Characterising the Gaussian free field Connections Workshop, MSRI, 20th January 2022

Ellen Powell, Durham University. Based on joint work with Juhan Aru, Nathanaël Berestycki and Gourab Ray.

Gaussian free fieldDefinition

(With 0 boundary conditions, in the unit ball $\mathbb{B}\subset \mathbb{R}^d, d\geq 1$)

Random Schwarz distribution *h* such that $(h, f)_{f \in C^{\infty}_{c}(\mathbb{B})}$ is a **centred, Gaussian process** with

 $\mathbb{E}((h,f)(h,g)) = \iint_{\mathbb{B}^2} f(x)G^{\mathbb{B}}(x,y)g(y)\,dxdy$

for all $f, g \in C^{\infty}_{c}(\mathbb{B})$

 $G^{\mathbb{B}}$ is the Greens function for the Laplacian with zero boundary conditions in \mathbb{B}

Example: d = 1**Brownian bridge**

- $G^{\mathbb{B}}(s,t) = s(1-t)$ for $0 \le s < t \le 1$
- \Rightarrow standard Brownian bridge on [0,1]
- $d \geq 2$)
- Lots of characterisations (at least for Brownian motion)

This Schwarz distribution is actually a well-defined function (not true for

Universal scaling limit of random walks with zero boundary conditions

Example: d = 2Planar GFF

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log|z| \text{ for } z \in \mathbb{B}$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^D(x,y) = G^{\mathbb{B}}(\varphi(x),\varphi(y)) \; \forall x,y \in D$

- Can define GFF in any simply connected D; conformally invariant
- Conjectured/proven to arise as a universal scaling limit

Example: d = 2**Planar GFF**

 $G^{\mathbb{B}}(0,z) = -\frac{1}{2\pi} \log|z| \text{ for } z \in \mathbb{B}$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^{D}(x, y) = G^{\mathbb{B}}(\varphi(x), \varphi(y)) \ \forall x, y \in D$

- Can define GFF in any simply connected D; conformally invariant
- Conjectured/proven to arise as a universal scaling limit

The domain Markov property

Scaled zero boundary field + independent harmonic function

- $\varphi^{a+r\mathbb{B}}$ is a random Schwarz distribution in \mathbb{B} which a.s. corresponds to a **harmonic function** when restricted to $a + r\mathbb{B}$
- $h^{a+r\mathbb{B}}$ and $\varphi^{a+r\mathbb{B}}$ are independent

• The process $(h^{a+r\mathbb{B}}, r^{-d}f(r \cdot + a))_{f \in C^{\infty}(\mathbb{B})}$ is equal in law to $r^{1-\frac{d}{2}}(h, f)_{f \in C^{\infty}(\mathbb{B})}$

2d Case Berestycki-P-Ray

Suppose $(h^D, f)_{f \in C^{\infty}_{c}(D)}$ is a centred linear stochastic process, defined for each simply connected $D \subset \mathbb{C}$ satisfying:

- conformal invariance
- the conformal Markov property
- $(1 + \varepsilon)$ -moments for some $\varepsilon > 0$
- zero boundary conditions and stochastic continuity

 $h^D = h^{D'} + \varphi^{D'}$

Main Result Aru-P.

Suppose that h a centred random Schwarz distribution on \mathbb{B} satisfying

- domain Markov property for balls
- fourth moments ($\mathbb{E}((h, f)^4) < \infty \ \forall f \in C_c^{\infty}(\mathbb{B})$)

Then h is a multiple of a GFF on \mathbb{B} with zero boundary conditions

$d \geq 2, \mathbb{B} \subset \mathbb{R}^d$ unit ball

• zero boundary conditions ($(h, f_n) \rightarrow 0$ in L^2 for $(f_n)_{n>0}$ smooth & positive with support $\rightarrow \partial \mathbb{B}$ and $\sup_n (\sup_{r>1} \sup_{x,v \in \partial r \mathbb{B}} |f_n(x)/f_n(y)| + ||f_n||_{L^1(\mathbb{B})}) < \infty)$.

Comments And questions

- Could this be used to identify scaling limits?
- **Rotational invariance** is true but not needed!
- Can probably weaken some assumptions, e.g. exact copy in DMP, moments
- Harmonicity in the Markov property is key
- Are there other interesting fields characterised by a different Markov property? (e.g., stable bridges/fields, CLE nesting field?)
- What about **GFFs on other manifolds?**

Idea for the proof

Outline **Two steps**

- Covariance is the Greens' function (simpler step)
- Gaussianity (more challenging)

Covariance is the Greens' function Idea of proof

Key ingredient: Suppose that for $y \in \mathbb{B}$, $k_y(x)$ is a **harmonic** function defined in $\mathbb{B}\setminus\{y\}$, such that $k_y(x) - bs(|x - y|)$ is bounded in a neighbourhood of yfor some b > 0 and such that $(k_y, f_n)_{L^2} \to 0$ for any sequence of functions f_n as in our zero boundary condition. Then $k_y(x) = bG^{\mathbb{B}}(x, y)$ for all $x \neq y$; $x, y \in \mathbb{B}$.

Harmonicity + scaling + boundary conditions \Rightarrow Greens' function

This condition can be checked quite easily using the assumptions (esp. DMP)

Gaussianity Warm up

$$X_t := \oint_{|x|=e^{-t}} h(x) \, dx''$$

- In 2d, $(X_t)_{t\geq 0}$ is **centered** and has **stationary** and **independent increments** by the domain Markov property
- Using the 4th moment assumption, and Kolmogorov's criterion, also has a continuous modification
- $\Rightarrow X_t$ is Brownian motion \Rightarrow jointly Gaussian
- In $d \ge 3$ everything is the same except the stationarity. Still get Gaussianity!

 X_t is the "average value" of h on the spherical shell of radius e^{-t}

Gaussianity $\psi_{n,1} = \sin(n\theta), \psi_{n,2} = \cos(n\theta)$ for **Spherical harmonics**

Let $(\psi_{n,j})_{n \ge 0, 1 \le j \le M_n}$ be an orthonormal basis of spherical harmonics for $L^2(\partial \mathbb{B})$. In particular, $x \mapsto |x|^n \psi_{n,i}(x/|x|)$ is harmonic in \mathbb{B}

The same argument as for the spherical average case then gives that

$$X_r^{n,j} := r^{-n} \int_{|x|=r}^{\infty} |x|=r^{n-1} \int_{|x|=r}^{\infty} |x|=r^{n$$

for $r \in (0,1]$ is a Gaussian process

by the radius and the choice of harmonic $\psi_{n,i}$, is **Gaussian**

©Wikipedia

Example In 2d, $n \ge 1$

$$h(x)\psi_{n,j}(\frac{x}{|x|})dx$$

• Using Markov property again \Rightarrow "spherical harmonic averages", as a process indexed

Gaussianity Conclusion

• There exist radial functions $(f_{n,i})_{i,n\geq i}$

 $x \mapsto f_n$

- form an orthonormal basis of $L^2(\mathbb{B})$

Such that

$$f_{n,i}(|x|)\psi_{n,j}(\frac{x}{|x|})$$

• Previous slide $\Rightarrow h$ tested against these functions is jointly Gaussian \Rightarrow Result!

