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RoOUGH OUTLINE

@ Schramm-Loewner evolution (SLE,) and multiple chordal SLE,
© Large deviations and Loewner energy
© Loewner energy in terms of

(zeta-regularized) determinants of Laplace-Beltrami operators

© Classification of minimizers?

o real rational functions with prescribed critical points
o Shapiro-Shapiro conjecture

@ Interpretation of minima?
o semiclassical conformal blocks in conformal field theory

o Calogero-Moser systems

© Further questions



WHAT 1s SLE,?

SCHRAMM-].OEWNER EVOLUTION



]LLOEWNER EVOLUTION OF CURVES / SLIT DOMAINS

n(t) Thm. [Loewner 23]
Any simple chordal curve 7
(more generally, a locally growing family of hulls)
can be encoded in

a Loewner evolution of conformal maps
g: : H\ n[0, f] — H which solve the ODE

&1 018:1(2) = 20() = 2,

_z
8@ = W)’

where W is a (continuous) real-valued function.

y

(o~

(Here, we have chosen the capacity parameterization.)

Wi = g(n(1)) on R

L Loewner driving function W: [0,00) - R



SCHRAMM-LOEWNER EVOLUTION, SLE, (LET’S ASSUME K < 8/3)

[Schramm '00]
! one-parameter family (SLE, ), of

ORA

probability measures on chordal curves with
conformal invariance and

0 domain Markov property

Yy 00
g H\y[0,1] > H

D - H

4 ~
NS

W, = g(y(1)) = VkB; on R

T Loewner driving process: Brownian motion of “speed” x > 0

x>0 ]



MuLTIPLE (CHORDAL) SLE, (LET'S ASSUME K < 8/3)

o family of random chordal curves
fs-- Yy i (D;xq, ..., Xon)

@ connectivities encoded in planar pairings
a of curve endpoints {{xaj, xbj}} j=1,...N

@ re-sampling symmetry (~ Markov chain)

Conditionally on N —1 of the curves, the remaining one is
the chordal SLE, in the random domain where it can live.

Cardy '03; Bauer, Bernard & Kytola '05;

Dubédat '06-'07; Kozdron & Lawler '07; Lawler 09;

Kytola & P. '16; Miller & Sheffield '16; P. & Wu '19;

Miller, Sheffield & Werner '20; Beffara, P. & Wu 21 4



MuLTIPLE (CHORDAL) SLE, (LET'S ASSUME K < 8/3)

@ family of random chordal curves (y},...,¥))
in (D; xy, ..., Xon)
@ connectivities encoded in planar pairings

a of curve endpoints {{xaj,xb/.}}jzle

@ re-sampling symmetry (~» Markov chain)

For any fixed connectivity @ of 2N points,
there exists a unique N-SLE, probability measure Qﬁ.

dQ, 3k —8)(6 —
Qr(i) = exp (3k ) K) mloop(D; 711(, . ’7}(\/)) ’ Qﬁ/ — &
®NdPSLE 2k 1Qql

I<i<

@ m"* is a combinatorial expression involving Brownian loop measure
@ alternatively, describe interaction of curves by “(pure) partition function”

N

6-k

Za(Ds 1, Xow) = Qul(Ds 1, xon) [ | Py %) %
Jj=1



LOEWNER CHAIN WITH PARTITION FUNCTION Z

NORM @ re-sampling symmetry (Dubédat’s commutation
relations): can grow one curve at a time

@ driving process of one curve y: image of its tip:

X1 X9 e W, = Zgg}’(lt)gt(z)

@ interaction of curves encoded in
g :H\y[0,1] - H partition function Z of the Loewner chain:

AW, = vk dB, + kdilog Z(W,, VP VP ydr

; 2dt
@) _
p v o Ayt

% vo _w,
W, = gi(y(1)) V= x, forizl, W= xi.

k=6

N
Eg Zo(H;x,...,xon) = Qo x1, ., xan) [ oo, = )T
i=1



LLARGE DEVIATIONS OF SLE,
AS Kk — 0+




(CHORDAL) LOEWNER ENERGY

Dubédat ‘05; Friz & Shekhar '17; Wang '19; Bishop 19, ...

o Let’s consider given smooth curve 7. Idea:

N 1
“P[SLE, curve stay close to 1] 2 exp( — @ ) ”
K

@ SLE driven by standard Brownian motion B
@ decay rate: Loewner energy of the curve
defined as the Dirichlet energy of its driver W:

1 (®,d_
1) := 5 fo (—W,)Zdt € [0, +c0]

Thm. Large Deviation Principle for BM [Schilder 66]

Fix T > 0. The random path x/FB[o,T] satisfies LDP in C°[0, T']
(sup norm, with good rate function Ir(W) := % fOT (d%W,)zdt)

limsup xlogP[ \/EB[O,T] eCl< - vlvnfc Ir(W) for any closed set C
(S

k—0+

lim(i)nf klogP[ WB[O,T] €e0] > - ‘}/ng I (W) for any open set O
Kk—0+ (S



LARGE DEVIATIONS OF SLE, As k — 0+

@ SLE, curves ¥ :=(y],...,¥}y) fluctuate near “optimal” curves

when k > 0 is small. Idea: minimal energy — “optimal”

e for given smooth curves 7 := (11,...,7n), expect:
-0 I(n
“P[SLE, curves stay close to 7] e (— @ ) ”

e I/(7) = 0 Loewner energy of the curves 7

[Wang 19; P. & Wang 21]

The family of laws (P¥),., of SLE, curves ¥* satisfies LDP:
(for Hausdorff distance, with good rate function I)

limsup xlogP“[¥* € C] < — ing 1(77) for any closed set C
e

k—0+

lim 3nf klogP“[¥“ € 0] > — 1n£ 1(77) for any open set O
k—0+ ne

y

Proof idea: Schilder thm for BM, Varadhan’s lemma + careful analysis O



LARGE DEVIATIONS OF SLE, As k — 0+

K — I n
“P[SLE, curves %" stay close to 7] 2 exp( - 40 ) ”
K

Thm. [Wang 19; P. & Wang 21]
The family of laws (P¥),., of SLE, curves ¥ satisfies LDP:

(for Hausdorff distance, with good rate function I)

limsup klogP“[¥* € C] < — 1nf 1(77) for any closed set C

k—0+

liminf «xlogP[¥* € O] > — mf 1(7) for any open set O

k—0+

o SLE, is driven by one-dimensional Brownian motion:
Schilder’s thm gives a LDP for kB, for finite times t € [0,T]
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LARGE DEVIATIONS OF SLE, As k — 0+

K — I n
“P[SLE, curves %" stay close to 7] 2 exp ( - 40 ) ”
K

Thm. [Wang 19; P. & Wang 21]

The family of laws (P¥),., of SLE, curves ¥ satisfies LDP:
(for Hausdorff distance, with good rate function I)

limsup klogP“[¥* € C] < — 1nf 1(77) for any closed set C

k—0+

liminf «xlogP[¥* € O] > — mf 1(7) for any open set O

k—0+

o SLE, is driven by one-dimensional Brownian motion:
Schilder’s thm gives a LDP for kB, for finite times t € [0,T]
o transfer this to SLE, curves for finite times t € [0, T]
(But: encounter topological trouble: no direct contraction principle!)
@ extend to T — oo via (non-trivial) SLE, estimates
o multiple curves using Varadhan’s lemma and RN-derivative
wrt. independent SLEs via pure partition functions Z, O 9



MuLtipLE SLE, BY WEIGHTING INDEPENDENT SLEs

@ family of random chordal curves (y},...,¥))
in (D; xy, ..., Xon)
@ connectivities encoded in planar pairings

a of curve endpoints {{xaj,xb/.}}jzle

@ re-sampling symmetry (~» Markov chain)

For any fixed connectivity @ of 2N points,
there exists a unique N-SLE, probability measure Qﬁ.

dQqy 3k = 8)(6 — k) 1 # Qo
G Eep| T Dy, .Y | Q= —
® dP§ig K 1Qol
I<i<N
@ m"* is a combinatorial expression involving Brownian loop measure

@ alternatively, describe interaction of curves by “(pure) partition function”

N
6-k
Za(Ds 1, Xow) = Qul(Ds 1, xon) [ | Py %) % o0
Jj=1



INTRINSIC OBJECT: LOEWNER POTENTIAL

@ Multi-chord Loewner energy of curves ij := (171,...,1Mn):

1) :=12(H@) - inf H))

o Loewner potential H(77) of curves 77 := (11,...,nn):
1 < 1Y
n o—_ . l n JRE—
H@) = 0 ;:1 I(n;) + m°* () 1 j; log P(xq;, Xp;)

_ Q.
Qul’

m'°°P(D; Y- ,y}‘v))

o multiple SLE, probability measure Qﬁ

dQq (3k — 8)(6 — )

— T exp|

® dPglg 2K

1<i<N

@ interaction of curves: “(pure) partition function”
N .

Za(Da Xlyeens XZN) = |Qa’|(D9 Xlseens .X'QN) PD(xaj, -xbj)7
j=1 1



INTRINSIC OBJECT: LOEWNER POTENTIAL

@ Multi-chord Loewner energy of curves ij := (171,...,1Mn):

1) :=12(H@) - inf H))

o Loewner potential H(77) of curves 77 := (11,...,nn):

N N
=N . 1 loop /= 1
H@D) = 5 ;Im,-) + @) — ;log P(xa;. 31,)

° I() = g [y (§Wn)dr >

one-curve Loewner energy
@ “interaction”: ml""p(ﬁ)

Brownian loop measure term
® P(x4;, xp;) boundary Poisson kernel '
® xg4;, Xp; endpoints of curve n;

12



LARGE DEVIATIONS OF SLE, As k — 0+

@ SLE, curves ¥ :=(y],...,¥}y) fluctuate near “optimal” curves

when k > 0 is small. Idea: minimal energy — “optimal”

e for given smooth curves 7 := (11,...,7n), expect:
-0 I(n
“P[SLE, curves stay close to 7] e (— @ ) ”

e I/(7) = 0 Loewner energy of the curves 7

[Wang 19; P. & Wang 21]

The family of laws (P¥),., of SLE, curves ¥* satisfies LDP:
(for Hausdorff distance, with good rate function I)

limsup xlogP“[¥* € C] < — ing 1(77) for any closed set C
e

k—0+

lim 3nf klogP“[¥“ € 0] > — 1n£ 1(77) for any open set O
k—0+ ne

y

Proof idea: Schilder thm for BM, Varadhan’s lemma + careful analysis O
13



LLOEWNER POTENTIAL

IN ANOTHER FORM

13



LOEWNER POTENTIAL — MORE INTUITIVE FORMULA

As H(7p) is a bit complicated, let’s write it differently:

[Wang '19; P. & Wang 21]

For any smooth 7 in bounded smooth domain (D; xy, ..., Xon),

N
Hp(p) = logdet;,Ap — Z logdet,Ac — Elogﬂ
e C

Proof idea: Both sides have the same conformal covariance; use Polyakov-Alvarez
anomaly formula (for domains with corners) [Aldana, Kirsten, Rowlett 20] O

@ logdet; A zeta-regularized determinant %
of Laplacian A with Dirichlet b.c.

@ sum over connected components C of D\ |J; n;

° % log m =~ 0.5724 universal constant '

NB: Also makes sense on Riemannian surfaces (depends on metric).

14



POTENTIAL MINIMIZERS
—— OPTIMAL CURVES

SOLUTION TO SHAPIRO CONJECTURE (special case)



POTENTIAL MINIMIZERS = OPTIMAL CURVES

@ Proposition. Any minimizer of Loewner potential
H(-) is so-called “geodesic multichord”, i.c.,
¥ j, nj is hyperbolic geodesic in its own component

15
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POTENTIAL MINIMIZERS = OPTIMAL CURVES

@ Proposition. Any minimizer of Loewner potential
H(-) is so-called “geodesic multichord”, i.c.,
¥ j, nj is hyperbolic geodesic in its own component

@ Do minimizers exist?  Yes. How many are there?

Recall: connectivities (planar pairings) of curves labeled by «

NB: 1 a Catalan number Cy = ﬁ(ziv) of them

Thm. [P. & Wang 21]

@ Geodesic multichord gives rise to unique* rational function

on CU {oo} of degree N +1 with 2N critical points on real line.
© There exists a unique geodesic multichord for each a.

© In particular, there exists exactly* Cy rational functions of
degree N + 1 with given 2N critical points on the real line.

* (up to post-composition by Mobius map)

Proof: Explicit construction & upper bound result [Goldberg 91] 0O 15



POTENTIAL MINIMIZERS —> RATIONAL FUNCTIONS

Proposition. Let 7 be a geodesic multichord in H. The union of 7,
its complex conjugate 7*, and the real line is the real locus of a
rational function of degree N + 1 with critical points {xi, ..., xox}.

QWAR%
\rds

20

16



POTENTIAL MINIMIZERS —> RATIONAL FUNCTIONS

Proposition. Let 7 be a geodesic multichord in H. The union of 7,
its complex conjugate 7*, and the real line is the real locus of a
rational function of degree N + 1 with critical points {xi, ..., xox}.

16



POTENTIAL MINIMIZERS — SHAPIRO CONJECTURE

Thm. [P. & Wang 21]

@ Geodesic multichord gives rise to unique* rational function

on CU {oo} of degree N + 1 with 2N critical points on real line.
o There exists a unique geodesic multichord for each a.

@ In particular, there exists exactly* Cy rational functions of
degree N + 1 with given 2N critical points on the real line.

* (up to post-composition by Mobius map)

Cor. (Shapiro conjecture) R"_L
If all critical points of rational function are 7
real, then it is real rational function*.

@ Special case of Shapiro conjecture [B. & M. Shapiro "95]

@ First proven: [Eremenko & Gabrielov, Ann.Math.’00]
@ General case: [Mukhin, Tarasov & Varchenko, Ann.Math. 09] 17



POTENTIAL MINIMA...

... SEmicrassicarL CFT
CONFORMAL BLOCKS

17



POTENTIAL MINIMA = SEMICLASSICAL CONFORMAL BLOCKS

o Fix domain data D = H and x; < -+ < xg9n and connectivity «.

@ Set U(xy,...,xon) := 121nfy Hpgy, oy (¥) (Minimum potential)

,,,,,

[P. & Wang 21]

2

1
5(3ju(x1,---,x2N)2 - Z —

#j ot i#]

Proof: Study U & use self-similarity of Loewner flow of geodesic multichords O

@ “Semiclassical limit” of Belavin-Polyakov-Zamolodchikov PDEs
in conformal field theory for correlation functions (‘conf. blocks”)

18
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POTENTIAL MINIMA = SEMICLASSICAL CONFORMAL BLOCKS

o Fix domain data D = H and x; < -+ < xg9n and connectivity «.

@ Set U(xy,...,xon) := 121nfy Hpgy, oy (¥) (Minimum potential)

,,,,,

[P. & Wang 21]

2 6

(x; — x;)?

1
5(3ju(x1,---,X2N)2 - Z ——0iU(x1, ..., xon) = Z

#j ot i#]

A2

Proof: Study U & use self-similarity of Loewner flow of geodesic multichords O

@ “Semiclassical limit” of Belavin-Polyakov-Zamolodchikov PDEs
in conformal field theory for correlation functions (‘conf. blocks”)
@ Appears also in the physics literature, e.g. [Teschner 11]
and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov "14]

k—0

@ Rigorously: SLE partition functions Z¥, s.t. —xlogZ*¥ — U

18



POTENTIAL MINIMA = SEMICLASSICAL CONFORMAL BLOCKS

o Fix domain data D = H and x; < -+ < xg9n and connectivity «.

@ Set U(xy,...,xon) := 121nfy Hpgy, oy (¥) (Minimum potential)

,,,,,

[P. & Wang 21]
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(x; — x;)?

1
5(3ju(x1,---,X2N)2 - Z ——0iU(x1, ..., xon) = Z

#j ot i#]

A2

Proof: Study U & use self-similarity of Loewner flow of geodesic multichords O

@ “Semiclassical limit” of Belavin-Polyakov-Zamolodchikov PDEs
in conformal field theory for correlation functions (‘conf. blocks”)
@ Appears also in the physics literature, e.g. [Teschner 11]
and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov "14]
. s . k—0
@ Rigorously: SLE partition functions Z¥, s.t. —xlogZ*¥ — U
o Alberts, Kang, Makarov [arXiv:2011.05714]: evol. of critical pts

& poles of the rational function described by Calogero-Moser
18



POTENTIAL MINIMA = SEMICLASSICAL CONFORMAL BLOCKS

@ Fix domain data D = H and x; < -+ < x9n and connectivity a.

@ Set U(xy,...,xon) :=12inf5 Hppy, v,y (¥) (Minimum potential)

.....

Thm. [Alberts, Kang, Makarov '20]

Up to a multiplicative constant (only depending on N), U equals:

N 2N
- log( 1—[ (xj — x;)? l_[ (us — u,)® l_l ﬂ(ur = xk)_4)

1<i<j<2N 1<r<s<N r=1 k=1

where uy,...,uy are the poles of the* rational function hy
associated to the unique geodesic multi-chord 7 that

minimizes the Loewner potential.

Proof sketch: This “partition function” generates curves 77’ that belong to the real

locus of h;. But the real locus is uniquely determined: it comprises 7U#7* UR. O

* (hydrodynamically normalized at co) 19
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THANK YOU!




