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Background and motivation
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The brownian map

General idea
The Brownian map is the “canonical” model for a metric space chosen “uniformly
at random” among metric spaces which have the topology of the two-dimensional
sphere S2.

Gromov-Hausdorff scaling limit of a large class of planar maps chosen
uniformly at random.

I Triangulations and 2p-angulations with n faces [Le Gall ’13]
I Quadrangulations with n faces [Miermont ’13]
I Bipartite planar maps, random simple triangulations and quadrangulations, ...

[Abraham, Addario-Berry, Albenque, Bettinelli, Jacob, Miermont, ...]

Denoted by (S, d , ν).

Homeomorphic to the sphere S2 [Le Gall and Paulin ’08] (also see a later
proof [Miermont ’08])

Hausdorff dimension equal to 4 [Le Gall ’07]

Equivalent as a metric measure space to
√

8/3-LQG (Liouville quantum
gravity) [Miller and Sheffield ’16 and ’20], which serves to canonically embed
the Brownian map into S2.
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Approximation by quadrangulation

Image by Jérémie Bettinelli
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Classification of all geodesics to the root
[Le Gall ’10] Let ρ ∈ S be a distinguished point called the root. The following
holds a.s.

For ν-a.e. point z ∈ S, there is a unique geodesic between z and ρ.

Every point in S is connected to ρ by at most 3 geodesics. The set of points
connected by 2 or 3 geodesics to ρ is dense in S and has ν-mesure zero.

The set of points connected by 2 geodesics to ρ has dimension 2. The set of
points connected by 3 geodesics to ρ has dimension 0, and is countable.

ρ ρ
z1

z2
z1z2

Confluence of geodesics at the root.

ρ

z1

z2

This plays a major role in the works that identify the Brownian map as the scaling
limit of uniform random maps [Le Gall] and [Miermont], as well as in the proof of
the equivalence of

√
8/3-LQG with the Brownian map [Miller and Sheffield].

The law of (S, d , ν, ρ) is invariant if we resample ρ independently according
to ν.
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Wei Qian (CNRS, Université Paris-Saclay) Geodesics in the Brownian map MSRI Introductory Workshop 6 / 38



Classification of all geodesics to the root
[Le Gall ’10] Let ρ ∈ S be a distinguished point called the root. The following
holds a.s.

For ν-a.e. point z ∈ S, there is a unique geodesic between z and ρ.

Every point in S is connected to ρ by at most 3 geodesics. The set of points
connected by 2 or 3 geodesics to ρ is dense in S and has ν-mesure zero.

The set of points connected by 2 geodesics to ρ has dimension 2. The set of
points connected by 3 geodesics to ρ has dimension 0, and is countable.

ρ ρ
z1

z2
z1z2

Confluence of geodesics at the root.

ρ

z1

z2

This plays a major role in the works that identify the Brownian map as the scaling
limit of uniform random maps [Le Gall] and [Miermont], as well as in the proof of
the equivalence of

√
8/3-LQG with the Brownian map [Miller and Sheffield].

The law of (S, d , ν, ρ) is invariant if we resample ρ independently according
to ν.
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Geodesics between exceptional points ?

a

[Angel, Kolesnik and Miermont ’17] (j , k)-normal network

z1 z2

Figure – A (3, 2)-normal network

The set of pairs of points connected by a (j , k)-normal network is non-empty
if and only if j , k ∈ {1, 2, 3}.
The set of pairs of points connected by a (j , k)-normal network has
dimension 12− 2(j + k).

The set of pairs of points connected by a (3, 3)-normal network is dense and
countable.

However, there exist other exceptional points between which the collection of
geodesics has a topology which is not that of a normal network.

AKM also proves a strong version of the confluence of geodesics. This version
is also associated with typical points and does not apply to all geodesics.
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All geodesics in the brownian map

The best results were obtained by Le Gall and AKM. No result at all about all
geodesics at the same time. The most basic questions were unknown.

Are there pairs of points which are connected by infinitely many geodesics ?

Is there any point from which infinitely many disjoint (except at the starting
point) geodesics emanate ?

Figure – A geodesic star

What topology of geodesics can there be between two points ?

Our goal is to answer these questions and to provide a global description of the
behavior of all geodesics at the same time.
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Strong confluence of geodesics
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Strong confluence of geodesics

The confluence of geodesics at the root does not occur for all points of the
Brownian map.

We show that a different form of the confluence of geodesics phenomenon
which holds simultaneously for all geodesics in the Brownian map.

Definition (Hausdorff distance)

Let X be a metric space. For all A ⊆ X and ε > 0, let A(ε) = ∪x∈AB(x , ε) be the
ε-neighborhood of A. The Hausdorff distance between two closed sets A,B ⊆ X is
defined to be

dH(A,B) = inf{ε > 0 : A ⊆ B(ε), B ⊆ A(ε)}.
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Strong confluence of geodesics

Theorem 1 (Miller, Q. ’20)

The following holds for µBM a.e. instance of Brownian map (S, d , ν). For each
u > 0, there exists ε0 > 0 such that for all ε ∈ (0, ε0), the following holds. Let
δ = ε1−u. Suppose that ηi : [0,Ti ]→ S for i = 1, 2 are two geodesics with
Ti = d(ηi (0), ηi (Ti )) ≥ 2δ and

dH(η1([0,T1]), η2([0,T2])) ≤ ε,

then
ηi ([δ,Ti − δ]) ⊆ η3−i for i = 1, 2.

T1, T2 ≥ 2δ

≤ δ ≤ δ

forbidden
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Strong confluence of geodesics (more precise version)

Definition (interior-internal metric)

Let (X , d) be a metric space and S ⊆ X . Let dS be the interior-internal metric on
S , whereby dS(u, v) is given by the infimum of the d-length of paths which are
contained in the interior of S , except possibly their endpoints.

Definition (One-sided Hausdorff distance)

Let η1, η2 be two geodesics of (S, d , ν). Then S \ η1 is a simply connected set
whose boundary is the union of the left and right sides of η1, which we denote by
ηL1 and ηR1 . Let `L (resp. `R) be the Hausdorff distance between ηL1 (resp. ηR1 ) and
η2 \ η1 with respect to the interior-internal metric dS\η1

. We define the one-sided
Hausdorff distance from η1 to η2 by

d1
H(η1, η2) = min(`L, `R).

We always have
dH(η1, η2) ≤ d1

H(η1, η2).
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Strong confluence of geodesics (more precise version)

η1(0)
η1(T1)

η2(0) η2(T2)

η1 η2

Theorem 2 (Miller, Q. ’20)

There exists c > 0 such that the following holds for µBM a.e. instance of
Brownian map (S, d , ν). There exists ε0 > 0 such that for all ε ∈ (0, ε0), the
following holds. Let δ = cε log ε−1. Suppose that ηi : [0,Ti ]→ S for i = 1, 2 are
two geodesics with Ti = d(ηi (0), ηi (Ti )) ≥ 2δ and

d1
H(η1([0,T1]), η2([0,T2])) ≤ ε,

then
ηi ([δ,Ti − δ]) ⊆ η3−i for i = 1, 2.

Wei Qian (CNRS, Université Paris-Saclay) Geodesics in the Brownian map MSRI Introductory Workshop 13 / 38



Strong confluence of geodesics (more precise version)

η1(0)
η1(T1)

η2(0) η2(T2)

η1 η2

Theorem 2 (Miller, Q. ’20)

There exists c > 0 such that the following holds for µBM a.e. instance of
Brownian map (S, d , ν). There exists ε0 > 0 such that for all ε ∈ (0, ε0), the
following holds. Let δ = cε log ε−1. Suppose that ηi : [0,Ti ]→ S for i = 1, 2 are
two geodesics with Ti = d(ηi (0), ηi (Ti )) ≥ 2δ and

d1
H(η1([0,T1]), η2([0,T2])) ≤ ε,

then
ηi ([δ,Ti − δ]) ⊆ η3−i for i = 1, 2.
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Strong confluence of geodesics (more precise version)

We believe that the order of magnitude ε log ε−1 is optimal in Theorem 2.

Theorem 2 =⇒ Theorem 1.
I It is enough to consider the case where η1 and η2 do not cross each other.
I There are at most ε−u bottlenecks along a geodesic.
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Geometric structure of geodesics
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Intersection behavior of geodesics

Theorem 3 (Miller, Q. ’20)

The following holds for µBM a.e. instance of Brownian map (S, d , ν). Suppose
that ηi : [0,Ti ]→ S for i = 1, 2 are two geodesics, then η1((0,T1)) ∩ η2((0,T2))
is connected.

The following configurations are impossible.

z1 z2
z3 z4

z1
z2

z3
z4

The following configurations are not ruled out.

z1 z2
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Geodesic stars

Let Ψk be the set of k-star points.

Figure – A 5-star point

Theorem 4 (Miller, Q. ’20)

The following holds for µBM a.e. instance of Brownian map (S, d , ν). The set Ψk

is empty for k ≥ 6. For 1 ≤ k ≤ 5, we have

dimH(Ψk) ≤ 5− k .

The k-star points played an essentiel role in the proof of the convergence of
the quadrangulations towards the Brownian map in [Miermont ’13]

[Miermont ’13] conjectured that there exist k-star points for 1 ≤ k ≤ 4, and
there do not exist k-star points for k ≥ 6.

The matching lower bounds were recently proved by Le Gall.

It is still an open question whether there exist 5-star points.
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Topology of geodesics between a pair of points
Theorems 3 and 4 together reduce the possible configurations of geodesics
between any pair of points to a finite number of cases up to homeomorphism.

We will further reduce the number of possible configurations, and then give a
dimension upper bound for the set of pairs of points connected by each
configuration (up to homeomorphism).

Definition (Splitting point)

For u, v ∈ S distinct, we say that z is a splitting point from v to u of multiplicity
at least k, if there exist 0 < r < t < d(u, v) and geodesics η1, . . . , ηk+1 from v to
u such that ηi (t) = z for all 1 ≤ i ≤ k + 1 and

ηi ([t − r , t]) = ηj([t − r , t]), ηi ((t, t + r ]) ∩ ηj((t, t + r ]) = ∅

for all 1 ≤ i < j ≤ k + 1. The multiplicity of z is equal to the largest integer k
such that the property above holds.

v u

z2

z1
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Topology of geodesics between a pair of points

Theorem 5 (Miller, Q. ’20)

The following holds for µBM a.e. instance of Brownian map (S, d , ν). For all
u, v ∈ S distinct, every geodesic from v to u contains at most two splitting points
from v to u, and the multiplicity of each splitting point is 1. Let ΦI ,J,K be the set
of (u, v) such that u, v ∈ S are distinct and there exists r > 0 so that the
following holds.

1 There are geodesics η1, . . . , ηI from u to v such that the sets ηi ((0, r)) for
1 ≤ i ≤ I are pairwise disjoint.

2 There are geodesics η1, . . . , ηJ from v to u such that the sets ηi ((0, r)) for
1 ≤ i ≤ J are pairwise disjoint.

3 There are K splitting points from v to u.

If 11− (I + 2J + K ) ≥ 0, then

dimH(ΦI ,J,K ) ≤ 11− (I + 2J + K ).

Otherwise ΦI ,J,K = ∅.
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i = 1 i = 2 i = 3 i = 4 i = 5

i = 6 i = 7 i = 8 i = 9

u

v

(1, 1, 0) (2, 1, 1) (3, 1, 2) (2, 2, 1) (3, 2, 2)

(3, 2, 2) (3, 3, 2) (3, 3, 2) (3, 3, 2)

Figure – Optimal configurations and the associated triplets (I , J,K)
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Topology of geodesics between a pair of points

The asymmetry between I and J in Theorem 5 is due to the asymmetry in
the definition of a splitting point.

In the language of [Angel, Kolesnik and Miermont ’17], if u and v are
connected by a (j , k)-normal network, then I = j , J = k and K = j − 1.
Theorem 5 implies that the dimension of such pairs (u, v) is at most

11− (j + 2k + (j − 1)) = 12− 2(j + k),

equal to the dimension computed in [Angel, Kolesnik and Miermont ’17].
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Number of geodesics between a pair of points

Let Φi be the set of pairs of distinct points in S that are connected by exactly i
geodesics.

Theorem 6 (Miller, Q. ’20)

The following holds for µBM a.e. instance of Brownian map (S, d , ν). The set Φi

is empty if i ≥ 10. For 1 ≤ i ≤ 9, we have

dimH(Φ1) = 8, dimH(Φ2) = 6, dimH(Φ3) = 4, dimH(Φ4) = 4

dimH(Φ5) = 2, dimH(Φ6) = 2, dimH(Φ7) = 0, dimH(Φ8) = 0, dimH(Φ9) = 0.

The sets Φ7,Φ8,Φ9 are countably infinite. For all 1 ≤ i ≤ 9, the set of points
u ∈ S such that there exists v ∈ S with (u, v) ∈ Φi is dense in S.
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Number of geodesics between a pair of points

The upper bounds in Theorem 6 follow from Theorem 5 and the optimal
configurations.

The lower bounds in Theorem 6 and the description of Φ7,Φ8,Φ9 are obtained
as follows :

For i ∈ {2, 3, 4, 6, 9} : By [Angel, Kolesnik and Miermont ’17], the dimension
of the pairs of points connected by a (j , k)-normal network is 12− 2(j + k).
Since (j , k)-normal networks ⊆ Φjk , this gives the lower bounds of dimH(Φi )
for i ∈ {2, 3, 4, 6}.
It was shown in [Angel, Kolesnik and Miermont ’17] that there is a dense and
countably infinite set of points connected by a (3, 3)-normal network.
Theorem 5 shows that there do not exist other configurations leading to 9
geodesics.

For i ∈ {5, 7, 8}, the optimal configurations are not normal networks. We will
use different techniques to deal with these cases.
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Approximation by geodesics between typical points
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Approximation by geodesics between typical points

Theorem 7 (Miller, Q. ’20)

The following holds for µBM a.e. instance of Brownian map (S, d , ν). For every
geodesic η : [0,T ]→ S, every 0 < s < t < T and ε > 0, there exists δ > 0 such
that every geodesic ξ : [0,S ]→ S with ξ(0) ∈ B(η(s), δ) and ξ(S) ∈ B(η(t), δ)
satisfies

ξ([ε,S − ε]) ⊆ η et η([s + ε, t − ε]) ⊆ ξ.

η(0)
η(T )

η(s) η(t)

ξ(0) ξ(S)

We can choose the points ξ(0) and ξ(S) to be ν-typical, which implies that every
geodesic of the Brownian map can be arbitrarily well approximated by a geodesic
between typical points.
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Geodesic frame

The geodesic frame GF(S) is the union of all the geodesics in S minus their
endpoints.

Clearly, dimH GF(S) ≥ 1.

Conjecture : dimH GF(S) = 1. [Angel, Kolesnik and Miermont ’17]

Corollary 8 (Miller, Q. ’20)

For µBM a.e. instance of Brownian map (S, d , ν), we have dimH GF(S) = 1.
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Gaussian free field h. The
color represents the height
of h.

The metric of
√

8/3-LQG
is given by

e
√

8/3h(x)(dx2 + dy2).

The length of each path P
is given by∑

x∈P

e
√

8/3h(x)/4.
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Ideas of the proofs
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Main idea : depth-first vs. breadth-first

The proofs of previous results (e.g. [Le Gall ’10] and [Angel, Kolesnik and
Miermont ’17]) primarily make use of the Brownian snake encoding of the
Brownian map, see [Chassaing and Schaeffer ’04], [Marckert and Mokkadem ’06]
and [Le Gall ’07].

Analogous to the Cori-Vauquelin-Schaeffer bijection for the quadrangulations.

The Brownian map is constructed from a labeled continuous random tree
(CRT). [Aldous ’91, ’93]

This corresponds to the depth-first exploration of the Brownian map. This leads
to very precise description of the geodesics to the root.
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Main idea : depth-first vs. breadth-first

Our work primarily make use of the breadth-first exploration of the Brownian
map.

Analogous to the peeling by layers of random planar maps. [Ambjørn,
Durhuus, Jonsson and Jonsson ’97], [Watabiki ’95] and [Angel ’03]

Various aspects in the discret and in the continuum were developed by
Bertoin, Budd, Curien, Kortchemski, Le Gall, Miller and Sheffield, and so on.

We will in particular use the setting and results from [Miller and Sheffield ’15]
“An axiomatic characterization of the Brownian map”

Particularly amenable for establishing independence properties along
geodesics.
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Depth-first exploration of the Brownian map

Brownian excursion on [0, 1]

Continuous random tree Geodesic tree

x

y
y

x

The root x and the dual root y are distributed as two independently chosen
points in S according to ν.

This construction gives µA=1
BM . The mesure µBM is constructed by first

choosing the time length of the excursion according to the infinite measure
ct−3/2dt, and then sampling a Brownian excursion on [0, t].
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Breadth-first exploration of the Brownian map

Let (S, d , ν, x , y) be sampled from µBM. Let B•y (x , r) be the metric ball of radius
r centred at x and filled with respect to y . We can associate a boundary length Lr
to ∂B•y (x , r).

Fact

The process (Ld(x,y)−r , 0 ≤ r ≤ d(x , y)) is distributed as a continuous state
branching process (CSBP) with parameter 3/2.

x
y
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Continuous state branching process (CSBP)
Introduced in [Jǐrina ’58], also studied in [Lamperti ’67]. Also see the more
recent expository texts [Le Gall ’99] and [Kyprianou ’06].

It is defined via the Lamperti transform. If (Xs) is an α-stable Lévy process
with only upward jumps and

s(t) = inf
{
r > 0 :

∫ r

0

1

Xu
du ≥ t

}
,

then Yt := Xs(t) is an α-CSBP.

The transition kernel of Y satisfies

Pt(x1 + x2, ·) = Pt(x1, ·) ∗ Pt(x2, ·).

(YCα−1t) is equal in distribution to (CYt).

One can also define an excursion measure for α-stable CSBP by doing the
Lamperti transform to an α-stable Lévy excursion sampled as follows :

I Pick a lifetime t from the infinite measure t−1−1/αdt
I Given t, sample an α-stable Lévy excursion.

In the Brownian map (S, d , ν, x , y) sampled from µBM, we have t = d(x , y).
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Decomposition into metric bands

Fix 0 < r1 < r2 < · · · < rk . For each 1 ≤ j ≤ k,
Bj := B•y (x , d(x , y)− rj) \ B•y (x , d(x , y)− rj+1) is a metric space with
interior-internal metric dBj and the measure νBj := ν|Bj .
On the event d(x , y) > rj , Bj is non-empty, and is either an annulus if
d(x , y) > rj+1 or a topological disk if d(x , y) ≤ rj+1.

Bj is independent of B1, . . . ,Bj−1, conditionally on the length of ∂InBj .

The boundary ∂InBj is naturally marked by the unique point visited by the unique
geodesic between x and y . The quanity rj+1 − rj is called the width of Bj .

x
y

Bj ∂InBj

∂OutBj

Bj+1
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Sketch of the proof of strong confluence

Step 1 : A weaker version of the strong confluence.

If two geodesics are sufficiently close with respect to the one-sided Hausdorff
distance, then they should intersect each other near their endpoints.

x y
η(t)

η1

η2

For two ν-typical points x , y , with overwhelming probability, there are many
x’s along the geodesic η between x and y . Every branch of an x is the
unique geodesic between its endpoints.

In each metric band, there is a positive probability that an x occurs.

If η̃ crosses an x centred on η(t), then η̃ also intersects η(t).

If η̃1 and η̃2 are close to each other, then one can find a geodesic η between
η̃1 and η̃2.
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Open questions
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Open questions
Establish the dimension lower bound for the following configurations (the
dimension upper bound is given by 11− (I + 2J + K ) ≥ 0).

(2, 2, 0) (3, 3, 0)(3, 2, 1) (4, 2, 2)(3, 3, 1) (3, 3, 1) (4, 2, 2)(4, 3, 1)

Do the six last configurations exist ?

Do there exist 5-star points ?

Geodesics to the boundary of the Brownian disk (work in progress with T.
He).

Recent works [Gwynne ’20] and [Gwynne, Pfeffer, Sheffield ’20] prove the
analogues of [Le Gall ’10] and [Angel, Kolesnik, Miermont ’17] for the γ-LQG
for γ ∈ (0, 2).
The analogue of our results remain open for the LQG. We believe that a
proof can be established following the same strategy, using GFF, but things
can get even more technical.
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Thank you very much for your attention !
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