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Multiple SLE(0)
Fix points x = {x1, . . . , x2n}, xi ∈ R, and a non-crossing link pattern α

Multiple SLE(0;x;α) is a special ensemble of n smooth curves in H that
connect the points in x according to pattern α, introduced by Peltola-Wang
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Multiple SLE(κ)
Motivation



Multiple SLE(κ) as κ→ 0

Scaling limit of interfaces with alternating boundary conditions
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Multiple SLE(κ) as κ→ 0

• Kozdron-Lawler: Reweighting of independent SLEs by a Radon-Nikodym
derivative of the form

exp

{
c(κ)

2
mH,α(γ1, . . . , γn)

}
1 {γi ∩ γj = ∅ for all i 6= j}

wheremH,α involves Brownian loop measure
• c(κ) ∼ −12/κ as κ→ 0, so well set up for large deviations
• Extract multichordal Loewner energyH(x;α) as rate function
• See Eveliina’s talk of last Friday
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Properties of Multiple SLE(0)
Peltola-Wang prove the following properties of multiple SLE(0;x;α):
• it is the deterministic limit of multiple SLE(κ;x;α) as κ→ 0,
• is the minimizer of the multichordal Loewner energy,
• has the geodesic multichord property,
• can be generated by a Loewner flow involving U = U(x;α),
• is the real locus of a real rational function.

x1 x2 x3 x4 x5 x6

α

4/32



Connection to Real Rational Functions
Peltola-Wang establish the connection to real rational functions by
• showing the functionalH(x;α) has a unique minimizer
• the structure of the functional implies that the minimizing curves have

the geodesic multichord property
• Schwarz reflection + the geodesic multichord property implies the curves

are the real locus of a real rational function
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• is the minimizer of the multichordal Loewner energy,
• has the geodesic multichord property,
• can be generated by a Loewner flow involving U = U(x;α),
• is the real locus of a real rational function.

This talk explains how to generate real locus of a real rational function via
Loewner flow, without external inputs

SLE, Brownian loop measure, conformal field theory are lurking in many of
the ideas, but not in the presentation or the proofs
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• is the minimizer of the multichordal Loewner energy
• has the geodesic multichord property,
• can be generated by a Loewner flow involving U = U(x;α),
• is the real locus of a real rational function.

Alberts-Kang-Makarov:
• new description of Loewner flow for real locus of a real rational function
• alternative formula for the functions U = U(x;α)

• direct proof that real loci satisfy geodesic multichord property
• Loewner flow is an instance of Calogero-Moser integrable system
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Real Rational
Functions and their
Real Loci



Real Rational Functions

• Focus on real rational functions of degree n+ 1

• Ratios of the form
P (z)

Q(z)

where P,Q : Ĉ→ Ĉ are polynomials with real coefficients and

max{degP,degQ} = n+ 1

• Real Locus:
Γ(R) :=

{
z ∈ Ĉ : R(z) ∈ R̂

}
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Real Rational Functions
Basic properties of Γ(R):
• R̂ ⊂ Γ(R)

• Γ(R) is symmetric under conjugation
• Γ(R) is path connected
• Γ(R) is the union of disjoint arcs
• Number of arcs is related to the degree
• Arcs meet at branch points/critical points

Critical points of R: {z ∈ Ĉ : R′(z) = 0}
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Real Rational Functions

• In this talk we specify the critical points and assume the existence of an
R with those critical points
• Restrict to the case of 2n real critical points x = {x1, . . . , x2n}, so

R′(z) = 0 ⇐⇒ z ∈ {x1, . . . , x2n}

• Notation: CRRn+1(x) is the set of degree n+ 1 real rational functions
with 2n critical points at x = {x1, . . . , x2n}
• Degree n+ 1 plus 2n critical points means each critical point of index 2

R(z) = R(xi) + C(z − xi)2 + . . .

so real locus is locally a+++ shape near each xi
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Real Rational Functions
Structure of Real Locus: If there exists R ∈ CRRn+1(x) the real locus is
• the real line R,
• n non-crossing curves in H connecting points in x
• the complex conjugates of those curves
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Enumerative Algebraic Geometry

• Given 2n distinct real points x does there exist any R ∈ CRRn+1(x)?
• If so how many?

• Note once you have one R ∈ CRRn+1(x) you have infinitely many since

φ ◦R =
aP + bQ

cP + dQ
∈ CRRn+1(x)

where φ(z) = (az + b)/(cz + d) is a Möbius transform of H to itself
• Can easily compute that Γ(φ ◦R) = Γ(R), so enumeration is done up to

equivalence under post-composition by PSL(2,R)
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Enumerative Algebraic Geometry

• Given 2n distinct real points x does there exist any R ∈ CRRn+1(x)?
• If so how many?

• Goldberg (1991): For each fixed x the number of equivalence classes is
at most

Cn =
1

n+ 1

(
2n

n

)
• Eremenko-Gabrielov (2002) / Mukhin-Tarasov-Varchenko (2009) /

Peltola-Wang (2021): For each fixed x there are exactly Cn distinct
equivalence classes
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Loewner Dynamics for
Real Rational
Functions



Loewner Dynamics for Real Rational Functions

• AKM shows how to grow Γ(R) via Loewner flow
• Heavy use of the poles of the rational function
• Our results hold conditionally on existence of R ∈ CRRn+1(x)

• Our results do not use SLE or Brownian loop measure, but the dynamics
of our Loewner flow are best described using SLE terminology
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SLE(0, x,ρ) Loewner Flows

Definition (SLE(0, x,ρ) Loewner Flows)
Let x ∈ R and ρ be a finite atomic measure on Ĉ that is symmetric under
conjugation. Assume ρ(x) = 0. SLE(0, x,ρ) is the Loewner flow

∂tgt(z) =
2

gt(z)− xt
, g0(z) = z,

where the driving function evolves as

ẋt =

∫
C

dρ(w)

xt − gt(w)
, x0 = x.

Note it matches the standard definition of SLE(κ, x,ρ)

dxt =
√
κ dBt +

∫
C

dρ(w)

xt − gt(w)
dt, x0 = x
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SLE(0, x,ρ) Loewner Flows
Can superimpose flows coming from different x and ρ

Definition (Superposition of Flows)
Let νi : [0,∞) → [0,∞), i = 1, . . . , N be measurable. The ν-superposition of
the SLE(0, xj ,ρj) processes is the superposition of the corresponding flows:

∂tgt(z) =
N∑
j=1

2νj(t)

gt(z)− xj(t)
, g0(z) = z,

where the driving functions x1(t), . . . , xN (t) evolve as

ẋj = νj(t)

∫
C

dρj(w)

xj − gt(w)
+
∑
k 6=j

2νk(t)

xj − xk
, xj(0) = xj .
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SLE(0, x,ρ) Loewner Flows
Examples of superpositions
• Grow only the curve anchored at xj :

νj ≡ 1, νk ≡ 0 for k 6= j

• Grow all curves simultaneously:

νj ≡ 1 for all j

• “Adaptive” growth: vary νj with t depending on previous growth
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Loewner Dynamics for Real Rational Functions

Theorem (Alberts-Kang-Makarov 2020)
Let x = {x1, . . . , x2n} be distinct real points. Assume ζ = {ζ1, . . . , ζn+1} ⊂ Ĉ
is closed under conjugation and solves the stationary relation

2n∑
j=1

1

ζk − xj
=
∑
l 6=k

2

ζk − ζl
, ζk ∈ ζ.

Then there exists an R ∈ CRRn+1(x) with pole set ζ. Moreover, for

ρj =
∑
k 6=j

2δxk −
n+1∑
l=1

4δζl , j = 1, . . . , 2n,

the curves generated by any ν-superposition of the SLE(0, xj ,ρj) Loewner
flows are a subset of Γ(R).
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Loewner Dynamics for Real Rational Functions

• Theorem says the curves generated by any ν-superposition are a subset
of Γ(R), which is a form of commutation
• Dynamics remain well-defined as long as each SLE(0, xj ,ρj) process is

well-defined or until two driving functions xj(t) collide
• Dynamics may be extendable past the collision times, and in our

situation there is a natural way of doing this
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Loewner Dynamics for Real Rational Functions
Two main ingredients: stationary relation + associated ρj

• Stationary relation

2n∑
j=1

1

ζk − xj
=
∑
l 6=k

2

ζk − ζl
, ζk ∈ ζ,

and ζ = {ζ1, . . . , ζn+1} are poles of a R ∈ CRRn+1(x)

• Any R = P/Q ∈ CRRn+1(x) must have n+ 1 poles
• Complex poles appear in conjugate pairs
• All poles are on the real locus Γ(R)

• May be a pole at infinity
• Poles are not preserved under post-composition of R
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Real Rational Functions
Appearance of stationary relation comes from a basic complex analysis result

Theorem
Let x = {x1, . . . , x2n} be distinct real points, and ζ = {ζ1, . . . , ζn+1} ⊂ Ĉ be
closed under conjugation and distinct from x. There exists anR ∈ CRRn+1(x)
with pole set ζ iff ζ solves the stationary relation.

Proof is based on partial fraction expansion of R′. Stationary relation is
equivalent to R′ having no residues at the poles ζk.

Of note: Generating solutions to the stationary relation is another way of
proving existence of R ∈ CRRn+1(x)
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Loewner Dynamics for Real Rational Functions
• Inserting poles into ρj =

∑
k 6=j 2δxk −

∑
l 4ζl gives

ẋj = Uj(R) :=
∑
k 6=j

2

xj − xk
+
∑
ζk∈ζ

4

ζk − xj
, j = 1, . . . , 2n.

• Can show that the value of Uj is invariant under post-compositions of R
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• Peltola-Wang has a theorem for Loewner flow but less explicit formula
for Uj
• In Peltola-Wang Uj(x) = ∂xjUα(x), where Uα(x) is the minimal value of

the multichordal Loewner potential
• Minimal value involves the Brownian loop measure of Γ(R) and so is

difficult to evaluate explicitly
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Loewner Dynamics for Real Rational Functions

Theorem (Alberts-Kang-Makarov 2020)
Functions Uj satisfy Uj = ∂xj logZ where

Z(x) =
∏

1≤j<k≤2n
(xj − xk)2

∏
1≤l<m≤n

(ζl(x)− ζm(x))8
2n∏
k=1

n∏
l=1

(xk − ζl(x))−4

Conclusion is that Z = CeU , but there is no direct proof (as of yet)
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Solutions to Null Vector Equations
Using the explicit formula for Uj we are able to show that they solve a system
of quadratic equations we call the null vector equations

Theorem (Alberts-Kang-Makarov 2020)
Let R ∈ CRRn+1(x) and

Uj(x) = Uj(R) :=
∑
k 6=j

2

xj − xk
+
∑
ζk∈ζ

4

ζk − xj
, j = 1, . . . , 2n.

The functions Uj solve the system of quadratic equations

1

2
U2
j +

∑
k 6=j

2

xk − xj
Uk −

∑
k 6=j

6

(xk − xj)2
= 0, j = 1, . . . , 2n

Bernard-Bauer-Kytölla (2005): Classical limit of the BPZ equations 25/32
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Solutions to Null Vector Equations
Proof (Null Vector Equations):

• R′ has a rational primitive implies the stationary relation

2n∑
j=1

1

ζk − xj
=
∑
l 6=k

2

ζk − ζl
, ζk ∈ ζ

• Based on partial fraction expansion of R′:

R =
P

Q
=⇒ R′(z) =

P ′Q− PQ′
Q2

(z) =

∏2n
i=1(z − xi)∏
k(z − ζk)2

• algebra
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Loewner Flow for Real Rational Functions
Summary:
• Expressing Loewner vector fields in terms of poles is beneficial
• Simple formulas for Loewner flow vector fields and solutions to null

vector equations
• Our statements and proofs are not probabilistic, but idea of looking at the

poles is motivated by Gaussian free field based Conformal Field Theory
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Multiple SLE(0) and
Calogero-Moser
Dynamics



Classical Calogero-Moser Dynamics
One-dimensional many-body problem that is integrable and solvable

ẍj =
∑
k 6=j

2

(xj − xk)3

Hamiltonian system with Hamiltonian given by

H(x,p) =
1

2

∑
j

p2j +
∑
j<k

1

(xj − xk)2

Leads to the standard equations of motion

ẋj =
∂H
∂pj

= pj , ṗj = ẍj =
2

(xj − xk)3
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Classical Calogero-Moser Dynamics
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Calogero-Moser Dynamics for SLE(0)

Theorem (Alberts-Kang-Makarov 2020)
Let x = {x1, . . . , x2n} be distinct real points and ζ = {ζ1, . . . , ζn+1} ⊂ Ĉ be
closed under conjugation and solve the stationary relation. Under the 1/4-
superposition of the SLE(0, xj ,ρj) processes

ẍj = −
∑
k 6=j

2

(xj − xk)3
.
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Calogero-Moser Dynamics for SLE(0)
1/4-superposition of SLE(0, xj ,ρj) gives the coupled system

ẋj =
∑
k 6=j

1

xj − xk
−
∑
k

1

xj − ζk
,

ζ̇k = −
∑
l 6=k

1

ζk − ζl
+
∑
j

1

ζk − xj
.

Differentiating and stationary relation leads to Calogero-Moser
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Calogero-Moser Dynamics for SLE(0)
1/4-superposition of SLE(0, xj ,ρj) gives the coupled system

ẋj =
∑
k 6=j

1

xj − xk
−
∑
k

1

xj − ζk
,

ζ̇k = −
∑
l 6=k

1

ζk − ζl
+
∑
j

1

ζk − xj
.

Gives two ways of describing the Loewner evolution that generates Γ(R):
• as two coupled first order systems of ODEs, with the underlying vector

field determined by the poles and critical points of R, and
• via an autonomous second order Calogero-Moser system for the critical

points that has no reference to the poles, but must be started with very
particular initial momenta.
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Calogero-Moser Dynamics for SLE(0)
Generate curves via

∂tgt(z) =

2n∑
j=1

1/2

gt(z)− xj(t)
, ẍj = −

∑
k 6=j

2

(xj − xk)3

Theorem (Alberts-Kang-Makarov 2022+)
Necessary condition for generated curves to be in the real locus of a real ratio-
nal function is that x(0), ẋ(0) satisfy, for j = 1, . . . , 2n,

ẋ2j −
∑
k 6=j

ẋj + ẋk
xj − xk

−
∑
k 6=j

1

(xj − xk)2
+

1

2

∑
k 6=j

∑
l 6=k

1

(xj − xk)(xj − xl)
= 0,

Show this condition is preserved under Hamiltonian flow using the Lax pair
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, ẍj = −

∑
k 6=j

2

(xj − xk)3

Theorem (Alberts-Kang-Makarov 2022+)
Necessary condition for generated curves to be in the real locus of a real ratio-
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2

∑
k 6=j

∑
l 6=k

1

(xj − xk)(xj − xl)
= 0,

Show this condition is preserved under Hamiltonian flow using the Lax pair
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Calogero-Moser Dynamics for SLE(0)
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Geodesic Multichord
Property



Geodesic Multichord Property

Theorem (Alberts-Kang-Makarov 2022+)
If R ∈ CRRn+1(x) then Γ(R) satisfies the geodesic multichord property.

“Converse” to Peltola-Wang argument that geodesic multichords are the real
loci of real rational functions



Geodesic Multichord Property
Proof is inductive and based on a preservation property of Loewner flows

Theorem (Alberts-Kang-Makarov 2022+)
Let R ∈ CRRn+1(x) and ζ1, . . . , ζn+1 be the poles of R. Then

R ◦ g−1t ∈ CRRn+1(x(t))

for any ν-superposition of the SLE(0, xj ,ρj) flows

This is a consequence of our integral of motion result



Geodesic Multichord: Pictorial Proof

14 points chosen as critical points



Geodesic Multichord: Pictorial Proof

Real locus of any R ∈ CRR8(x) consists of 7 curves connecting the 14 points in
some non-crossing way



Geodesic Multichord: Pictorial Proof

x
Want to show the pink highlighted curve is a hyperbolic geodesic in the shaded
region. Use a Möbius inversion to expose pink curve to∞.



Geodesic Multichord: Pictorial Proof

Image of curves under Möbius inversion φ. Is also Γ(R ◦ φ−1), noting that
R ◦ φ−1 ∈ CRR8(φ(x)).



Geodesic Multichord: Pictorial Proof

Use superposition of SLE(0, xj ,ρj) flows to grow curves that border the shaded
region. Previous theorem shows that R ◦ φ−1 ◦ g−1

t is also a real rational function.
Limiting argument shows R ◦ φ−1 ◦ g−1

τ is also real rational function with only two
critical points, where τ is the time at which all green curves simultaneously complete.



Geodesic Multichord: Pictorial Proof

Γ(R ◦ φ−1 ◦ g−1
τ ), which is also the image of the original pink curve under gτ ◦ φ. Since

R ◦ φ−1 ◦ g−1
τ is real rational with only two critical points can directly compute that it

is the hyperbolic geodesic in H. Conformal invariance of hyperbolic geodesics
completes the proof.



Conformal Field
Theory Motivation



From CFT to Real Rational Functions

Two main ideas
• κ→ 0+ limits of the method of screening for solutions to BPZ equations
• Gaussian free field as a martingale observable for the multiple

SLE(κ;x;α) process under Loewner evolution, and its κ→ 0+ limit



Multiple SLE(κ) Driving Functions
A single arm of a multiple SLE(κ) ensemble has driving function

dxj(t) =
√
κ dBt + κ(∂xj logZ)(x(t)), xk(t) = gt(xk)

Dubédat: Commutation =⇒ Z = Z(x;κ) solves the BPZ equations: a
system of 2n linear partial differential equations

Two standard ways of constructing solutions Z = Z(x):
• reweighting independent SLEs via Brownian loop measure terms (Lawler,

Lawler/Kozdron)
• contour integration/the method of screening/Coulomb gas integrals

(Dubédat, Flores/Kleban, Kytölla/Peltola)
Large deviations come from limits of κ∂xj logZ as κ→ 0



Solutions via Method of Screening
Introduce ζ = (ζ1, . . . , ζn) ∈ Cn and define

Zp(x, ζ) =
∏
i 6=j

(xi − xj)2/κ
∏
i 6=j

(ζi − ζj)8/κ
∏
i,j

(xi − ζj)−4/κ

For appropriate contours C1, . . . , Cn

x 7→
∮
C1
. . .

∮
Cn
Zp(x, ζ) dζ1 . . . dζn =: Z(x;κ)

solves the BPZ equations. Ideal for steepest descent. As κ→ 0 integrals
concentrate on poles of the rational function

κ logZ(x;κ)
κ→0−−−→

∑
i 6=j

log(xi−xj)2+
∑
i 6=j

log(ζi(x)−ζj(x))8+
∑
i,j

log(xi−ζj(x))−4

and Uj = ∂xj (RHS)
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Method of Screening and Integrals of Motion
Given x, ζ and z ∈ H

Φ(z;x, ζ;κ) = harmonic extension of boundary conditions determined by x, ζ, κ

Then it can be shown that∮
C1
. . .

∮
Cn

Φ(z;x, ζ;κ) dζ

∣∣∣∣∣∣∣∣ g−1t
is a martingale for the multiple SLE(κ;x) process

Apply stationary phase to get an integral of motion for multiple SLE(0;x;α)



Method of Screening and Integrals of Motion

Theorem (Alberts-Kang-Makarov 2020)
For any ν-superposition of SLE(0, xj ,ρj) processes the quantities

g′t(z)

∏2n
j=1(gt(z)− xj(t))∏n+1

k=1(gt(z)− gt(ζk(x)))2

are integrals of motion, for each z ∈ H.

This does not require ζ to satisfy the stationary relation

When stationary relation is satisfied, integral of motion is key in the proof that
generated hull is in Γ(R)

Integral of motion also leads to geodesic multichord property for Γ(R)



Open Questions



Critical Points of Higher Multiplicities
Throughout we’ve assumed R = P/Q is real rational with critical points
x = (x1, . . . , x2n), and critical points are order 1, i.e.

R′(z) ∼ C(z − xi), z → xi

What about higher multiplicities?
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Natural Time Parameterizations

x1 x2 x3 x4 x5 x6

α

∂tgt(z) =

2n∑
j=1

2νj(t)

gt(z)− xj(t)
, g0(z) = z, xj(0) = xj

where x(t) = (x1(t), . . . , x2n(t)) evolve according to

ẋj(t) = Uj(R ◦ g−1t )νj(t) +
∑
k 6=j

2νk(t)

xj(t)− xk(t)
, j = 1, . . . , 2n.



Enumeration: Solutions to Stationary Equation
Fix x = (x1, . . . , x2n). Up to permutation of coordinates, how many solutions
ζ = (ζ1, . . . , ζn) ∈ Cn are there to the stationary relation

2n∑
j=1

1

ζk − xj
=
∑
l 6=k

2

ζk − ζl
, k = 1, . . . , n?

Goldberg + Eremenko-Gabrielov/Peltola-Wang implies there should be exactly
Cn, i.e. solutions are enumerated by link patterns

Is there a way to generate all solutions from one particular solution?



Enumeration: Solutions to Null Vector Equations
Fix x = (x1, . . . , x2n). Can one directly enumerate the number of (real)
solutions (U1, . . . , U2n) to the null vector equations

1

2
U2
j +

∑
k 6=j

2

xk − xj
Uk −

∑
k 6=j

6

(xk − xj)2
= 0, j = 1, . . . , 2n

and conformal Ward identities

2n∑
j=1

Uj = 0,

2n∑
j=1

xjUj = −6n,

2n∑
j=1

x2jUj = −6

2n∑
j=1

xj .



Actual Pictures
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