Loewner Dynamics for Real Rational Functions and the Multiple SLE(0) **Process**

Tom Alberts Joint with Nam-Gyu Kang (KIAS) and Nikolai Makarov (Caltech) arXiv:2011.05714

DEPARTMENT OF MATHEMATICS College of Science

Multiple SLE(0)

Fix points $x = \{x_1, \ldots, x_{2n}\}\$, $x_i \in \mathbb{R}$, and a non-crossing link pattern α

Multiple SLE(0; $x; \alpha$) is a special ensemble of n smooth curves in H that connect the points in x according to pattern α , introduced by Peltola-Wang

Multiple SLE(0)

Fix points $x = \{x_1, \ldots, x_{2n}\}\,$, $x_i \in \mathbb{R}$, and a non-crossing link pattern α

Multiple SLE(0; $x: \alpha$) is a special ensemble of n smooth curves in H that connect the points in x according to pattern α , introduced by Peltola-Wang

Multiple SLE(κ) **Motivation**

Multiple SLE(κ) **as** $\kappa \to 0$

Scaling limit of interfaces with *alternating boundary conditions*

Multiple SLE(κ) **as** $\kappa \to 0$

Scaling limit of interfaces with *alternating boundary conditions*

Multiple SLE(κ) **as** $\kappa \to 0$

• **Kozdron-Lawler:** Reweighting of independent SLEs by a Radon-Nikodym derivative of the form

$$
\exp\left\{\frac{c(\kappa)}{2}m_{\mathbb{H},\alpha}(\gamma_1,\ldots,\gamma_n)\right\}\mathbf{1}\left\{\gamma_i\cap\gamma_j=\emptyset\text{ for all }i\neq j\right\}
$$

where $m_{\text{H},\alpha}$ involves **Brownian loop measure**

- $c(\kappa) \sim -12/\kappa$ as $\kappa \to 0$, so well set up for large deviations
- Extract **multichordal Loewner energy** $\mathcal{H}_{(\boldsymbol{x}:\alpha)}$ as rate function
- See Eveliina's talk of last Friday

Peltola-Wang prove the following properties of multiple $\text{SLE}(0; x; \alpha)$:

- it is the deterministic limit of multiple $\text{SLE}(\kappa; \boldsymbol{x}; \alpha)$ as $\kappa \to 0$,
- is the minimizer of the multichordal Loewner energy,
- has the geodesic multichord property,
- can be generated by a Loewner flow involving $\mathcal{U} = \mathcal{U}(x;\alpha)$,
- is the real locus of a real rational function.

Connection to Real Rational Functions

Peltola-Wang establish the connection to real rational functions by

- showing the functional $\mathcal{H}_{(x;\alpha)}$ has a unique minimizer
- the structure of the functional implies that the minimizing curves have the geodesic multichord property
- Schwarz reflection + the geodesic multichord property implies the curves are the real locus of a real rational function

Peltola-Wang prove the following properties of multiple $\text{SLE}(0; x; \alpha)$:

- it is the deterministic limit of multiple $\text{SLE}(\kappa; \boldsymbol{x}; \alpha)$ as $\kappa \to 0$,
- is the minimizer of the multichordal Loewner energy,
- has the geodesic multichord property,
- can be generated by a Loewner flow involving $\mathcal{U} = \mathcal{U}(x; \alpha)$,
- is the real locus of a real rational function.

Peltola-Wang prove the following properties of multiple $\text{SLE}(0; x; \alpha)$:

- it is the deterministic limit of multiple $\text{SLE}(\kappa; \boldsymbol{x}; \alpha)$ as $\kappa \to 0$,
- is the minimizer of the multichordal Loewner energy,
- has the geodesic multichord property,
- can be generated by a Loewner flow involving $\mathcal{U} = \mathcal{U}(x; \alpha)$,
- is the real locus of a real rational function.

This talk explains how to generate real locus of a real rational function via Loewner flow, without external inputs

SLE, Brownian loop measure, **conformal field theory** are lurking in many of the ideas, but not in the presentation or the proofs

Peltola-Wang prove the following properties of multiple $\text{SLE}(0; x; \alpha)$:

- it is the deterministic limit of multiple $\text{SLE}(\kappa; \boldsymbol{x}; \alpha)$ as $\kappa \to 0$,
- is the minimizer of the multichordal Loewner energy
- has the geodesic multichord property,
- can be generated by a Loewner flow involving $\mathcal{U} = \mathcal{U}(x; \alpha)$,
- is the real locus of a real rational function.

Peltola-Wang prove the following properties of multiple $\text{SLE}(0; x; \alpha)$:

- it is the deterministic limit of multiple $\text{SLE}(\kappa; \boldsymbol{x}; \alpha)$ as $\kappa \to 0$,
- is the minimizer of the multichordal Loewner energy
- has the geodesic multichord property,
- can be generated by a Loewner flow involving $\mathcal{U} = \mathcal{U}(x; \alpha)$,
- is the real locus of a real rational function.

Alberts-Kang-Makarov:

- new description of Loewner flow for real locus of a real rational function
- alternative formula for the functions $\mathcal{U} = \mathcal{U}(x; \alpha)$
- direct proof that real loci satisfy geodesic multichord property
- Loewner flow is an instance of **Calogero-Moser** integrable system **7/32**

Real Rational Functions and their Real Loci

- Focus on real rational functions of degree $n + 1$
- Ratios of the form

 $P(z)$ $Q(z)$

where $P, Q: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ are polynomials with real coefficients and

 $\max\{\deg P, \deg Q\} = n+1$

• **Real Locus:**

$$
\Gamma(R) := \left\{ z \in \widehat{\mathbb{C}} : R(z) \in \widehat{\mathbb{R}} \right\}
$$

Basic properties of $\Gamma(R)$:

- $\widehat{\mathbb{R}} \subset \Gamma(R)$
- $\Gamma(R)$ is symmetric under conjugation
- $\Gamma(R)$ is path connected
- $\Gamma(R)$ is the union of disjoint arcs
- Number of arcs is related to the degree
- Arcs meet at branch points/critical points

Critical points of $R: \{z \in \widehat{\mathbb{C}} : R'(z) = 0\}$

- In this talk we specify the critical points and assume the existence of an R with those critical points
- Restrict to the case of $2n$ real critical points $x = \{x_1, \ldots, x_{2n}\}\)$, so

$$
R'(z) = 0 \iff z \in \{x_1, \dots, x_{2n}\}\
$$

- **Notation:** $CRR_{n+1}(x)$ is the set of degree $n+1$ real rational functions with 2n critical points at $x = \{x_1, \ldots, x_{2n}\}\$
- Degree $n + 1$ plus $2n$ critical points means each critical point of index 2

$$
R(z) = R(xi) + C(z - xi)2 + \dots
$$

so real locus is locally a $+$ shape near each x_i

Structure of Real Locus: *If* there exists $R \in \operatorname{CRR}_{n+1}(x)$ the real locus is

- \bullet the real line \mathbb{R} ,
- n non-crossing curves in $\mathbb H$ connecting points in x
- the complex conjugates of those curves

Structure of Real Locus: *If* there exists $R \in \operatorname{CRR}_{n+1}(x)$ the real locus is

- \bullet the real line \mathbb{R} ,
- n non-crossing curves in $\mathbb H$ connecting points in x
- the complex conjugates of those curves

- Given 2n distinct real points x does there exist any $R \in \operatorname{CRR}_{n+1}(x)$?
- If so how many?

- Given 2n distinct real points x does there exist any $R \in \mathrm{CRR}_{n+1}(x)$?
- If so how many?
- Note once you have one $R \in \mathrm{CRR}_{n+1}(x)$ you have infinitely many since

$$
\phi \circ R = \frac{aP + bQ}{cP + dQ} \in \operatorname{CRR}_{n+1}(\boldsymbol{x})
$$

where $\phi(z) = (az + b)/(cz + d)$ is a Möbius transform of H to itself

• Can easily compute that $\Gamma(\phi \circ R) = \Gamma(R)$, so enumeration is done up to equivalence under *post-composition* by PSL(2, R)

- Given 2n distinct real points x does there exist any $R \in \operatorname{CRR}_{n+1}(x)$?
- If so how many?

- Given 2n distinct real points x does there exist any $R \in \mathrm{CRR}_{n+1}(x)$?
- If so how many?
- **Goldberg (1991):** For each fixed x the number of equivalence classes is at most

$$
C_n = \frac{1}{n+1} \binom{2n}{n}
$$

• **Eremenko-Gabrielov (2002) / Mukhin-Tarasov-Varchenko (2009) / Peltola-Wang (2021):** For each fixed x there are exactly C_n distinct equivalence classes

- AKM shows how to grow $\Gamma(R)$ via Loewner flow
- Heavy use of the **poles** of the rational function
- Our results hold *conditionally* on existence of $R \in \operatorname{CRR}_{n+1}(x)$
- Our results do *not* use SLE or Brownian loop measure, but the dynamics of our Loewner flow are best described using SLE terminology

SLE(0, x, ρ) **Loewner Flows**

Definition (SLE(0, x, ρ) **Loewner Flows)**

Let $x \in \mathbb{R}$ and ρ be a finite atomic measure on $\widehat{\mathbb{C}}$ that is symmetric under conjugation. Assume $\rho(x) = 0$. SLE $(0, x, \rho)$ is the Loewner flow

$$
\partial_t g_t(z) = \frac{2}{g_t(z) - x_t}, \quad g_0(z) = z,
$$

where the driving function evolves as

$$
\dot{x}_t = \int_{\mathbb{C}} \frac{d\rho(w)}{x_t - g_t(w)}, \quad x_0 = x.
$$

Note it matches the standard definition of $\text{SLE}(\kappa, x, \rho)$

$$
dx_t = \sqrt{\kappa} \, dB_t + \int_{\mathbb{C}} \frac{d\boldsymbol{\rho}(w)}{x_t - g_t(w)} \, dt, \quad x_0 = x
$$

15/32

SLE(0, x, ρ) **Loewner Flows**

Can superimpose flows coming from different x and ρ

Definition (Superposition of Flows)

Let $\nu_i: [0, \infty) \to [0, \infty)$, $i = 1, \ldots, N$ be measurable. The ν -superposition of the SLE $(0, x_j, \boldsymbol{\rho}_j)$ processes is the superposition of the corresponding flows:

$$
\partial_t g_t(z) = \sum_{j=1}^N \frac{2\nu_j(t)}{g_t(z) - x_j(t)}, \quad g_0(z) = z,
$$

where the driving functions $x_1(t), \ldots, x_N(t)$ evolve as

$$
\dot{x}_j = \nu_j(t) \int_{\mathbb{C}} \frac{d\rho_j(w)}{x_j - g_t(w)} + \sum_{k \neq j} \frac{2\nu_k(t)}{x_j - x_k}, \quad x_j(0) = x_j.
$$

SLE(0, x, ρ) **Loewner Flows**

Examples of superpositions

• Grow only the curve anchored at x_i :

$$
\nu_j \equiv 1, \ \nu_k \equiv 0 \text{ for } k \neq j
$$

• Grow all curves simultaneously:

 $\nu_i \equiv 1$ for all j

• "Adaptive" growth: vary ν_i with t depending on previous growth

Theorem (Alberts-Kang-Makarov 2020)

Let $x = \{x_1, \ldots, x_{2n}\}\$ be distinct real points. Assume $\zeta = \{\zeta_1, \ldots, \zeta_{n+1}\}\subset \widehat{\mathbb{C}}$ is closed under conjugation and solves the **stationary relation**

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad \zeta_k \in \zeta.
$$

Then there exists an $R \in \text{CRR}_{n+1}(x)$ with pole set ζ . Moreover, for

$$
\rho_j=\sum_{k\neq j}2\delta_{x_k}-\sum_{l=1}^{n+1}4\delta_{\zeta_l},\quad j=1,\ldots,2n,
$$

the curves generated by *any* ν -superposition of the SLE $(0, x_j, \boldsymbol{\rho}_j)$ Loewner flows are a subset of $\Gamma(R)$.

- Theorem says the curves generated by any *v*-superposition are a subset of Γ(R), which is a form of **commutation**
- \bullet Dynamics remain well-defined as long as each SLE $(0,x_j, \boldsymbol{\rho}_j)$ process is well-defined or until two driving functions $x_i(t)$ collide
- Dynamics may be extendable past the collision times, and in our situation there is a natural way of doing this

Two main ingredients: stationary relation + associated ρ_i

Two main ingredients: stationary relation + associated ρ_i

• Stationary relation

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad \zeta_k \in \zeta,
$$

and $\zeta = {\zeta_1, \ldots, \zeta_{n+1}}$ are poles of a $R \in \mathrm{CRR}_{n+1}(\bm{x})$

Two main ingredients: stationary relation + associated ρ_i

• Stationary relation

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad \zeta_k \in \zeta,
$$

and $\zeta = \{\zeta_1, \ldots, \zeta_{n+1}\}\$ are poles of a $R \in \mathrm{CRR}_{n+1}(x)$

- Any $R = P/Q \in \text{CRR}_{n+1}(x)$ must have $n+1$ poles
- Complex poles appear in conjugate pairs
- All poles are on the real locus $\Gamma(R)$
- May be a pole at infinity
- Poles are *not* preserved under post-composition of R

Appearance of stationary relation comes from a basic complex analysis result

Theorem

Let $x = \{x_1, \ldots, x_{2n}\}\$ be distinct real points, and $\zeta = \{\zeta_1, \ldots, \zeta_{n+1}\}\subset \widehat{\mathbb{C}}$ be closed under conjugation and distinct from x. There exists an $R \in \mathrm{CRR}_{n+1}(x)$ with pole set ζ iff ζ solves the stationary relation.

Proof is based on partial fraction expansion of R' . Stationary relation is equivalent to R' having no residues at the poles ζ_k .

Of note: Generating solutions to the stationary relation is another way of proving existence of $\mathbb{R} \in \mathrm{CRR}_{n+1}(\bm{x})$

 $\bullet \ \text{ Inserting poles into } \bm{\rho}_j = \sum_{k\neq j} 2\delta_{x_k} - \sum_l 4\zeta_l$ gives

$$
\dot{x}_j = U_j(R) := \sum_{k \neq j} \frac{2}{x_j - x_k} + \sum_{\zeta_k \in \zeta} \frac{4}{\zeta_k - x_j}, \quad j = 1, ..., 2n.
$$

• Can show that the value of U_i is invariant under post-compositions of R

22/32

• Inserting poles into
$$
\boldsymbol{\rho}_j = \sum_{k \neq j} 2 \delta_{x_k} - \sum_l 4 \zeta_l
$$
 gives

$$
\dot{x}_j = U_j(R) := \sum_{k \neq j} \frac{2}{x_j - x_k} + \sum_{\zeta_k \in \zeta} \frac{4}{\zeta_k - x_j}, \quad j = 1, ..., 2n.
$$

• Can show that the value of U_i is invariant under post-compositions of R

Loewner Dynamics for Real Rational Functions

• Inserting poles into
$$
\pmb{\rho}_j = \sum_{k \neq j} 2 \delta_{x_k} - \sum_l 4 \zeta_l
$$
 gives

$$
\dot{x}_j = U_j(R) := \sum_{k \neq j} \frac{2}{x_j - x_k} + \sum_{\zeta_k \in \zeta} \frac{4}{\zeta_k - x_j}, \quad j = 1, ..., 2n.
$$

- Can show that the value of U_i is invariant under post-compositions of R
- Peltola-Wang has a theorem for Loewner flow but less explicit formula for U_i

Loewner Dynamics for Real Rational Functions

• Inserting poles into
$$
\boldsymbol{\rho}_j = \sum_{k \neq j} 2 \delta_{x_k} - \sum_l 4 \zeta_l
$$
 gives

$$
\dot{x}_j = U_j(R) := \sum_{k \neq j} \frac{2}{x_j - x_k} + \sum_{\zeta_k \in \zeta} \frac{4}{\zeta_k - x_j}, \quad j = 1, ..., 2n.
$$

- Can show that the value of U_i is invariant under post-compositions of R
- Peltola-Wang has a theorem for Loewner flow but less explicit formula for U_i
- In Peltola-Wang $U_i(x) = \partial_{x_i}U_{\alpha}(x)$, where $U_{\alpha}(x)$ is the minimal value of the **multichordal Loewner potential**
- Minimal value involves the Brownian loop measure of $\Gamma(R)$ and so is difficult to evaluate explicitly

Loewner Dynamics for Real Rational Functions

Theorem (Alberts-Kang-Makarov 2020)

Functions U_j satisfy $U_j=\partial_{x_j}\log\mathcal{Z}$ where

$$
\mathcal{Z}(\boldsymbol{x}) = \prod_{1 \leq j < k \leq 2n} (x_j - x_k)^2 \prod_{1 \leq l < m \leq n} (\zeta_l(\boldsymbol{x}) - \zeta_m(\boldsymbol{x}))^8 \prod_{k=1}^{2n} \prod_{l=1}^n (x_k - \zeta_l(\boldsymbol{x}))^{-4}
$$

Conclusion is that $\mathcal{Z} = C e^{\mathcal{U}}$, but there is no direct proof (as of yet)

24/32

Using the explicit formula for U_i we are able to show that they solve a system of quadratic equations we call the **null vector equations**

Theorem (Alberts-Kang-Makarov 2020)
\nLet
$$
R \in \operatorname{CRR}_{n+1}(x)
$$
 and
\n
$$
U_j(x) = U_j(R) := \sum_{k \neq j} \frac{2}{x_j - x_k} + \sum_{\zeta_k \in \zeta} \frac{4}{\zeta_k - x_j}, \quad j = 1, ..., 2n.
$$
\nThe functions U_j solve the system of quadratic equations
\n
$$
\frac{1}{2}U_j^2 + \sum_{k \neq j} \frac{2}{x_k - x_j}U_k - \sum_{k \neq j} \frac{6}{(x_k - x_j)^2} = 0, \quad j = 1, ..., 2n
$$

Bernard-Bauer-Kytölla (2005): Classical limit of the **BPZ equations 25/32**

Using the explicit formula for U_i we are able to show that they solve a system of quadratic equations we call the **null vector equations**

Theorem (Alberts-Kang-Makarov 2020)
\nLet
$$
R \in \operatorname{CRR}_{n+1}(x)
$$
 and
\n
$$
U_j(x) = U_j(R) := \sum_{k \neq j} \frac{2}{x_j - x_k} + \sum_{\zeta_k \in \zeta} \frac{4}{\zeta_k - x_j}, \quad j = 1, ..., 2n.
$$
\nThe functions U_j solve the system of quadratic equations
\n
$$
\frac{1}{2}U_j^2 + \sum_{k \neq j} \frac{2}{x_k - x_j}U_k - \sum_{k \neq j} \frac{6}{(x_k - x_j)^2} = 0, \quad j = 1, ..., 2n
$$

A-Kang-Makarov (2022+): Commutation + conformal invariance \implies NVE $\bigcup_{26/32}$

Proof (Null Vector Equations):

27/32

Proof (Null Vector Equations):

• R' has a rational primitive implies the **stationary relation**

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad \zeta_k \in \zeta
$$

Proof (Null Vector Equations):

• R' has a rational primitive implies the **stationary relation**

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad \zeta_k \in \zeta
$$

 $\bullet\,$ Based on partial fraction expansion of R^\prime :

$$
R = \frac{P}{Q} \implies R'(z) = \frac{P'Q - PQ'}{Q^2}(z) = \frac{\prod_{i=1}^{2n} (z - x_i)}{\prod_k (z - \zeta_k)^2}
$$

Proof (Null Vector Equations):

• R' has a rational primitive implies the **stationary relation**

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad \zeta_k \in \zeta
$$

 $\bullet\,$ Based on partial fraction expansion of R^\prime :

$$
R = \frac{P}{Q} \implies R'(z) = \frac{P'Q - PQ'}{Q^2}(z) = \frac{\prod_{i=1}^{2n} (z - x_i)}{\prod_k (z - \zeta_k)^2}
$$

• algebra

Loewner Flow for Real Rational Functions

Summary:

- Expressing Loewner vector fields in terms of poles is beneficial
- Simple formulas for Loewner flow vector fields and solutions to null vector equations
- Our statements and proofs are *not* probabilistic, but idea of looking at the poles is motivated by Gaussian free field based Conformal Field Theory

Multiple SLE(0) **and Calogero-Moser Dynamics**

Classical Calogero-Moser Dynamics

One-dimensional many-body problem that is **integrable** and **solvable**

$$
\ddot{x}_j = \sum_{k \neq j} \frac{2}{(x_j - x_k)^3}
$$

Hamiltonian system with Hamiltonian given by

$$
\mathcal{H}(\mathbf{x}, \mathbf{p}) = \frac{1}{2} \sum_{j} p_j^2 + \sum_{j < k} \frac{1}{(x_j - x_k)^2}
$$

Leads to the standard equations of motion

$$
\dot{x}_j = \frac{\partial \mathcal{H}}{\partial p_j} = p_j, \quad \dot{p}_j = \ddot{x}_j = \frac{2}{(x_j - x_k)^3}
$$

29/32

Classical Calogero-Moser Dynamics

29/32

Theorem (Alberts-Kang-Makarov 2020)

Let $x = \{x_1, \ldots, x_{2n}\}\$ be distinct real points and $\zeta = \{\zeta_1, \ldots, \zeta_{n+1}\}\subset \widehat{\mathbb{C}}$ be closed under conjugation and solve the **stationary relation**. Under the 1/4 superposition of the SLE $(0, x_j, \boldsymbol{\rho}_j)$ processes

$$
\ddot{x}_j = -\sum_{k \neq j} \frac{2}{(x_j - x_k)^3}.
$$

 $1/4$ -superposition of SLE $(0,x_j, \boldsymbol{\rho}_j)$ gives the coupled system

$$
\dot{x}_j = \sum_{k \neq j} \frac{1}{x_j - x_k} - \sum_k \frac{1}{x_j - \zeta_k},
$$

$$
\dot{\zeta}_k = -\sum_{l \neq k} \frac{1}{\zeta_k - \zeta_l} + \sum_j \frac{1}{\zeta_k - x_j}.
$$

Differentiating and stationary relation leads to Calogero-Moser

 $1/4$ -superposition of SLE $(0,x_j, \boldsymbol{\rho}_j)$ gives the coupled system

$$
\dot{x}_j = \sum_{k \neq j} \frac{1}{x_j - x_k} - \sum_k \frac{1}{x_j - \zeta_k},
$$

$$
\dot{\zeta}_k = -\sum_{l \neq k} \frac{1}{\zeta_k - \zeta_l} + \sum_j \frac{1}{\zeta_k - x_j}.
$$

 $1/4$ -superposition of SLE $(0,x_j, \boldsymbol{\rho}_j)$ gives the coupled system

$$
\dot{x}_j = \sum_{k \neq j} \frac{1}{x_j - x_k} - \sum_k \frac{1}{x_j - \zeta_k},
$$

$$
\dot{\zeta}_k = -\sum_{l \neq k} \frac{1}{\zeta_k - \zeta_l} + \sum_j \frac{1}{\zeta_k - x_j}.
$$

Gives two ways of describing the Loewner evolution that generates $\Gamma(R)$:

- as two coupled first order systems of ODEs, with the underlying vector field determined by the poles and critical points of R , and
- via an autonomous second order Calogero-Moser system for the critical points that has no reference to the poles, *but* must be started with very particular initial momenta.

Generate curves via

$$
\partial_t g_t(z) = \sum_{j=1}^{2n} \frac{1/2}{g_t(z) - x_j(t)}, \quad \ddot{x}_j = -\sum_{k \neq j} \frac{2}{(x_j - x_k)^3}
$$

Generate curves via

$$
\partial_t g_t(z) = \sum_{j=1}^{2n} \frac{1/2}{g_t(z) - x_j(t)}, \quad \ddot{x}_j = -\sum_{k \neq j} \frac{2}{(x_j - x_k)^3}
$$

Theorem (Alberts-Kang-Makarov 2022+)

Necessary condition for generated curves to be in the real locus of a real rational function is that $x(0)$, $\dot{x}(0)$ satisfy, for $j = 1, \ldots, 2n$,

$$
\dot{x}_j^2 - \sum_{k \neq j} \frac{\dot{x}_j + \dot{x}_k}{x_j - x_k} - \sum_{k \neq j} \frac{1}{(x_j - x_k)^2} + \frac{1}{2} \sum_{k \neq j} \sum_{l \neq k} \frac{1}{(x_j - x_k)(x_j - x_l)} = 0,
$$

32/32

Generate curves via

$$
\partial_t g_t(z) = \sum_{j=1}^{2n} \frac{1/2}{g_t(z) - x_j(t)}, \quad \ddot{x}_j = -\sum_{k \neq j} \frac{2}{(x_j - x_k)^3}
$$

Theorem (Alberts-Kang-Makarov 2022+)

Necessary condition for generated curves to be in the real locus of a real rational function is that $x(0)$, $\dot{x}(0)$ satisfy, for $j = 1, \ldots, 2n$,

$$
\dot{x}_j^2 - \sum_{k \neq j} \frac{\dot{x}_j + \dot{x}_k}{x_j - x_k} - \sum_{k \neq j} \frac{1}{(x_j - x_k)^2} + \frac{1}{2} \sum_{k \neq j} \sum_{l \neq k} \frac{1}{(x_j - x_k)(x_j - x_l)} = 0,
$$

Show this condition is preserved under Hamiltonian flow using the **Lax pair**

32/32

Geodesic Multichord Property

Geodesic Multichord Property

Theorem (Alberts-Kang-Makarov 2022+) If $R \in \text{CRR}_{n+1}(\boldsymbol{x})$ then $\Gamma(R)$ satisfies the geodesic multichord property.

"Converse" to Peltola-Wang argument that geodesic multichords are the real loci of real rational functions

Geodesic Multichord Property

Proof is inductive and based on a preservation property of Loewner flows

Theorem (Alberts-Kang-Makarov 2022+) Let $R \in \text{CRR}_{n+1}(x)$ and $\zeta_1, \ldots, \zeta_{n+1}$ be the poles of R. Then $R \circ g_t^{-1} \in \operatorname{CRR}_{n+1}(\boldsymbol{x}(t))$ for any $\boldsymbol{\nu}$ -superposition of the SLE $(0, x_j, \boldsymbol{\rho}_j)$ flows

This is a consequence of our integral of motion result

14 points chosen as critical points

Real locus of any $R \in \text{CRR}_8(x)$ consists of 7 curves connecting the 14 points in some non-crossing way

Want to show the pink highlighted curve is a hyperbolic geodesic in the shaded region. Use a Möbius inversion to expose pink curve to ∞ .

Image of curves under Möbius inversion ϕ . Is also $\Gamma(R \circ \phi^{-1})$, noting that $R \circ \phi^{-1} \in \text{CRR}_8(\phi(\boldsymbol{x})).$

Use superposition of SLE $(0,x_j, \boldsymbol{\rho}_j)$ flows to grow curves that border the shaded region. Previous theorem shows that $R \circ \phi^{-1} \circ g_t^{-1}$ is also a real rational function. Limiting argument shows $R \circ \phi^{-1} \circ g_\tau^{-1}$ is also real rational function with only two critical points, where τ is the time at which all green curves simultaneously complete.

 $\Gamma(R \circ \phi^{-1} \circ g_{\tau}^{-1})$, which is also the image of the original pink curve under $g_{\tau} \circ \phi$. Since $R\circ \phi^{-1}\circ g_\tau^{-1}$ is real rational with only two critical points can directly compute that it is the hyperbolic geodesic in H. Conformal invariance of hyperbolic geodesics completes the proof.

Conformal Field Theory Motivation

From CFT to Real Rational Functions

Two main ideas

- $\bullet \ \kappa \to 0+$ limits of the **method of screening** for solutions to BPZ equations
- Gaussian free field as a **martingale observable** for the multiple $\mathsf{SLE}(\kappa; \boldsymbol{x}; \alpha)$ process under Loewner evolution, and its $\kappa \to 0+$ limit

Multiple SLE(κ) **Driving Functions**

A single arm of a multiple $SLE(\kappa)$ ensemble has driving function

$$
dx_j(t) = \sqrt{\kappa} dB_t + \kappa (\partial_{x_j} \log Z)(\boldsymbol{x}(t)), \quad x_k(t) = g_t(x_k)
$$

Dubédat: Commutation $\implies Z = Z(x;\kappa)$ solves the BPZ equations: a system of $2n$ linear partial differential equations

Two standard ways of constructing solutions $Z = Z(x)$:

- reweighting independent SLEs via **Brownian loop measure** terms (Lawler, Lawler/Kozdron)
- contour integration/the method of **screening**/Coulomb gas integrals (Dubédat, Flores/Kleban, Kytölla/Peltola)

Large deviations come from limits of $\kappa \partial_{x_j} \log Z$ as $\kappa \to 0$

Solutions via Method of Screening

Introduce $\boldsymbol{\zeta}=(\zeta_1,\ldots,\zeta_n)\in\mathbb{C}^n$ and define

$$
Z^{p}(\boldsymbol{x},\boldsymbol{\zeta}) = \prod_{i \neq j} (x_i - x_j)^{2/\kappa} \prod_{i \neq j} (\zeta_i - \zeta_j)^{8/\kappa} \prod_{i,j} (x_i - \zeta_j)^{-4/\kappa}
$$

Solutions via Method of Screening

Introduce $\boldsymbol{\zeta}=(\zeta_1,\ldots,\zeta_n)\in\mathbb{C}^n$ and define

$$
Z^{p}(\boldsymbol{x}, \zeta) = \prod_{i \neq j} (x_i - x_j)^{2/\kappa} \prod_{i \neq j} (\zeta_i - \zeta_j)^{8/\kappa} \prod_{i,j} (x_i - \zeta_j)^{-4/\kappa}
$$

For appropriate contours C_1, \ldots, C_n

$$
\boldsymbol{x} \mapsto \oint_{\mathcal{C}_1} \ldots \oint_{\mathcal{C}_n} Z^p(\boldsymbol{x}, \boldsymbol{\zeta}) \, d\zeta_1 \ldots d\zeta_n =: Z(\boldsymbol{x}; \kappa)
$$

solves the BPZ equations.

Solutions via Method of Screening

Introduce $\boldsymbol{\zeta}=(\zeta_1,\ldots,\zeta_n)\in\mathbb{C}^n$ and define

$$
Z^{p}(\boldsymbol{x},\boldsymbol{\zeta}) = \prod_{i \neq j} (x_i - x_j)^{2/\kappa} \prod_{i \neq j} (\zeta_i - \zeta_j)^{8/\kappa} \prod_{i,j} (x_i - \zeta_j)^{-4/\kappa}
$$

For appropriate contours C_1, \ldots, C_n

$$
\boldsymbol{x} \mapsto \oint_{\mathcal{C}_1} \ldots \oint_{\mathcal{C}_n} Z^p(\boldsymbol{x}, \boldsymbol{\zeta}) \, d\zeta_1 \ldots d\zeta_n =: Z(\boldsymbol{x}; \kappa)
$$

solves the BPZ equations. Ideal for **steepest descent**. As $\kappa \to 0$ integrals concentrate on poles of the rational function

$$
\kappa \log Z(\boldsymbol{x}; \kappa) \xrightarrow{\kappa \to 0} \sum_{i \neq j} \log(x_i - x_j)^2 + \sum_{i \neq j} \log(\zeta_i(\boldsymbol{x}) - \zeta_j(\boldsymbol{x}))^8 + \sum_{i,j} \log(x_i - \zeta_j(\boldsymbol{x}))^{-4}
$$

and $U_j=\partial_{x_j}(\textsf{RHS})$

Method of Screening and Integrals of Motion

Given x, ζ and $z \in \mathbb{H}$

 $\Phi(z; \mathbf{x}, \zeta; \kappa) =$ harmonic extension of boundary conditions determined by $\mathbf{x}, \zeta, \kappa$

Then it can be shown that

$$
\oint_{\mathcal{C}_1} \ldots \oint_{\mathcal{C}_n} \Phi(z; \boldsymbol{x}, \boldsymbol{\zeta}; \kappa) \, d\boldsymbol{\zeta} \bigg| \bigg| \, g_t^{-1}
$$

is a martingale for the multiple $SLE(\kappa; x)$ process

Apply stationary phase to get an integral of motion for multiple SLE $(0; x; \alpha)$

Method of Screening and Integrals of Motion

Theorem (Alberts-Kang-Makarov 2020)

For any ν -superposition of SLE $(0, x_j, \boldsymbol{\rho}_j)$ processes the quantities

$$
g'_t(z) \frac{\prod_{j=1}^{2n} (g_t(z) - x_j(t))}{\prod_{k=1}^{n+1} (g_t(z) - g_t(\zeta_k(x)))^2}
$$

are integrals of motion, for each $z \in \mathbb{H}$.

This does *not* require ζ to satisfy the stationary relation

When stationary relation is satisfied, integral of motion is key in the proof that generated hull is in $\Gamma(R)$

Integral of motion also leads to **geodesic multichord property** for Γ(R)

Open Questions

Critical Points of Higher Multiplicities

Throughout we've assumed $R = P/Q$ is real rational with critical points $x = (x_1, \ldots, x_{2n})$, and critical points are order 1, i.e.

$$
R'(z) \sim C(z - x_i), \quad z \to x_i
$$

What about higher multiplicities?

Critical Points of Higher Multiplicities

Throughout we've assumed $R = P/Q$ is real rational with critical points $x = (x_1, \ldots, x_{2n})$, and critical points are order 1, i.e.

$$
R'(z) \sim C(z - x_i), \quad z \to x_i
$$

What about higher multiplicities?

Natural Time Parameterizations

$$
\partial_t g_t(z) = \sum_{j=1}^{2n} \frac{2\nu_j(t)}{g_t(z) - x_j(t)}, \quad g_0(z) = z, \quad x_j(0) = x_j
$$

where $\boldsymbol{x}(t) = (x_1(t), \ldots, x_{2n}(t))$ evolve according to

$$
\dot{x}_j(t) = U_j(R \circ g_t^{-1}) \nu_j(t) + \sum_{k \neq j} \frac{2\nu_k(t)}{x_j(t) - x_k(t)}, \quad j = 1, ..., 2n.
$$

Enumeration: Solutions to Stationary Equation

Fix $x = (x_1, \ldots, x_{2n})$. Up to permutation of coordinates, how many solutions $\boldsymbol{\zeta}=(\zeta_1,\ldots,\zeta_n)\in\mathbb{C}^n$ are there to the stationary relation

$$
\sum_{j=1}^{2n} \frac{1}{\zeta_k - x_j} = \sum_{l \neq k} \frac{2}{\zeta_k - \zeta_l}, \quad k = 1, \dots, n?
$$

Goldberg + Eremenko-Gabrielov/Peltola-Wang implies there should be exactly C_n , i.e. solutions are enumerated by link patterns

Is there a way to generate all solutions from one particular solution?

Enumeration: Solutions to Null Vector Equations

Fix $x = (x_1, \ldots, x_{2n})$. Can one directly enumerate the number of (real) solutions (U_1, \ldots, U_{2n}) to the null vector equations

$$
\frac{1}{2}U_j^2 + \sum_{k \neq j} \frac{2}{x_k - x_j} U_k - \sum_{k \neq j} \frac{6}{(x_k - x_j)^2} = 0, \quad j = 1, \dots, 2n
$$

and conformal Ward identities

$$
\sum_{j=1}^{2n} U_j = 0, \quad \sum_{j=1}^{2n} x_j U_j = -6n, \quad \sum_{j=1}^{2n} x_j^2 U_j = -6 \sum_{j=1}^{2n} x_j.
$$

Actual Pictures

Multiple SLE(0)

Multiple SLE(0)

