On large deviations of SLEs, real rational functions, and zeta-regularized determinants of Laplacians

Eveliina Peltola

< eveliina.peltola @ aalto.fi >

< eveliina.peltola @ hcm.uni-bonn.de >

Aalto University, Department of Math and Systems Analysis; University of Bonn (IAM) & Hausdorff Center for Math (HCM)

January 2022 @ MSRI

Based mainly on [arXiv:2006.08574] with Yilin Wang.

- **O** Schramm-Loewner evolution (SLE_{κ}) and multiple chordal SLE_{κ}
- Large deviations and Loewner energy
- Loewner energy in terms of (zeta-regularized) determinants of Laplace-Beltrami operators
- Classification of minimizers?
 - real rational functions with prescribed critical points
 - Shapiro-Shapiro conjecture
- Interpretation of minima?
 - semiclassical conformal blocks in conformal field theory
 - Calogero-Moser systems
- 6 Further questions

What is SLE_{κ} ?

Schramm-Loewner evolution

LOEWNER EVOLUTION OF CURVES / SLIT DOMAINS

 g_t

Thm.

[Loewner '23]

Any simple chordal curve η (more generally, a locally growing family of hulls) can be encoded in a Loewner evolution of conformal maps

 $g_t : \mathbb{H} \setminus \eta[0, t] \to \mathbb{H}$ which solve the ODE

$$\partial_t g_t(z) = rac{2}{g_t(z) - W(t)}, \qquad g_0(z) = z$$

where W is a (continuous) real-valued function.

(Here, we have chosen the capacity parameterization.)

 $W_t = g_t(\eta(t))$ on \mathbb{R} \frown Loewner driving function $W: [0, \infty) \to \mathbb{R}$

Schramm-Loewner evolution, SLE_{κ}

 $\rightarrow \infty$

 $D \mapsto \mathbb{H}$

Thm.

[Schramm '00]

 $\exists!$ one-parameter family $(SLE_{\kappa})_{\kappa>0}$ of probability measures on chordal curves with conformal invariance and domain Markov property

 $g_t: \mathbb{H} \setminus \gamma[0,t] \to \mathbb{H}$

 $W_t = g_t(\gamma(t)) = \sqrt{\kappa}B_t$ on \mathbb{R}

 $x \mapsto 0$

[↑] Loewner driving process: **Brownian motion of** "**speed**" $\kappa \ge 0$

Multiple (chordal) SLE_{κ}

(let's assume $\kappa < 8/3$)

- family of **random chordal curves** $(\gamma_1^k, \dots, \gamma_N^k)$ in $(D; x_1, \dots, x_{2N})$
- connectivities encoded in planar pairings
 α of curve endpoints {{x_{ai}, x_{bi}}}_{j=1,...,N}
- re-sampling symmetry (~ Markov chain)

Conditionally on N-1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

Cardy '03; Bauer, Bernard & Kytölä '05; Dubédat '06–'07; Kozdron & Lawler '07; Lawler '09; Kytölä & P. '16; Miller & Sheffield '16; P. & Wu '19; Miller, Sheffield & Werner '20; Beffara, P. & Wu '21

Multiple (chordal) SLE_{κ}

- family of random chordal curves (γ^κ₁,...,γ^κ_N) in (D; x₁,..., x_{2N})
- connectivities encoded in **planar pairings** α of curve endpoints $\{\{x_{a_i}, x_{b_i}\}\}_{i=1,\dots,N}$
- re-sampling symmetry (~> Markov chain)

(LET'S ASSUME $\kappa < 8/3$)

Thm. For any fixed connectivity α of 2N points, there exists a unique N-SLE_k probability measure $\mathbb{Q}_{\alpha}^{\#}$. $\frac{d\mathbb{Q}_{\alpha}}{d\mathbb{Q}_{\alpha}} := \exp\left(\frac{(3\kappa - 8)(6 - \kappa)}{m}m^{\text{loop}}(D;\gamma_{1}^{\kappa},\ldots,\gamma_{N}^{\kappa})\right), \qquad \mathbb{Q}_{\alpha}^{\#} = \frac{\mathbb{Q}_{\alpha}}{d\mathbb{Q}_{\alpha}}$

$$\frac{1}{\underset{1 \le i \le N}{\otimes} d\mathbb{P}_{\text{SLE}}^{(i)}} := \exp\left(\frac{(\alpha - \beta)(\alpha - \alpha)}{2\kappa} m^{\text{toop}}(D; \gamma_1^k, \dots, \gamma_N^k)\right), \qquad \mathbb{Q}_{\alpha}^{\#} = \frac{\alpha}{|\mathbb{Q}_{\alpha}|}$$

- m^{loop} is a combinatorial expression involving Brownian loop measure
- alternatively, describe interaction of curves by "(pure) partition function"

$$\mathcal{Z}_{\alpha}(D; x_1, \dots, x_{2N}) := |\mathbb{Q}_{\alpha}|(D; x_1, \dots, x_{2N}) \prod_{j=1}^{N} P_D(x_{a_j}, x_{b_j})^{\frac{\beta-x}{2x}}$$

Loewner chain with partition function \mathcal{Z}

 $g_t:\mathbb{H}\setminus\gamma[0,t]\to\mathbb{H}$

• re-sampling symmetry (*Dubédat's commutation relations*): can grow one curve at a time

• driving process of one curve γ : image of its tip:

 $W_t := \lim_{z \to \gamma(t)} g_t(z)$

 interaction of curves encoded in partition function Z of the Loewner chain:

E.g. $\mathcal{Z}_{\alpha}(\mathbb{H}; x_1, ..., x_{2N}) := |\mathbb{Q}_{\alpha}|(\mathbb{H}; x_1, ..., x_{2N}) \prod_{j=1}^{N} |x_{b_j} - x_{a_j}|^{\frac{\kappa - 6}{\kappa}}$

(CHORDAL) LOEWNER ENERGY

Dubédat '05; Friz & Shekhar '17; Wang '19; Bishop '19, ...

• Let's consider given smooth curve η . Idea:

"
$$\mathbb{P}[\text{SLE}_{\kappa} \text{ curve stay close to } \eta] \stackrel{\kappa \to 0+}{\approx} \exp\left(-\frac{I(\eta)}{\kappa}\right)$$
"

- SLE driven by standard Brownian motion B
- decay rate: Loewner energy of the curve η defined as the *Dirichlet energy* of its driver W:

$$I(\eta) := \frac{1}{2} \int_0^\infty \left(\frac{\mathrm{d}}{\mathrm{d}t} W_t\right)^2 \mathrm{d}t \quad \in \quad [0, +\infty]$$

Thm. Large Deviation Principle for BM

[Schilder '66]

Fix T > 0. The random path $\sqrt{\kappa}B_{[0,T]}$ satisfies LDP in $C^0[0,T]$ (sup norm, with good rate function $I_T(W) := \frac{1}{2} \int_0^T \left(\frac{d}{dt}W_t\right)^2 dt$)

$$\limsup_{\kappa \to 0^+} \kappa \log \mathbb{P} \left[\sqrt{\kappa} B_{[0,T]} \in C \right] \le - \inf_{W \in C} I_T(W) \quad \text{for any closed set } C$$
$$\liminf_{\kappa \to 0^+} \kappa \log \mathbb{P} \left[\sqrt{\kappa} B_{[0,T]} \in O \right] \ge - \inf_{W \in O} I_T(W) \quad \text{for any open set } O$$

- SLE_κ curves γ^κ := (γ^κ₁,..., γ^κ_N) fluctuate near "optimal" curves when κ > 0 is small. Idea: minimal energy ⇒ "optimal"
- for given smooth curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$, expect:

" $\mathbb{P}[\text{SLE}_{\kappa} \text{ curves stay close to } \bar{\eta}] \stackrel{\kappa \to 0^+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right)$ "

• $I(\bar{\eta}) \ge 0$ Loewner energy of the curves $\bar{\eta}$

Thm.[Wang '19; P. & Wang '21]The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP:
(for Hausdorff distance, with good rate function I) $\limsup_{\kappa\to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \leq -\inf_{\bar{\eta}\in C} I(\bar{\eta})$ for any closed set C $\liminf_{\kappa\to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \geq -\inf_{\bar{\eta}\in O} I(\bar{\eta})$ for any open set O

Proof idea: Schilder thm for BM, Varadhan's lemma + careful analysis

"
$$\mathbb{P}[\text{SLE}_{\kappa} \text{ curves } \bar{\gamma}^{\kappa} \text{ stay close to } \bar{\eta}] \stackrel{\kappa \to 0^+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right),$$

Thm.

[Wang '19; P. & Wang '21]

The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP: (for Hausdorff distance, with good rate function *I*)

 $\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \leq -\inf_{\bar{\eta} \in C} I(\bar{\eta}) \quad \text{for any closed set } C$ $\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \geq -\inf_{\bar{\eta} \in O} I(\bar{\eta}) \quad \text{for any open set } O$

• SLE_{κ} is driven by one-dimensional Brownian motion: Schilder's thm gives a LDP for $\sqrt{\kappa}B_t$ for *finite times* $t \in [0, T]$

"
$$\mathbb{P}[\text{SLE}_{\kappa} \text{ curves } \bar{\gamma}^{\kappa} \text{ stay close to } \bar{\eta}] \stackrel{\kappa \to 0^+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right),$$

Thm.

[Wang '19; P. & Wang '21]

The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP: (for Hausdorff distance, with good rate function I)

 $\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \le -\inf_{\bar{\eta} \in C} I(\bar{\eta}) \quad \text{for any closed set } C$ $\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \ge -\inf_{\bar{\eta} \in O} I(\bar{\eta}) \quad \text{for any open set } O$

- SLE_{κ} is driven by one-dimensional Brownian motion: Schilder's thm gives a LDP for $\sqrt{\kappa}B_t$ for *finite times* $t \in [0, T]$
- transfer this to SLE_κ curves for *finite times t* ∈ [0, *T*]
 (But: encounter topological trouble: no direct contraction principle!)

"
$$\mathbb{P}[\text{SLE}_{\kappa} \text{ curves } \bar{\gamma}^{\kappa} \text{ stay close to } \bar{\eta}] \stackrel{\kappa \to 0^+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right)$$
"

Thm.

[Wang '19; P. & Wang '21]

The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP: (for Hausdorff distance, with good rate function *I*)

 $\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \le -\inf_{\bar{\eta} \in C} I(\bar{\eta}) \quad \text{for any closed set } C$ $\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \ge -\inf_{\bar{\eta} \in O} I(\bar{\eta}) \quad \text{for any open set } O$

- SLE_{κ} is driven by one-dimensional Brownian motion: Schilder's thm gives a LDP for $\sqrt{\kappa}B_t$ for *finite times* $t \in [0, T]$
- transfer this to SLE_κ curves for *finite times t* ∈ [0, *T*]
 (But: encounter topological trouble: no direct contraction principle!)
- extend to $T \to \infty$ via (non-trivial) SLE_{κ} estimates

"
$$\mathbb{P}[\text{SLE}_{\kappa} \text{ curves } \bar{\gamma}^{\kappa} \text{ stay close to } \bar{\eta}] \stackrel{\kappa \to 0^+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right),$$

Thm.

[Wang '19; P. & Wang '21]

The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP: (for Hausdorff distance, with good rate function *I*)

 $\limsup_{\kappa \to 0^+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \le -\inf_{\bar{\eta} \in C} I(\bar{\eta}) \quad \text{for any closed set } C$ $\liminf_{\kappa \to 0^+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \ge -\inf_{\bar{\eta} \in O} I(\bar{\eta}) \quad \text{for any open set } O$

- SLE_{κ} is driven by one-dimensional Brownian motion: Schilder's thm gives a LDP for $\sqrt{\kappa}B_t$ for *finite times* $t \in [0, T]$
- transfer this to SLE_κ curves for *finite times t* ∈ [0, *T*]
 (But: encounter topological trouble: no direct contraction principle!)
- extend to $T \to \infty$ via (non-trivial) SLE_{κ} estimates
- multiple curves using Varadhan's lemma and RN-derivative wrt. independent SLEs via pure partition functions Z_{α}

Multiple SLE_{κ} by weighting independent SLEs

- family of random chordal curves (γ^κ₁,..., γ^κ_N)
 in (D; x₁,..., x_{2N})
- connectivities encoded in planar pairings
 α of curve endpoints {{x_{ai}, x_{bi}}}_{j=1,...,N}
- re-sampling symmetry (~>> Markov chain)

Thm. For any fixed connectivity α of 2N points, there exists a unique N-SLE_{κ} probability measure $\mathbb{Q}_{\alpha}^{\#}$. $\frac{d\mathbb{Q}_{\alpha}}{\underset{1\leq i\leq N}{\otimes} d\mathbb{P}_{SLE}^{(i)}} := \exp\left(\frac{(3\kappa - 8)(6 - \kappa)}{2\kappa} m^{loop}(D; \gamma_{1}^{\kappa}, \dots, \gamma_{N}^{\kappa})\right), \qquad \mathbb{Q}_{\alpha}^{\#} = \frac{\mathbb{Q}_{\alpha}}{|\mathbb{Q}_{\alpha}|}$

- m^{loop} is a combinatorial expression involving Brownian loop measure
- alternatively, describe interaction of curves by "(pure) partition function"

$$\mathcal{Z}_{\alpha}(D; x_1, \dots, x_{2N}) := |\mathbb{Q}_{\alpha}|(D; x_1, \dots, x_{2N}) \prod_{j=1}^{N} P_D(x_{a_j}, x_{b_j})^{\frac{\beta-\kappa}{2\kappa}}$$

INTRINSIC OBJECT: LOEWNER POTENTIAL

- Multi-chord Loewner energy of curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$: $I(\bar{\eta}) := 12 \left(\mathcal{H}(\bar{\eta}) - \inf_{\bar{\gamma}} \mathcal{H}(\bar{\gamma}) \right)$
- Loewner potential $\mathcal{H}(\bar{\eta})$ of curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$:

$$\mathcal{H}(\bar{\eta}) := \frac{1}{12} \sum_{j=1}^{N} I(\eta_j) + m^{\text{loop}}(\bar{\eta}) - \frac{1}{4} \sum_{j=1}^{N} \log P(x_{a_j}, x_{b_j})$$

• multiple SLE_{κ} probability measure $\mathbb{Q}^{\#}_{\alpha} = \frac{\mathbb{Q}_{\alpha}}{|\mathbb{Q}_{\alpha}|}$:

$$\frac{\mathrm{d}\mathbb{Q}_{\alpha}}{\underset{1\leq i\leq N}{\otimes}\mathrm{d}\mathbb{P}_{\mathrm{SLE}}^{(i)}} := \exp\left(\frac{(3\kappa-8)(6-\kappa)}{2\kappa} \ m^{\mathrm{loop}}(D;\gamma_1^{\kappa},\ldots,\gamma_N^{\kappa})\right)$$

• interaction of curves: "(pure) partition function"

$$\mathcal{Z}_{\alpha}(D; x_1, \dots, x_{2N}) := |\mathbb{Q}_{\alpha}|(D; x_1, \dots, x_{2N}) \prod_{j=1}^{N} P_D(x_{a_j}, x_{b_j})^{\frac{6-\kappa}{2\kappa}}$$

INTRINSIC OBJECT: LOEWNER POTENTIAL

- Multi-chord Loewner energy of curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$: $I(\bar{\eta}) := 12 \left(\mathcal{H}(\bar{\eta}) - \inf_{\bar{\gamma}} \mathcal{H}(\bar{\gamma}) \right)$
- Loewner potential $\mathcal{H}(\bar{\eta})$ of curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$:

$$\mathcal{H}(\bar{\eta}) := \frac{1}{12} \sum_{j=1}^{N} I(\eta_j) + m^{\text{loop}}(\bar{\eta}) - \frac{1}{4} \sum_{j=1}^{N} \log P(x_{a_j}, x_{b_j})$$

- $I(\eta) := \frac{1}{2} \int_0^\infty (\frac{d}{dt} W_t)^2 dt$ one-curve Loewner energy
- "interaction": m^{loop}(η
)
 Brownian loop measure term
- $P(x_{a_i}, x_{b_i})$ boundary Poisson kernel
- x_{a_j}, x_{b_j} endpoints of curve η_j

- SLE_κ curves γ^κ := (γ^κ₁,..., γ^κ_N) fluctuate near "optimal" curves when κ > 0 is small. Idea: minimal energy ⇒ "optimal"
- for given smooth curves $\bar{\eta} := (\eta_1, \dots, \eta_N)$, expect:

" $\mathbb{P}[\text{SLE}_{\kappa} \text{ curves stay close to } \bar{\eta}] \stackrel{\kappa \to 0^+}{\approx} \exp\left(-\frac{I(\bar{\eta})}{\kappa}\right)$ "

• $I(\bar{\eta}) \ge 0$ Loewner energy of the curves $\bar{\eta}$

Thm.[Wang '19; P. & Wang '21]The family of laws $(\mathbb{P}^{\kappa})_{\kappa>0}$ of SLE_{κ} curves $\bar{\gamma}^{\kappa}$ satisfies LDP:
(for Hausdorff distance, with good rate function I) $\limsup_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in C] \leq -\inf_{\bar{\eta} \in C} I(\bar{\eta}) \quad \text{for any closed set } C$ $\liminf_{\kappa \to 0+} \kappa \log \mathbb{P}^{\kappa}[\bar{\gamma}^{\kappa} \in O] \geq -\inf_{\bar{\eta} \in O} I(\bar{\eta}) \quad \text{for any open set } O$

Proof idea: Schilder thm for BM, Varadhan's lemma + careful analysis

LOEWNER POTENTIAL

IN ANOTHER FORM

Loewner potential – more intuitive formula

As $\mathcal{H}(\bar{\eta})$ is a bit complicated, let's write it differently:

Thm.[Wang '19; P. & Wang '21]For any smooth
$$\bar{\eta}$$
 in bounded smooth domain $(D; x_1, \ldots, x_{2N})$, $\mathcal{H}_D(\bar{\eta}) = \log \det_{\zeta} \Delta_D - \sum_{c.c. \ C} \log \det_{\zeta} \Delta_C - \frac{N}{2} \log \pi$

Proof idea: Both sides have the same conformal covariance; use Polyakov-Alvarez anomaly formula (for domains with corners) [Aldana, Kirsten, Rowlett '20]

- log det_ζ Δ zeta-regularized determinant of Laplacian Δ with Dirichlet b.c.
- sum over connected components C of $D \setminus \bigcup_i \eta_i$
- $\frac{1}{2}\log\pi \approx 0.5724$ universal constant

NB: Also makes sense on Riemannian surfaces (depends on metric).

SOLUTION TO SHAPIRO CONJECTURE (special case)

 Proposition. Any minimizer of Loewner potential *H*(·) is so-called "geodesic multichord", i.e.,
 ∀ j, η_j is hyperbolic geodesic in its own component

- Proposition. Any minimizer of Loewner potential *H*(·) is so-called "geodesic multichord", i.e.,
 ∀ j, η_j is hyperbolic geodesic in its own component
- Do minimizers exist? Yes. How many are there?

- Proposition. Any minimizer of Loewner potential H(·) is so-called "geodesic multichord", i.e.,
 ∀ j, η_j is hyperbolic geodesic in its own component
- Do minimizers exist? Yes. How many are there? Recall: connectivities (planar pairings) of curves labeled by α NB: \exists a Catalan number $C_N = \frac{1}{N+1} {2N \choose N}$ of them

- Proposition. Any minimizer of Loewner potential *H*(·) is so-called "geodesic multichord", i.e.,
 ∀ j, η_j is hyperbolic geodesic in its own component
- Do minimizers exist? Yes. How many are there? Recall: connectivities (planar pairings) of curves labeled by α NB: \exists a Catalan number $C_N = \frac{1}{N+1} {2N \choose N}$ of them

Thm.

[P. & Wang '21]

 C_i^R

15

- Geodesic multichord gives rise to unique* rational function on C ∪ {∞} of degree N + 1 with 2N critical points on real line.
- 2) There exists a unique geodesic multichord for each α .
- So In particular, there exists exactly C_N rational functions of degree N + 1 with given 2N critical points on the real line.

★ (up to post-composition by Möbius map)

Potential minimizers \implies Rational functions

Proposition. Let $\bar{\eta}$ be a geodesic multichord in \mathbb{H} . The union of $\bar{\eta}$, its complex conjugate $\bar{\eta}^*$, and the real line is the real locus of a rational function of degree N + 1 with critical points $\{x_1, \ldots, x_{2N}\}$.

Potential minimizers \implies Rational functions

Proposition. Let $\bar{\eta}$ be a geodesic multichord in \mathbb{H} . The union of $\bar{\eta}$, its complex conjugate $\bar{\eta}^*$, and the real line is the real locus of a rational function of degree N + 1 with critical points $\{x_1, \ldots, x_{2N}\}$.

Potential minimizers \implies Shapiro conjecture

Thm.

[P. & Wang '21]

- Geodesic multichord gives rise to unique^{*} rational function on C ∪ {∞} of degree N + 1 with 2N critical points on real line.
- There exists a unique geodesic multichord for each α .
- In particular, there exists exactly^{*} C_N rational functions of degree N + 1 with given 2N critical points on the real line.

 \star (up to post-composition by Möbius map)

Cor. (Shapiro conjecture)

If all critical points of rational function are real, then it is **real rational function**^{*}.

17

- Special case of Shapiro conjecture [B. & M. Shapiro '95]
- First proven: [Eremenko & Gabrielov, Ann.Math.'00]
- General case: [Mukhin, Tarasov & Varchenko, Ann.Math.'09]

POTENTIAL MINIMA...

... Semiclassical CFT conformal blocks

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α .
- Set $\mathcal{U}(x_1, \ldots, x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H};x_1, \ldots, x_{2N}}(\bar{\gamma})$ (minimum potential)

Thm.
[P. & Wang '21]

$$\frac{1}{2}(\partial_j \mathcal{U}(x_1, \dots, x_{2N})^2 - \sum_{i \neq j} \frac{2}{x_i - x_j} \partial_i \mathcal{U}(x_1, \dots, x_{2N}) = \sum_{i \neq j} \frac{6}{(x_i - x_j)^2} \quad \forall j$$

Proof: Study \mathcal{U} & use self-similarity of Loewner flow of geodesic multichords \Box

• "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory for correlation functions ("conf. blocks")

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α .
- Set $\mathcal{U}(x_1, \ldots, x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H};x_1, \ldots, x_{2N}}(\bar{\gamma})$ (minimum potential)

Thm.
[P. & Wang '21]

$$\frac{1}{2}(\partial_j \mathcal{U}(x_1, \dots, x_{2N})^2 - \sum_{i \neq j} \frac{2}{x_i - x_j} \partial_i \mathcal{U}(x_1, \dots, x_{2N}) = \sum_{i \neq j} \frac{6}{(x_i - x_j)^2} \quad \forall j$$

Proof: Study \mathcal{U} & use self-similarity of Loewner flow of geodesic multichords \Box

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory for correlation functions ("conf. blocks")
- Appears also in the physics literature, e.g. [Teschner '11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α .
- Set $\mathcal{U}(x_1, \ldots, x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H};x_1, \ldots, x_{2N}}(\bar{\gamma})$ (minimum potential)

Thm.
[P. & Wang '21]

$$\frac{1}{2}(\partial_j \mathcal{U}(x_1, \dots, x_{2N})^2 - \sum_{i \neq j} \frac{2}{x_i - x_j} \partial_i \mathcal{U}(x_1, \dots, x_{2N}) = \sum_{i \neq j} \frac{6}{(x_i - x_j)^2} \quad \forall j$$

Proof: Study \mathcal{U} & use self-similarity of Loewner flow of geodesic multichords \Box

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory for correlation functions ("conf. blocks")
- Appears also in the physics literature, e.g. [Teschner 11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov 14]
- Rigorously: SLE partition functions \mathcal{Z}^{κ} , s.t. $-\kappa \log \mathcal{Z}^{\kappa} \xrightarrow{\kappa \to 0} \mathcal{U}$

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α .
- Set $\mathcal{U}(x_1, \ldots, x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H};x_1, \ldots, x_{2N}}(\bar{\gamma})$ (minimum potential)

Thm.
[P. & Wang '21]

$$\frac{1}{2}(\partial_j \mathcal{U}(x_1, \dots, x_{2N})^2 - \sum_{i \neq j} \frac{2}{x_i - x_j} \partial_i \mathcal{U}(x_1, \dots, x_{2N}) = \sum_{i \neq j} \frac{6}{(x_i - x_j)^2} \quad \forall j$$

Proof: Study \mathcal{U} & use self-similarity of Loewner flow of geodesic multichords \Box

- "Semiclassical limit" of Belavin-Polyakov-Zamolodchikov PDEs in conformal field theory for correlation functions ("conf. blocks")
- Appears also in the physics literature, e.g. [Teschner '11] and [Litvinov, Lukyanov, Nekrasov, Zamolodchikov '14]
- Rigorously: SLE partition functions \mathcal{Z}^{κ} , s.t. $-\kappa \log \mathcal{Z}^{\kappa} \xrightarrow{\kappa \to 0} \mathcal{U}$
- Alberts, Kang, Makarov [arXiv:2011.05714]: evol. of critical pts & poles of the rational function described by Calogero-Moser

- Fix domain data $D = \mathbb{H}$ and $x_1 < \cdots < x_{2N}$ and connectivity α .
- Set $\mathcal{U}(x_1, \ldots, x_{2N}) := 12 \inf_{\bar{\gamma}} \mathcal{H}_{\mathbb{H};x_1, \ldots, x_{2N}}(\bar{\gamma})$ (minimum potential)

Thm.

[Alberts, Kang, Makarov '20]

Up to a multiplicative constant (only depending on N), \mathcal{U} equals:

$$-\log\left(\prod_{1\le i< j\le 2N} (x_j - x_i)^2 \prod_{1\le r< s\le N} (u_s - u_r)^8 \prod_{r=1}^N \prod_{k=1}^{2N} (u_r - x_k)^{-4}\right)$$

where u_1, \ldots, u_N are the poles of the^{*} rational function $h_{\bar{\eta}}$ associated to the unique geodesic multi-chord $\bar{\eta}$ that minimizes the Loewner potential.

Proof sketch: This "partition function" generates curves $\bar{\eta}'$ that belong to the real locus of $h_{\bar{\eta}}$. But the real locus is uniquely determined: it comprises $\bar{\eta} \cup \bar{\eta}^* \cup \mathbb{R}$.

★ (hydrodynamically normalized at ∞)

Some Questions

• (technical): Strengthen LDP for other topologies on curves

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]
- SLE loops (Malliavin-Kontsevich-Suhov / Zhan)

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]
- SLE loops (Malliavin-Kontsevich-Suhov / Zhan)
- Curves on general Riemann surfaces

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]
- SLE loops (Malliavin-Kontsevich-Suhov / Zhan)
- Curves on general Riemann surfaces
- Connections to random matrices / Dyson BM? [Vivian's talk]

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]
- SLE loops (Malliavin-Kontsevich-Suhov / Zhan)
- Curves on general Riemann surfaces
- Connections to random matrices / Dyson BM? [Vivian's talk]
- Connection to Calogero-Moser systems? [See Tom's talk!] Integrable models in mathematical physics – quantization???

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]
- SLE loops (Malliavin-Kontsevich-Suhov / Zhan)
- Curves on general Riemann surfaces
- Connections to random matrices / Dyson BM? [Vivian's talk]
- Connection to Calogero-Moser systems? [See Tom's talk!] Integrable models in mathematical physics – quantization???
- Other expressions for (loop) Loewner energy and its numerous connections: [See Yilin's talk!]
 - Weil-Petersson quasicircles
 - Kähler geometry on universal Teichmüller space
 - interplay with geometric function theory
 - conformal welding, ...

- (technical): Strengthen LDP for other topologies on curves
- (analogous): Radial case, multi-radial case [Vivian's talk]
- SLE loops (Malliavin-Kontsevich-Suhov / Zhan)
- Curves on general Riemann surfaces
- Connections to random matrices / Dyson BM? [Vivian's talk]
- Connection to Calogero-Moser systems? [See Tom's talk!] Integrable models in mathematical physics – quantization???
- Other expressions for (loop) Loewner energy and its numerous connections: [See Yilin's talk!]
 - Weil-Petersson quasicircles
 - Kähler geometry on universal Teichmüller space
 - interplay with geometric function theory
 - conformal welding, ...
- Classification of minimizers [Bonk, Eremenko '21]

THANK YOU!