Crossing Probabilities in 2D Critical Lattice Models

Hao Wu

Tsinghua University, China

2022. 1. 19

Based on joint works with

- Vincent Beffara (CNRS)
- Jian Ding (University of Pennsylvania)
- Yong Han (Shenzhen University)
- Mingchang Liu (Tsinghua University)
- Eveliina Peltola (University of Bonn, Aalto University)
- Mateo Wirth (University of Pennsylvania)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Background : Ising model
- Crossing probabilities
- GFF and metric graph GFF
- Uniform spanning tree

イロト イヨト イヨト イヨト

Table of contents

Background : Ising model

2 Crossing probabilities

GFF and metric graph GFF

Uniform spanning tree

イロト イヨト イヨト イヨト

Ising Model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

• G = (V, E) a finite graph

•
$$\sigma \in \{\ominus, \oplus\}^V$$

•
$$H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$$

Ising model is the probability measure of inverse temperature $\beta > 0$:

 $\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Ising Model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

• G = (V, E) a finite graph

•
$$\sigma \in \{\ominus, \oplus\}^{V}$$

•
$$H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$$

Ising model is the probability measure of inverse temperature $\beta > 0$:

$$\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$$

- $\beta \approx \beta_c$: critical
- $\beta < \beta_{\rm C}$: chaotic

・ロト ・回ト ・ヨト ・ヨト

Question

Critical phase?

・ロト ・回ト ・ヨト ・ヨト

Conformal Invariance of Interfaces

イロト イヨト イヨト イヨト

Conformal Invariance of Interfaces

イロト イヨト イヨト イヨト

Hao Wu (THU)

2022. 1. 19 6/31

Conformal Invariance of Interfaces

Stanislav Smirnov

Theorem [Chelkak-Smirnov et al. Invent. 2012]

The interface in critical Ising model on \mathbb{Z}^2 with Dobrushin boundary conditions converges weakly to SLE₃.

Conformal Invariance in 2D Lattice Model

Loop-erased random walk (LERW) SLE₂ : [Lawler-Schramm-Werner, AOP 2004]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) SLE₂ : [Lawler-Schramm-Werner, AOP 2004]
- Ising model SLE₃ : [Chelkak-Smirnov et al. Invent. 2012]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) SLE₂ : [Lawler-Schramm-Werner, AOP 2004]
- Ising model SLE₃ : [Chelkak-Smirnov et al. Invent. 2012]
- Level lines of GFF SLE₄ : [Schramm-Sheffield, ACTA 2009]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) SLE₂ : [Lawler-Schramm-Werner, AOP 2004]
- Ising model SLE₃ : [Chelkak-Smirnov et al. Invent. 2012]
- Level lines of GFF SLE₄ : [Schramm-Sheffield, ACTA 2009]
- FK-Ising model SLE_{16/3}: [Chelkak-Smirnov et al. Invent. 2012]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) SLE₂ : [Lawler-Schramm-Werner, AOP 2004]
- Ising model SLE₃ : [Chelkak-Smirnov et al. Invent. 2012]
- Level lines of GFF SLE₄ : [Schramm-Sheffield, ACTA 2009]
- FK-Ising model SLE_{16/3} : [Chelkak-Smirnov et al. Invent. 2012]
- Percolation SLE₆ : [Smirnov 2001]

2022. 1. 19 7/31

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) SLE₂ : [Lawler-Schramm-Werner, AOP 2004]
- Ising model SLE₃ : [Chelkak-Smirnov et al. Invent. 2012]
- Level lines of GFF SLE₄ : [Schramm-Sheffield, ACTA 2009]
- FK-Ising model SLE_{16/3} : [Chelkak-Smirnov et al. Invent. 2012]
- Percolation SLE₆ : [Smirnov 2001]
- Uniform spanning tree (UST) SLE₈ : [Lawler-Schramm-Werner, AOP 2004]

2022. 1. 19 7/31

Table of contents

Background : Ising model

Crossing probabilities

GFF and metric graph GFF

Uniform spanning tree

Hao Wu (THU)

イロト イヨト イヨト イヨト

Crossing probabilities

Theorem [Peltola-W. 2018]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{Z_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

Image: Image:

Crossing probabilities

Theorem [Peltola-W. 2018]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

- Partially conjectured in [Bauer-Bernard-Kytölä, JSP 2005].
- Partially solved in [Izyurov, CMP 2015].

Hao Wu (THU)

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in LP\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{split} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{(6 - \kappa)/\kappa}{(x_j - x_i)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\hat{\alpha}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{split}$$

ヘロト ヘロト ヘヨト ヘヨト

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in LP\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{aligned} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{(6 - \kappa)/\kappa}{(x_j - x_i)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\hat{\alpha}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{aligned}$$

Questions

Existence? Uniqueness?

イロト イヨト イヨト イヨト

Pure Partition Functions : Uniqueness and Existence

Uniqueness [Flores-Kleban, CMP 2015]

Fix $\kappa \in (0, 8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Pure Partition Functions : Uniqueness and Existence

Uniqueness [Flores-Kleban, CMP 2015]

Fix $\kappa \in (0, 8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Existence

- $\kappa \in (0, 8) \setminus \mathbb{Q}$ [Kytölä-Peltola, CMP 2016]
- $\kappa \in (0, 4]$ [Peltola-W. CMP 2019, Beffara-Peltola-W. AOP 2021]
- *κ* ∈ (0, 6] [W. CMP 2020]

- Coulumb gas techniques
- Global multiple SLEs
- Hypergeometric SLE

・ロト ・同ト ・ヨト ・ヨ

Crossing Probabilities of Ising Interfaces

Theorem [Peltola-W. 2018]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

$$\mathcal{Z}_{lsing}(\mathbb{H}; x_1, \ldots, x_{2N}) = Pf\left((x_j - x_i)^{-1}\right)_{\substack{i, j = 1 \\ j, j = 1}}^{2N} \cdot \frac{1}{2N}$$

• Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019] \checkmark

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019] \checkmark
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. 2018] \checkmark

イロト イヨト イヨト イヨト

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019] \checkmark
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. 2018] \checkmark
- Multiple level lines of GFF : $\kappa = 4$.
 - GFF [Peltola-W. CMP 2019] √
 - metric graph GFF [Ding-Wirth-W. AIHP 2022+, Liu-W. EJP 2021] *

(日)

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019] \checkmark
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. 2018] \checkmark
- Multiple level lines of GFF : $\kappa = 4$.
 - GFF [Peltola-W. CMP 2019] √
 - metric graph GFF [Ding-Wirth-W. AIHP 2022+, Liu-W. EJP 2021] ★
- Multiple FK-Ising interfaces : $\kappa = 16/3$. In progress. \star

(日)

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019] \checkmark
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. 2018] \checkmark
- Multiple level lines of GFF : $\kappa = 4$.
 - GFF [Peltola-W. CMP 2019] √
 - metric graph GFF [Ding-Wirth-W. AIHP 2022+, Liu-W. EJP 2021] *
- Multiple FK-Ising interfaces : $\kappa = 16/3$. In progress. \star
- Multiple percolation interfaces : $\kappa = 6$. [Liu-Peltola-W. 2021] \checkmark

(日)

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP 2019] \checkmark
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. 2018] \checkmark
- Multiple level lines of GFF : $\kappa = 4$.
 - GFF [Peltola-W. CMP 2019] √
 - metric graph GFF [Ding-Wirth-W. AIHP 2022+, Liu-W. EJP 2021] *
- Multiple FK-Ising interfaces : $\kappa = 16/3$. In progress. \star
- Multiple percolation interfaces : $\kappa = 6$. [Liu-Peltola-W. 2021] \checkmark
- Multiple Peano curves in UST : κ = 8. [Han-Liu-W. 2020], [Liu-Peltola-W. 2021], [Liu-W. 2021] ★

Table of contents

Background : Ising model

Crossing probabilities

GFF and metric graph GFF

4 Uniform spanning tree

(日) (日) (日) (日) (日)

dGFF (Discrete Gaussian Free Field)

dGFF with mean zero :

a measure Γ on functions $\rho: D \to \mathbb{R}$ and $\rho = 0$ on ∂D with density

$$\frac{1}{\mathcal{Z}}\exp(-\frac{1}{2}\sum_{x\sim y}(\rho(x)-\rho(y))^2).$$

- For each vertex x, $\Gamma(x)$ Gaussian random variable
- Covariance : Green's function for SRW
- Mean value : zero.

dGFF with mean Γ_∂ :

dGFF with mean zero plus a harmonic function Γ_{∂} .

- For each vertex x, let $\Gamma(x)$ be a Gaussian random variable
- Covariance : Green's function for SRW
- Mean value : $\Gamma_{\partial}(x)$

イロト イポト イヨト イヨト

Level lines of dGFF

[Schramm-Sheffield, ACTA 2009]

- dGFF with boundary value $+\lambda$ on \mathbb{R}_+ and $-\lambda$ on \mathbb{R}_-
- γ^{δ} : the level line of dGFF with height zero
- γ^{δ} converges in distribution to SLE₄ as δ goes to zero

Level lines of dGFF

[Schramm-Sheffield, ACTA 2009]

- dGFF with boundary value $+\lambda$ on \mathbb{R}_+ and $-\lambda$ on \mathbb{R}_-
- γ^{δ} : the level line of dGFF with height zero
- γ^{δ} converges in distribution to SLE₄ as δ goes to zero

Image: A matrix

 $\bullet \ \rightarrow SLE_4$ is the "level line" of GFF with height zero

• 2N marked points

N level lines

Theorem [Peltola-W. CMP 2019]

The connection of level lines of GFF forms a planar link pattern \mathcal{A} :

$$\mathbb{P}[\mathcal{A} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{\mathsf{GFF}}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{\mathsf{GFF}} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha} : \alpha \in \mathsf{LP}_N\}$ is the pure partition functions for multiple SLE_4 .

dGFF with mean Γ_∂ :

- For each vertex x, let $\Gamma(x)$ be a Gaussian random variable
- Covariance : Green's function for SRW
- Mean value : $\Gamma_{\partial}(x)$

イロト イヨト イヨト イヨト

dGFF with mean Γ_∂ :

- For each vertex x, let $\Gamma(x)$ be a Gaussian random variable
- Covariance : Green's function for SRW
- Mean value : $\Gamma_{\partial}(x)$

Metric graph GFF (mGFF) with mean Γ_{∂} :

- Graph $\mathcal{G} = (V, E) \longrightarrow$ metric graph $\tilde{\mathcal{G}}$
- For each point $x \in \tilde{\mathcal{G}}$, let $\tilde{\Gamma}(x)$ be a Gaussian random variable
- Covariance : Green's function for BM on $\tilde{\mathcal{G}}$
- Mean value : $\Gamma_{\partial}(x)$.

dGFF with mean Γ_∂ :

- For each vertex x, let $\Gamma(x)$ be a Gaussian random variable
- Covariance : Green's function for SRW
- Mean value : $\Gamma_{\partial}(x)$

Metric graph GFF (mGFF) with mean Γ_∂ :

- Graph $\mathcal{G} = (V, E) \longrightarrow$ metric graph $\tilde{\mathcal{G}}$
- For each point $x \in \tilde{\mathcal{G}}$, let $\tilde{\Gamma}(x)$ be a Gaussian random variable
- Covariance : Green's function for BM on $\tilde{\mathcal{G}}$
- Mean value : $\Gamma_{\partial}(x)$.

dGFF and mGFF

Given dGFF ($\Gamma(x), x \in V$), mGFF $\tilde{\Gamma} : \Gamma$ + Brownian bridges.

dGFF with mean Γ_∂ :

- For each vertex x, let $\Gamma(x)$ be a Gaussian random variable
- Covariance : Green's function for SRW
- Mean value : $\Gamma_{\partial}(x)$

Metric graph GFF (mGFF) with mean Γ_∂ :

- Graph $\mathcal{G} = (V, E) \longrightarrow$ metric graph $\tilde{\mathcal{G}}$
- For each point $x \in \tilde{\mathcal{G}}$, let $\tilde{\Gamma}(x)$ be a Gaussian random variable
- Covariance : Green's function for BM on $\tilde{\mathcal{G}}$
- Mean value : $\Gamma_{\partial}(x)$.

イロト イヨト イヨト

dGFF and mGFF

Given dGFF ($\Gamma(x), x \in V$), mGFF $\tilde{\Gamma} : \Gamma$ + Brownian bridges.

dGFF and mGFF

```
\mathsf{dGFF} \longrightarrow \mathsf{GFF}, \quad \mathsf{mGFF} \longrightarrow \mathsf{GFF}
```


Discrete GFF

• $\exists c_d = c_d(L, \mu) \in (0, 1)$ $\mathbb{P}\left[(y_1^{\delta} y_2^{\delta}) \stackrel{\Gamma^{\delta} \ge 0}{\longleftrightarrow} (y_3^{\delta} y_4^{\delta}) \right] \in (c_d, 1 - c_d).$

Metric graph GFF

•
$$\exists c_m = c_m(L,\mu) \in (0,1)$$

 $\mathbb{P}\left[(y_1^{\delta}y_2^{\delta}) \stackrel{\tilde{\Gamma}^{\delta} \ge 0}{\longleftrightarrow} (y_3^{\delta}y_4^{\delta})\right] \in (c_m, 1-c_m).$

イロト イヨト イヨト イヨト

Discrete GFF

Metric graph GFF

•
$$\exists c_d = c_d(L,\mu) \in (0,1)$$

 $\mathbb{P}\left[(y_1^{\delta} y_2^{\delta}) \stackrel{\Gamma^{\delta} \ge 0}{\longleftrightarrow} (y_3^{\delta} y_4^{\delta})\right] \in (c_d, 1-c_d).$
• $\exists c_m = c_m(L,\mu) \in (0,1)$
 $\mathbb{P}\left[(y_1^{\delta} y_2^{\delta}) \stackrel{\tilde{\Gamma}^{\delta} \ge 0}{\longleftrightarrow} (y_3^{\delta} y_4^{\delta})\right] \in (c_m, 1-c_m).$

Theorem [Ding-Wirth-W. AIHP 2022+]

$$\exists c = c(L,\mu) > 0, \quad \mathbb{P}\left[(y_1y_2) \stackrel{\Gamma^{\delta} \ge 0}{\longleftrightarrow} (y_3y_4) \right] - \mathbb{P}\left[(y_1y_2) \stackrel{\tilde{\Gamma}^{\delta} \ge 0}{\longleftrightarrow} (y_3y_4) \right] \ge c.$$

イロト イヨト イヨト イヨト

GFF and metric graph GFF

Crossing probability in dGFF and mGFF

Theorem [Ding-Wirth-W. AIHP 2022+]

$$\exists c = c(L,\mu) > 0, \quad \mathbb{P}\left[(y_1y_2) \stackrel{\Gamma^{\delta} \ge 0}{\longleftrightarrow} (y_3y_4)\right] - \mathbb{P}\left[(y_1y_2) \stackrel{\tilde{\Gamma}^{\delta} \ge 0}{\longleftrightarrow} (y_3y_4)\right] \ge c.$$

• = • •

Question : why?

Question : why?

• Crossing event is not preserved in the cvg of distributions

Question : why?

- Crossing event is not preserved in the cvg of distributions
- Cluster in dGFF is bigger than the one in mGFF [Lupu, AOP 2016]

Question : why?

- Crossing event is not preserved in the cvg of distributions
- Cluster in dGFF is bigger than the one in mGFF [Lupu, AOP 2016]
- Entropic repulsion [Ding-Wirth-W. AIHP 2022+]

Question : why?

- Crossing event is not preserved in the cvg of distributions
- Cluster in dGFF is bigger than the one in mGFF [Lupu, AOP 2016]
- Entropic repulsion [Ding-Wirth-W. AIHP 2022+]

Question : what are the limits?

Question : why?

- Crossing event is not preserved in the cvg of distributions
- Cluster in dGFF is bigger than the one in mGFF [Lupu, AOP 2016]
- Entropic repulsion [Ding-Wirth-W. AIHP 2022+]

Question : what are the limits?

• dGFF, if
$$\mu = \lambda$$
, we have $\lim_{\delta \to 0} \mathbb{P}\left[(y_1y_2) \stackrel{\Gamma^{\delta} \ge 0}{\longleftrightarrow} (y_3y_4) \right] = q$.

Question : why?

- Crossing event is not preserved in the cvg of distributions
- Cluster in dGFF is bigger than the one in mGFF [Lupu, AOP 2016]
- Entropic repulsion [Ding-Wirth-W. AIHP 2022+]

Question : what are the limits?

• dGFF, if
$$\mu = \lambda$$
, we have $\lim_{\delta \to 0} \mathbb{P}\left[(y_1 y_2) \stackrel{\Gamma^{\delta} \ge 0}{\longleftrightarrow} (y_3 y_4) \right] = q$.
• mGFF, if $\mu = 2\lambda$, we have $\lim_{\delta \to 0} \mathbb{P}\left[(y_1 y_2) \stackrel{\tilde{\Gamma}^{\delta} \ge 0}{\longleftrightarrow} (y_3 y_4) \right] = q^4$.

Connection Probabilities in mGFF

Theorem [Liu-W. EJP 2021]

The connection probabilities in mGFF are given by

$$\lim_{\delta} \mathbb{P}[\mathcal{A}^{\delta} = \hat{\alpha}] = \mathcal{M}_{\omega,\tau(\hat{\alpha})} \frac{\mathcal{Z}_{\hat{\alpha}}(\Omega; y_1, \dots, y_{2N})}{\mathcal{Z}_{\mathsf{mGFF}}(\Omega; y_1, \dots, y_{2N})},$$

where $\mathcal{M}_{\omega,\tau(\hat{\alpha})}$ is certain coefficient and $\mathcal{Z}_{\hat{\alpha}}$ is "fusion" of pure partition function \mathcal{Z}_{α} .

Fusion of partition functions

Pure partition functions

$$\mathsf{PDE}: \left[\partial_i^2 + \sum_{j \neq i} \left(\frac{1}{x_j - x_i} \partial_j - \frac{1/4}{(x_j - x_i)^2}\right)\right] \mathcal{Z}_{\alpha}(x_1, \dots, x_{2N}) = 0.$$

$$\mathcal{Z}_{\hat{\alpha}}(y_1,\ldots,y_{2N}) = \lim_{\substack{x_{2j-1},x_{2j} \to y_j \\ \forall 1 \le j \le 2N}} \frac{\mathcal{Z}_{\alpha}(x_1,\ldots,x_{4N})}{\sqrt{\prod_{1 \le j \le 2N} (x_{2j} - x_{2j-1})}}$$

Fusion of pure partition functions

$$\begin{aligned} \mathsf{PDE} &: \left[\partial_i^3 - 4\mathcal{L}_{-2}^{(i)}\partial_i + 2\mathcal{L}_{-3}^{(i)}\right] \mathcal{Z}_{\hat{\alpha}}(y_1, \dots, y_{2N}) = 0, \\ \mathcal{L}_{-2}^{(i)} &:= \sum_{j \neq i} \left(\frac{1}{(y_j - y_i)^2} - \frac{1}{y_j - y_i}\partial_j\right), \quad \mathcal{L}_{-3}^{(i)} &:= \sum_{j \neq i} \left(\frac{2}{(y_j - y_i)^3} - \frac{1}{(y_j - y_i)^2}\partial_j\right). \end{aligned}$$

Hao Wu (THU)

Table of contents

Background : Ising model

2 Crossing probabilities

3 GFF and metric graph GFF

Uniform spanning tree

Hao Wu (THU)

(日) (日) (日) (日) (日)

Pure Partition Functions

 $\{\mathcal{Z}_{\alpha} : \alpha \in \mathsf{LP}\}\$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{split} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_j} \partial_j - \frac{(6 - \kappa) / \kappa}{(x_j - x_j)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{i+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{split}$$

イロト イヨト イヨト イヨト

Pure Partition Functions

 $\{\mathcal{Z}_{\alpha} : \alpha \in \mathsf{LP}\}\$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{split} & \mathsf{PDE} : \left[\frac{\kappa}{2} \, \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_j} \partial_j - \frac{(6 - \kappa)/\kappa}{(x_j - x_j)^2} \right) \right] \, \mathcal{Z}(x_1, \ldots, x_{2N}) = 0. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \ldots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \ldots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \ldots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\hat{\alpha}}(x_1, \ldots, x_{j-1}, x_{j+2}, \ldots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{split}$$

Uniqueness

Uniqueness for $\kappa \in (0, 8)$: [Flores-Kleban, CMP 2015]

Existence

- Existence for $\kappa \in (0, 8) \setminus \mathbb{Q}$: [Kytölä-Peltola, CMP 2016]
- Existence for $\kappa \in (0, 4]$: [Peltola-W. CMP 2019, Beffara-Peltola-W. AOP 2021]
- Existence for κ ∈ (0, 6] : [W. CMP 2020]
- Existence conjectured for κ ∈ (6,8) : see e.g. [Peltola, JMP 2019]

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Pure Partition Functions

 $\{\mathcal{Z}_{\alpha} : \alpha \in \mathsf{LP}\}\$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{split} & \mathsf{PDE} : \left[\frac{\kappa}{2} \, \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{(6 - \kappa)/\kappa}{(x_j - x_j)^2} \right) \right] \, \mathcal{Z}(x_1, \ldots, x_{2N}) = 0. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \ldots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \ldots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{i \neq j} x_{j+1} \rightarrow \xi \, \frac{\mathcal{Z}_{\alpha}(x_1, \ldots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\hat{\alpha}}(x_1, \ldots, x_{j-1}, x_{j+2}, \ldots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{split}$$

Uniqueness

Uniqueness for $\kappa \in (0, 8)$: [Flores-Kleban, CMP 2015]

Existence

- Existence for κ ∈ (0,8) \ Q : [Kytölä-Peltola, CMP 2016]
- Existence for $\kappa \in (0, 4]$: [Peltola-W. CMP 2019, Beffara-Peltola-W. AOP 2021]
- Existence for κ ∈ (0, 6] : [W. CMP 2020]
- Existence conjectured for $\kappa \in (6, 8)$: see e.g. [Peltola, JMP 2019]

Question : What about $\kappa = 8$?

Uniform spanning tree

- G = (V, E): a finite connected graph.
- A tree is a subgraph of *G* without loops.
- A spanning tree is a tree that covers all the vertices.
- UST : uniform spanning tree.
- UST in topological polygon and Peano curves

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Uniform spanning tree

- G = (V, E): a finite connected graph.
- A tree is a subgraph of *G* without loops.
- A spanning tree is a tree that covers all the vertices.
- UST : uniform spanning tree.
- UST in topological polygon and Peano curves

Theorem [Lawler-Schramm-Werner, AOP 2004]

The Peano curve in UST with Dobrushin boundary conditions converges weakly to SLE₈.

Uniform spanning tree

<ロ> <同> <同> < 同> < 同>

Uniform spanning tree in polygons

boundary conditions :

 $\beta = \{\{1,2\},\{3,8\},\{4,7\},\{5,6\}\}$

possible link patterns :

$$\begin{aligned} &\alpha_1 = \{\{1,8\},\{2,7\},\{3,6\},\{4,5\}\} \\ &\alpha_2 = \{\{1,8\},\{2,5\},\{3,4\},\{6,7\}\} \\ &\alpha_3 = \{\{1,6\},\{2,3\},\{4,5\},\{7,8\}\} \\ &\alpha_4 = \{\{1,4\},\{2,3\},\{5,8\},\{6,7\}\} \end{aligned}$$

the (renormalized) meander matrix

$$\mathcal{M}_{\alpha,\beta} = 1$$

Hao Wu (THU)

Uniform spanning tree in polygons

Theorem [Liu-Peltola-W. 2021]

Consider UST in polygon $(\Omega; x_1, \ldots, x_{2N})$ with boundary conditions $\beta \in LP_N$. The connection of Peano curves forms a planar link pattern \mathcal{A}_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \mathcal{M}_{\alpha,\beta} \frac{\mathcal{Z}_{\alpha}(\Omega; x_{1}, \dots, x_{2N})}{\mathcal{F}_{\beta}(\Omega; x_{1}, \dots, x_{2N})}$$

where $\{\mathcal{F}_{\beta} : \beta \in LP_N\}$ is a collection of Coulomb gas integrals, $\{\mathcal{M}_{\alpha,\beta} : \alpha, \beta \in LP_N\}$ is the (renormalized) meander matrix, and $\mathcal{Z}_{\alpha} = \sum_{\gamma} \mathcal{M}_{\alpha,\gamma}^{-1} \mathcal{F}_{\gamma}$.

Previous results : [Kenyon-Wilson, Trans. AMS 2011], [Dubédat, JSP 2006]

Uniform spanning tree in polygons

Theorem [Liu-Peltola-W. 2021]

Consider UST in polygon $(\Omega; x_1, \ldots, x_{2N})$ with boundary conditions $\beta \in LP_N$. The connection of Peano curves forms a planar link pattern \mathcal{A}_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \mathcal{M}_{\alpha,\beta} \frac{\mathcal{Z}_{\alpha}(\Omega; x_{1}, \dots, x_{2N})}{\mathcal{F}_{\beta}(\Omega; x_{1}, \dots, x_{2N})}$$

where $\{\mathcal{F}_{\beta} : \beta \in LP_N\}$ is a collection of Coulomb gas integrals, $\{\mathcal{M}_{\alpha,\beta} : \alpha, \beta \in LP_N\}$ is the (renormalized) meander matrix, and $\mathcal{Z}_{\alpha} = \sum_{\gamma} \mathcal{M}_{\alpha,\gamma}^{-1} \mathcal{F}_{\gamma}$.

Previous results : [Kenyon-Wilson, Trans. AMS 2011], [Dubédat, JSP 2006] Difficulty : proper observable

Hao Wu (THU)

Coulomb gas integrals

Boundary conditions :

 $\beta = \{\{a_1, b_1\}, \{a_2, b_2\}, \dots, \{a_N, b_N\}\} \in \mathsf{LP}_N$ with link endpoints ordered as $a_1 < a_2 < \dots < a_N$ and $a_r < b_r$ for all $1 \le r \le N$, Coulomb gas integrals : suppose $x_1 < \dots < x_{2N}$,

$$\mathcal{F}_{\beta}(x_1,\ldots,x_{2N}) := \prod_{1 \le i < j \le 2N} (x_j - x_i)^{1/4} \int_{x_{a_1}}^{x_{b_1}} \cdots \int_{x_{a_N}}^{x_{b_N}} \prod_{1 \le r < s \le N} (u_s - u_r) \prod_{r=1}^N \frac{\mathrm{d}u_r}{\prod_{k=1}^{2N} (u_r - x_k)^{1/2}},$$

where the branch of the multivalued integrand is chosen to be real and positive when

$$x_{a_r} < u_r < x_{a_r+1}$$
 for all $1 \le r \le N$.

Theorem [Liu-Peltola-W. 2021]

• \mathcal{F}_{β} satisfies PDE. • \mathcal{F}_{β} satisfies COV. • \mathcal{F}_{β} is POS. • \mathcal{F}_{β} satisfies ASY.

$$\lim_{x_{j}, x_{j+1} \to \xi} \frac{\mathcal{F}_{\beta}(x_{1}, \dots, x_{2N})}{(x_{j+1} - x_{j})^{1/4}} = \pi \mathcal{F}_{\beta/\{j, j+1\}}(x_{1}, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), \qquad \text{if } \{j, j+1\} \in \beta;$$

$$\lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{F}_{\beta}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{1/4} |\log(x_{j+1} - x_j)|} = \mathcal{F}_{\wp_j(\beta)/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), \quad \text{if } \{j, j+1\} \not\in \beta.$$

...

Uniform spanning tree and log-CFT

Theorem [Liu-Peltola-W. 2021]

• \mathcal{F}_{β} satisfies PDE. • \mathcal{F}_{β} satisfies COV. • \mathcal{F}_{β} is POS. • \mathcal{F}_{β} satisfies ASY.

$$\lim_{x_{j,x_{j+1}\to\xi}} \frac{\mathcal{F}_{\beta}(x_1,\ldots,x_{2N})}{(x_{j+1}-x_j)^{1/4}} = \pi \mathcal{F}_{\beta/\{j,j+1\}}(x_1,\ldots,x_{j-1},x_{j+2},\ldots,x_{2N}), \qquad \text{if } \{j,j+1\} \in \beta;$$

 $\lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{F}_{\beta}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{1/4} |\log(x_{j+1} - x_j)|} = \mathcal{F}_{\wp_j(\beta)/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), \quad \text{if } \{j, j+1\} \not\in \beta.$

J. Cardy. J. Phys. A. 46 :49, 31 pp, 2013 :

which is in general non-unitary. The case Q = 1 corresponds to bond percolation, for which the partition function Z = 1, so in this case we expect the scaling limit to be a logCFT, although other values of Q (-2, corresponding to uniform spanning trees, and +2, corresponding to the extended Ising model) also turn out to be logarithmic.

- V. Gurarie. Logarithmic operators in conformal field theory. Nucl. Phys. B,1993.
- M. Gaberdiel, H. Kausch. Indecomposable fusion products. Nucl. Phys. B,1996.
- H. Kausch. Symplectic fermions. Nucl. Phys. B, 2000.
- P.Pearce, J. Rasmussen. Solvable critical dense polymers. J. Stat. Mech., 2007
- We provide a rigorous result towards a log-CFT description of the scaling limit of the UST : c = -2.

Thanks!

- Peltola-W. Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF. *Comm. Math. Phys.* 366(2) : 469-536, 2019.
- W. Hypergeometric SLE : conformal Markov characterization and applications Comm. Math. Phys. 374(2) : 433-484, 2020.
- Beffara-Peltola-W. On the uniqueness of global multiple SLEs Ann. Probab. 49(1): 400-434, 2021.
- Liu-W. Scaling limits of crossing probabilities in metric graph GFF Electron. J. Probab. 26 : article no. 37, 1-46, 2021.
- Ding-Wirth-W. Crossing estimates from metric graph and discrete GFF Ann. Inst. H. Poincaré Probab. Statist. 2022+.
- Peltola-W. Crossing probabilities of multiple Ising interfaces arXiv:1808.09438. 2018
- **()** Han-Liu-W. Hypergeometric SLE with $\kappa = 8$: convergence of UST and LERW in topological rectangles. arxiv:2008.00403. 2020.
- **3** Liu-Peltola-W. Uniform spanning tree in topological polygons, partition functions for SLE(8), and correlations in c = -2 logarithm CFT. arXiv:2108.04421. 2021.
- Liu-W. Loop-erased random walk branch of uniform spanning tree in topological polygons. arXiv:2108.10500. 2021.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ●