foup(z0) = 1F@ 1O | 110 f2.,0).

SLE measure

on curves from z to 0 L 6 —«k
Partition functions (i.e. total mass) b(21K .
: B
¥p(z0) = | f@°17©0)|° ¥ 15)(f(2).0) . .
a = K

Domain Markov property
Idea: curve views its own past as part of the boundary



Schramm-Loewner Evolution
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+ Universal scaling limit of many

Critical percolation: Oded Schramm ‘99

+ We’ll look at loop-erased random walk to understand loop measures

+ Today: use discrete models to build intuition



Loop measure and LERW

Loop-erased random walk:
W

+ D\ K How does the
4 measure of yin D

compare to 1ts
measure in D\ K?




Loop measure and LERW

Loop-erased random walk:
W

: ‘
* D\K How does the
4 measure of yin D

compare to 1ts
measure in D\ K?

LERW path carries
measure of SRW
loops that intersect
v and K.

Need to reweight
the measure by

mir e K% @




Random Walk Loop Measure in 7>

+ (Unrooted) loop measure:

-

B K(0)

K(¢) = # of representatives of ¢

7] 4171
Length of loop / K Prob. of a simple random

walk making the loop

- Why this def? Limit = Brownian loop measure. (Want SLE results.)

|Lawler-Werner-Trujillo Ferreras]

- Brownian loop measure mg on unrooted loops given by

1
(duration 1 Brownian bridge) X (Area meas.) X (— dt)

Dt?

f/ S . A\*\

Base loop Basepoint (i.e. root)

time duration X root location




Restriction

Measure on paths in D Measure on paths in D\ K
- LERW - weightby m{£ € D : £ nK # @}
=

Random walk loop measure

$ SIE - weightby m{# € D : £ nK # &}
>

Brownian loop measure

- Want to study: SLE paths weighted by Brownian loop measure

- Need stochastic calculus to make sense of this



Girsanov Theorem (stoch. calc.)

Girsanov Theorem: (giving drift to B; via change of measure)
B: Brownian motion under probability measure P .
 M; a non-negative martingale wrt P, Mp=1,

) dM, = A, M, dB,

i M, . Idea: gives a way to
condition on measure 0

Then B:; satisfies events.

dB, = A, dt + dW,

for W; Brownian motion wrt P.

Application to SLE:
SLE, has driving function /xB,.

new measure — new driving function.



Restriction property tor radial SLE

+ v radial SLE, from 1 to 0 in D.

VW | Initial segment

- U = D\K c D simply connected

- Let Dt — [D)\}/t, Ut = U\}/t’ /\
- ¥y (7(0.0) Total mass of paths in U,
o (r0).0) Total mass of paths in D;

- SLE.in Uis SLE. in D “weighted locally” by P,

=

- Find a local martingale M, = AY,, where A; is differentiable.

- Use Girsanov theorem.

earlier folklore?

C : : ,
3 Can Calculate: At -1 {}/t C U} exp { 5 mD(}/ta K)} : Proof: Jahangoshahi & Lawler 18,



II. n-Radial SLE

Multiple Radial SLE

Radial Loewner equation: (from a boundary point to 0)

z + 8/2)
— g4z)

8(2) = 2a () 2

SLE = a measure on paths (with partition function).

SLE also = a measure on parametrized curves with killing.
Curves are growing: keep time parameter ¢

Process up to a stopping time t < T.

Paths killed, so not a probability measure:

Total mass at time t = partition function ‘PD\yI(y(t),O) :

Can use both “configurational” and “dynamical” information!



Multiple Radial SLE

Q: Use restriction to define multiple radial SLE?
- n curves in the disk from unit circle to origin.

- Grow all curves at the “same rate.”

- Measure on parametrized curves, not just paths.

- Weight by loops that hit multiple curves

- Procedure works for chordal case

[Jahangoshahi & Lawler "18]



Multiple Radial SLE

Q: Use restriction to define multiple radial SLE?
n curves in the disk from unit circle to origin.

Grow all curves at the “same rate.”

- Measure on parametrized curves, not just paths.

- Weight by loops that hit multiple curves

Procedure works for chordal case

[Jahangoshahi & Lawler "18]

- But in radial case, this measure is infinite! (tiny red loops)

+ We’ll need to define it as a limit process.



SLE. Results [H-Lawler, '21]

Setup

- n points on the unit circle:

Z =exp{2itV}, j=1,..,n.

- Define h by:
g (%) = &)

Then

() =a ) cot(h(l) — 0.

=1

- Killing: 0 <t < T stop process when any ¥/ nyf # @.



Loop notation setup

Denote the n-tuple of curves y, = (;/tl, )

Let I:]t = lA/t (y) be the set of loops that hit }/{ after hitting another y~.

Define
A A C A

2 =1 exp{a Z mp, (Lft)} :

Indicator that curves Brownian

don’t intersect loop measure




Which loops?

Locally independent SLE

Loops used for % .

At time ¢, each curve y{ sees
the past of every other curve

t-measurable loops

Truncation whose limit is
global n-radial SLE

Loops used for &,

Future loops also included

Truncate by assuming one
hit is before time ¢.



Locally Independent SLE,

“Theorem” (Locally independent SLE,) [H-Lawler "21]:
If each of the n SLE curves grows as if in the domain D\ y; then the driving

functions satisty

dol =a Y cot(@) — 6F)dt + dW, a =2k
for th, ..., W/ independent Brownian motions.

Radial Bessel equation with parameter a =2/«
generates locally independent SLE..




Locally Independent SLE,

Theorem (Locally independent SLE,) [H-Lawler '21]:
If y: ~ independent n-path SLE,, then

Loop term /\,\' - ‘
M=%, exp{ _ 2abn(n - 1)t + abJ qﬁ(@s)ds}

0. N

is a local martingale for 0 <t <T. ;
P, = 2 2 cscX(@) — 05

If P. is defined by P o

dP.

—
dP . .
Ratio of part. functions
then
ol =a ) cot(®! — 0N dt +dW.,
kik a=2/k

for W\, ..., w" independent Brownian motions under P.. . L

Radial Bessel equation with parameter a =2/«
generates locally independent SLE.. 2a




Idea of Proof

n
Can express M, = HM{
| j=I
- M! is just the “j-version” of every term in M;:

[
M{ — I{ ‘Pft exp {%m[@(ift’)} exp {abJ Z 0802(6’{: — Hf)ds}
Uiy
- After tilting by M{, the curve y/ at time ¢ is locally growing as SLE
in D, = D\y,
- Reason for the name locally independent SLE

- Computation verifies local mart; Girsanov finishes the proof.



Locally Independent SLE,

n

Locally independent SLE,: In the measure P., the paths y!,....7]
locally grow like independent SLE in slit domain.

- Driving functions satisty

dol=a ) cot(®) — 0N dt+dW!.
k:k#j
- Drift strong enough to guarantee non-intersection of driving
functions, but paths could collide.

. <, doesn’t see any loops that hit in the future.

- Idea: ¥/ only “planning” to avoid past of other curves

- Need to tilt again!



Global n-radial SLE-

Theorem (Global n-radial SLE,) [H-Lawler "21]:
Let t be fixed, and let y, ~ independent n-path SLE,.
For T > t, let yu = pur, denote the measure on y, whose Radon-Nikodym

derivative with respect to P is
27
E% |2,
Then as T — oo, u,converges in variation distance to a prob measure
under which the driving functions satisfy

do] =2a ) cot(®) — 05 dt + dW,

k:k#j
for W, ..., W independent Brownian motions.

Radial Bessel equation with parameter 2a =4/«
generates n-radial SLE.




Idea of Proof

Radial Bessel calculations:

- Define martingale

. L a’n(n? —1) a—a |
M, , = H | sin(0% — &) | exp{ 7 t pexp 5 [ w(0,)ds

1<j<k<n

- Tilting by M, , gives a prob measure P, with

Locally indep SLE

d0i=a ¥y co(@ —ydt+dWi. —— o

k:k#j
- Define
. 2 2_1 3 _1 !
o= T 1sn@—0Pespd 222 =D L oy EOC )waods
- , 2 il
1<j<k<n

- This is a P ,-martingale.

. Tilting by M, , and then by N, , ,, gives P,,.



Idea of Proof

Truncations

- On the other hand, the truncations we need are obtained by tilting
by N = E% [, | 7,

- Compute that
N = B

- Prove an exponential rate of convergence:

E%[ L] = e ?P'F @)1 + O(e™*T)] .

- Compare with the previous calculation. o



Open Questions

+ Understanding 4 < k < 8 (loop interp does not apply, but Bessel
results do)

+ Take the number of curves to infinity? Use random matrix
theory.

+ How to unify loop-measure approach with PDE /pure partition
function approach to multiple SLE?

Thank you!




