Ellen Powell, Durham University. Based on joint work with Juhan Aru, Nathanaël Berestycki and Gourab Ray.

Characterising the Gaussian free field Connections Workshop, MSRI, 20th January 2022

(With 0 boundary conditions, in the unit ball $\subset \mathbb{R}^d$, $d \geq 1$

Random Schwarz distribution h such that $(h, f)_{f \in C_c^\infty(\mathbb{B})}$ is a centred, Gaussian **process** with

 $f((h, f)(h, g)) = \iint_{\mathbb{R}^2} f(x)G^{\mathbb{B}}(x, y)g(y) dx dy$

for all $f, g \in C_c^{\infty}(\mathbb{B})$

 $G^{\mathbb{B}}$ is the Greens function for the Laplacian with zero boundary conditions in $\mathbb B$

Definition Gaussian free field

Example: $d = 1$ **Brownian bridge**

• This Schwarz distribution is actually a **well-defined function** (not true for

- $G^{IB}(s, t) = s(1 t)$ for $0 \le s < t \le 1$
- \Rightarrow standard Brownian bridge on $[0,1]$
- $d \geq 2$
-
- **• Lots of characterisations** (at least for Brownian motion)

• Universal scaling limit of random walks with zero boundary conditions

Planar GFF Example: $d = 2$

 $G^{B}(0,z) = -\frac{1}{2} \log|z|$ for 2*π* $\log|z|$ for $z \in$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^D(x, y) = G^B(\varphi(x), \varphi(y)) \ \forall x, y \in D$

- Can define GFF in any simply connected D ; conformally invariant
- Conjectured/proven to arise as a **universal scaling limit**

Planar GFF Example: $d = 2$

 $G^{B}(0,z) = -\frac{1}{2} \log|z|$ for 2*π* $\log|z|$ for $z \in$

• If $D \subset \mathbb{C}$ is simply connected and $\varphi: D \to \mathbb{B}$ is conformal then

 $G^D(x, y) = G^B(\varphi(x), \varphi(y)) \ \forall x, y \in D$

- Can define GFF in any simply connected D ; conformally invariant
- Conjectured/proven to arise as a **universal scaling limit**

Scaled zero boundary field + independent harmonic function

- $\varphi^{a+r\mathbb{B}}$ is a random Schwarz distribution in $\mathbb B$ which a.s. corresponds to a **harmonic function** when restricted to *a* + *r*
- The process $(h^{a+r\mathbb{B}}, r^{-d}f(r \cdot +a))_{f \in C_c^{\infty}(\mathbb{B})}$ is equal in law to
- $h^{a+r\mathbb{B}}$ and $\varphi^{a+r\mathbb{B}}$ are independent

The domain Markov property

 $f(r\cdot+a))_{f\in C_c^\infty(\mathbb{B})}$ is equal in law to $r^{1-\frac{d}{2}}(h,f)_{f\in C_c^\infty(\mathbb{B})}$

Berestycki-P-Ray 2d Case *^h^D*

Suppose $(h^D,f)_{f\in\Gamma^{\infty}(D)}$ is a centred linear stochastic process, defined for each simply connected D ⊂ C satisfying: (h^D) (f) $f \in C_c^\infty(D)$

- **• conformal invariance**
- the conformal **Markov property**
- $(1 + \varepsilon)$ -moments for some $\varepsilon > 0$
- **zero boundary conditions** and stochastic **continuity**

 $h^D = h^{D'} + \varphi^{D'}$

Main Result Aru-P.

Suppose that h a centred random Schwarz distribution on $\mathbb B$ satisfying

- **domain Markov property** for balls
- **fourth moments** $(E((h, f)^4) < \infty \ \forall f \in C_c^{\infty}(\mathbb{B}))$ 4) < ∞ ∀*f* ∈ *C*[∞]
-

Then h is a multiple of a GFF on $\mathbb B$ with zero boundary conditions

$d \geq 2$, $\mathbb{B} \subset \mathbb{R}^d$ unit ball *d*

$\binom{1}{C}$

• **zero boundary conditions** ($(h, f_n) \to 0$ in L^2 for $(f_n)_{n\geq 0}$ smooth & positive with $\sup_n (\sup_{r>1} \sup_{x,y \in \partial r \mathbb{B}} |f_n(x)/f_n(y)| + ||f_n||_{L^1(\mathbb{B})}) < \infty$). f_n) \rightarrow 0 in L^2 for $(f_n)_{n\geq 0}$

Comments And questions

- **•** Could this be used to identify **scaling limits?**
- **• Rotational invariance** is true but not needed!
- **•** Can probably **weaken some assumptions,** e.g. exact copy in DMP, moments
- **• Harmonicity** in the Markov property is **key**
- Are there other interesting fields characterised by a different Markov property? (e.g., stable bridges/fields, CLE nesting field?)
- What about **GFFs on other manifolds?**

Idea for the proof

Outline Two steps

- Covariance is the Greens' function (simpler step)
- Gaussianity (more challenging)

Covariance is the Greens' function Idea of proof

Key ingredient: Suppose that for $y \in \mathbb{B}$, $k_y(x)$ is a **harmonic** function defined in $\mathbb{B}\backslash \{y\}$, such that $k_y(x) - bs(\lfloor x-y\rfloor)$ is bounded in a neighbourhood of y for some $b > 0$ and such that $(k_{y}, f_{n})_{L^{2}} \rightarrow 0$ for any sequence of functions f_{n} as in our zero boundary condition. Then $k_{y}(x) = bG^{\mathbb{B}}(x, y)$ for all $x \neq y$; $x, y \in \mathbb{B}$.

Harmonicity + scaling + boundary conditions \Rightarrow Greens' function

This condition can be checked quite easily using the assumptions (esp. DMP)

- In 2d, $(X_t)_{t\geq0}$ is centered and has **stationary** and **independent increments** by the domain Markov property
- Using the 4th moment assumption, and Kolmogorov's criterion, also has a **continuous modification**
- \Rightarrow X_t is Brownian motion \Rightarrow jointly **Gaussian**
- In $d \geq 3$ everything is the same except the stationarity. Still get Gaussianity!

Warm up Gaussianity

$$
X_t := \oint_{|x|=e^{-t}} \mu(x) dx^{\mathsf{H}}
$$

*X*_t is the "average value" of h on the spherical shell of radius e^{-t}

Gaussianity Spherical harmonics

Let $(\psi_{n,j})_{n\geq 0,1\leq j\leq M_n}$ be an orthonormal basis of spherical harmonics for $L^2(\partial\mathbb{B})$. In particular, $x\mapsto\left\vert x\right\vert ^{n}\psi_{n,i}(x/\left\vert x\right\vert)$ is harmonic in $L^2(\partial\mathbb{B})$ *ⁿ ψn*,*^j* $(x/|x|)$

• The same argument as for the spherical average case then gives that

Example In 2d, $\psi_{n,1} = \sin(n\theta), \psi_{n,2} = \cos(n\theta)$ for $n \geq 1$

$$
X_r^{n,j} := r^{-n} \int_{|x|=r}
$$

for $r \in (0,1]$ is a Gaussian process

by the radius and the choice of harmonic $\psi_{n,j}$, is Gaussian

©Wikipedia

$$
"h(x)\psi_{n,j}\left(\frac{x}{|x|}\right)dx"
$$

• Using Markov property again \Rightarrow "spherical harmonic averages", as a process indexed

- form an orthonormal basis of $L^2(\mathbb B)$
-

• There exist radial functions $(f_{n,i})_{i,n\geq 0}$ such that *n*,*i*)*i*,*n*≥⁰

 $x \mapsto f$

Conclusion Gaussianity

$$
\sum_{i=0}^{\infty} \frac{\text{such that}}{\text{sin}(x)} \left(|x| \right) \psi_{n,j}(\frac{x}{|x|})
$$

• Previous slide $\Rightarrow h$ tested against these functions is jointly Gaussian \Rightarrow Result!

