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Context

I Euclidean Quantum Field Theories (QFT) model statistical physics.

I Physical content is encoded in expectation values of observables (fields), which are called
correlation functions.

I At critical temperature ⇒ further conformal symmetries (i.e. Conformal Field Theories
CFT).

I Belavin-Polyakov-Zamolodchikov (Conformal Bootstrap, 1984) observed that these extra
symmetries constrain the system strongly and used it to classify CFTs. They gave explicit
expressions for the correlation functions of several CFTs in 2D (minimal models, e.g.
critical Ising model).

I In 3D, Conformal Bootstrap has recently led to spectacular numerical predictions (e.g. 3D
Ising model) by Rychkov and collaborators.



Conformal Bootstrap

Constructive approach:

I path integral

I perturbative or
approximative

I stochastic quantization

I · · ·

Axiomatic approach:

I Wightman’s or
Osterwalder-Schader’s
axioms

I Segal’s axioms

I Vertex Operator Algebras in
representation theory

I · · ·
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Path integral for Liouville CFT

On Riemannian surface (Σ, g), a functional measure

F 7→
∫

F (Φ)e−SΣ(Φ,g)DΦ physics def / formal

where DΦ is the formal Lebesgue measure on L2(Σ, vg ) and the Liouville action is

SΣ(Φ, g) =
1

4π

∫
Σ

(|dΦ|2g + QKgΦ + µeγΦ)dvg

with µ > 0, Q = 2/γ + γ/2 and γ ∈ (0, 2), Kg = scalar curvature of g

I Critical points of SΣ(g ,Φ) are related to finding Φ0 s.t. KeγΦ0g = negative constant.



Probabilistic construction (David-Guillarmou-Kupiainen-R-Vargas 14-16’)

Gaussian Free Field on (Σ, g): let Xg be the GFF on Σ in the metric g

Xg (x) =
1√
2π

∑
n≥1

αn√
λn

en(x)

with

I (αn)n iid standard Gaussian r.v.

I (en)n orthonormal basis of eigenfunctions of Laplacian ∆g with eigenvalues (λn)n and b.c.∫
Σ
endvg = 0

I the series converges a.s. in the Sobolev spaces Hs(Σ, g) for s < 0.

I Covariance E[Xg (x)Xg (x ′)] = Gg (x , x ′) Green function of the Laplacian.

Gaussian integral:∫
F (Φ)e−

1
4π

∫
Σ
|dΦ|2gdvgDΦ = (det′(∆g )/vg (Σ))−1/2

∫
R
E
[
F (c + Xg )

]
dc maths



Probabilistic construction (David-Guillarmou-Kupiainen-R-Vargas 14-16’)

Liouville path integral

〈F 〉Σ,g :=

∫
F (Φ)e−

1
4π

∫
Σ

(|dΦ|2g+QKgΦ+eγΦ)dvgDΦ physics def / formal

〈F 〉Σ,g := (det′(∆g )/vg (Σ))−1/2

∫
R
E
[
F (c + Xg )e−

1
4π

∫
Σ

(QKg (c+Xg )+µeγ(c+Xg ))dvg

]
dc maths

where

I µ > 0, γ ∈ (0, 2) and Q = 2/γ + γ/2

I Xg be the GFF on Σ in the metric g

I eγXgdvg is a random measure (Gaussian multiplicative chaos, Eero’s talk)

eγXg (x)dvg (x) := lim
ε→0

ε
γ2

2 eγXg,ε(x)dvg (x)

with Xg ,ε a regularization of Xg



Correlation functions
Fix arbitrarily some points x1, . . . , xn ∈ Σ and some weights α1, . . . , αn ∈ R

〈
n∏

j=1

Vαj (xj)〉Σ,g =

∫
eα1Φ(x1) . . . eαnΦ(xn)e−SΣ(Φ,g)DΦ physics def / formal

and the math definition

〈
n∏

j=1

Vαj (xj)〉Σ,g
def
= (det′(∆g )/vg (Σ))−1/2

∫
R
E
[ n∏
j=1

eαj (c+Xg (xi ))e−
1

4π

∫
Σ

(QKg (c+Xg )+eγ(c+Xg ))dvg

]
dc

Theorem (David-Guillarmou-Kupiainen-Rhodes-Vargas ’14-’16)

The correlation functions are non trivial iff the Seiberg bounds are satisfied

∀i αi < Q and
n∑

i=1

αi > χ(Σ)Q

with χ(Σ) the Euler characteristics.
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The probabilistic construction of the Liouville model is a CFT

I Diffeomorphism invariance: for ψ : Σ→ Σ diffeo

〈
∏
i

Vαi (ψ(xi ))〉Σ,g = 〈
∏
i

Vαi (xi )〉Σ,ψ∗g

I Weyl covariance: for ϕ : Σ→ R smooth

〈
∏
i

Vαi (zi )〉Σ,eϕg = e
c

96π

∫
Σ
|dϕ|2g+2Kgϕ

(∏
i

e−∆αi
ϕ(zi )

)
〈
∏
i

Vαi (zi )〉Σ,g

where

- c ∈ C is the central charge (which classifies CFTs).

- ∆α is called conformal weight of the primary field Vα. For Liouville CFT

∆α =
α

2
(Q − α

2
)
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Riemann sphere and structure constants

If Σ = Ĉ is Riemann equipped with round metric g0, the 3 point correlation function

〈Vα1 (x1)Vα2 (x2)Vα3 (x3)〉Ĉ,g0

depends trivially on x1, x2, x3 by diffeomorphism invariance and Weyl covariance. One can
then take x1 = 0, x2 = 1, x3 = +∞.

The quantity
〈Vα1 (0)Vα2 (1)Vα3 (∞)〉Ĉ,g0

is then called the structure constant of the CFT.



Moduli space and plumbing coordinates

Let Mh,n be the moduli space of Riemann surfaces, h = genus(Σ) and n marked points.

I Choose a pant decomposition of the sur-
face

I
At each splitting curve, glue a annulus of
modulus |q| with twist arg(q)

I

The mapping q ∈ D3h−3+n 7→ Σ(q) provides a system
of complex local coordinates on Mh,n (for well chosen
curves, see Hinich-Vaintrob)



General physics conjecture for CFTs
For a closed Riemannian surface (Σ, g) with n marked points x = (x1, . . . , xn) ∈ Σn

〈Vα1 (x1) . . .Vαn(xn)〉Σ,g = Cg

∫
S3h−3+n

ρ(p, α)|Fc,p,∆α(q)|2m(dp)

I ρ(p, α) is a product of structure constants

I q 7→ Fc,p,α(q) = conformal blocks holomorphic in q = (q1, . . . , q3h−3+n), plumbing
(complex) coordinates on the moduli space Mh,n, h = genus(Σ).

I m is a measure over a subset S (called spectrum) of primary fields of the CFT

I Cg > 0 an explicit constant depending on g .

Remarks (first round):

I structure constants are model dependent, Conformal blocks universal

I the measure m can be finite sum of Dirac masses (minimal models or rational CFTs) or
diffuse (non compact CFTs)

I Conformal blocks can be expanded as power series in q with coefficients depending only on
the commutation relations of the Virasoro algebra. Convergence of the series is unknown
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(complex) coordinates on the moduli space Mh,n, h = genus(Σ).

I m is a measure over a subset S (called spectrum) of primary fields of the CFT

I Cg > 0 an explicit constant depending on g .

Remarks (second round):

I Vertex Operator Algebras (Borcherds, Frenkel,...) make sense of CFTs via the right-hand
side

I consistency conditions (crossing symmetry/modular invariance) hard to check

I in the VOA context, the case of rational CFTs about to be treated by Y-Z. Huang, B. Gui
and collaborators



General physics conjecture for CFTs
For a closed Riemannian surface (Σ, g) with n marked points x = (x1, . . . , xn) ∈ Σn

〈Vα1 (x1) . . .Vαn(xn)〉Σ,g = Cg

∫
S3h−3+n

ρ(p, α)|Fc,p,∆α(q)|2m(dp)

I ρ(p, α) is a product of structure constants
I q 7→ Fc,p,α(q) = conformal blocks holomorphic in q = (q1, . . . , q3h−3+n), plumbing

(complex) coordinates on the moduli space Mh,n, h = genus(Σ).
I m is a measure over a subset S (called spectrum) of primary fields of the CFT
I Cg > 0 an explicit constant depending on g .

Theorem (Guillarmou-Kupiainen-Rhodes-Vargas ’21)

The conformal bootstrap holds for the probabilistic construction of the Liouville CFT.

I Convergence (and maths def) of the conformal blocks is an output of our proof
I Probabilistic representation of the conformal block for torus 1-point correlation function

(Ghosal-Rémy-Sun-Sun ’20).
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Solving CFTs

〈Vα1 (x1) . . .Vαn(xn)〉Σ,g = Cg

∫
S3h−3+n

ρ(p, α)|Fc,p,∆α(q)|2m(dp)

3 key steps to solve CFTs

I show that the above factorization holds

I determine the structure constants

I determine the spectrum (S,m)
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∫
S3h−3+n

ρ(p, α)|Fc,p,∆α(q)|2m(dp)

3 key steps to solve CFTs (Liouville CFT)

I show that the above factorization holds (Segal’s axioms)

I determine the structure constants (DOZZ formula)

I determine the spectrum (S,m) (Scattering theory)
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DOZZ formula

Theorem (Kupiainen Rhodes Vargas, ’17)

Assume the Seiberg bounds ∀i , αi < Q and
∑3

i=1 αi > 2Q. Then

〈Vα1 (0)Vα2 (1)Vα3 (∞)〉Ĉ,g0
= CDOZZ

γ,µ (α1, α2, α3)

with CDOZZ
γ,µ (α1, α2, α3) :=(
π µ

Γ(γ
2

4 )

Γ(1− γ2

4 )
(
γ

2
)2−γ2/2

) 2Q−ᾱ
γ ×

Υ′γ
2

(0)Υ γ
2

(α1)Υ γ
2

(α2)Υ γ
2

(α3)

Υ γ
2

( ᾱ−2Q
2 )Υ γ

2
( ᾱ−2α1

2 )Υ γ
2

( ᾱ−2α2

2 )Υ γ
2

( ᾱ−2α3

2 )

with ᾱ = α1 + α2 + α3 and the function Υ γ
2

defined as analytic continuation of the following
integral defined for 0 < <(z) < <(Q)

ln Υ γ
2

(z) =

∫ ∞
0

((Q
2
− z
)2

e−t −
(sinh((Q

2 − z) t
2 ))2

sinh( tγ
4 ) sinh( t

γ )

)
dt

t
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Warm-up: amplitudes for semigroups
Consider a semigroup (Pt)t≥0 acting on some space L2(π) with integral kernel

Pt f (x) =

∫
pt(x , y)f (y)π(dy)

Amplitudes: assign the kernel pt−s to each segment [s, t]

Gluing segments maps to composition of operators (gluing kernels):

pt−r (x , z) =

∫
ps−r (x , y)pt−s(y , z)π(dy)

Segal’s axioms are a generalization of this picture to Riemann surfaces
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Segal axioms (physics heuristics)

Disintegration of path integral using conditioning on C = ∂Σ1 = ∂Σ2: if the action is local

SΣ(Φ, g) = SΣ1 (Φ|Σ1 , g) + SΣ2 (Φ|Σ2 , g)

one should have∫
{Φ:Σ→R}

e−SΣ(Φ,g)DΦ =

∫
{ϕ:C→R}

(∫
{Φ:Σ1→R,

Φ|C=ϕ}

e−SΣ1
(Φ|M1

,g)DΦ
)(∫

{Φ:Σ2→R,
Φ|C=ϕ}

e−SΣ2
(Φ|Σ2

,g)DΦ
)
Dϕ

=

∫
E(C)

AΣ1 (ϕ)AΣ2 (ϕ)Dϕ

AΣj is called amplitude of Σj .



Segal axioms

A Conformal Field Theory is

I Object: H a Hilbert space attached to S1 (for us: H = L2(H−s(S1), µ0))

I Morphism: to each Riemannian surface (Σ, g) with parametrized boundary ∂Σ = tbi=1Ci ,
we associate an amplitude

AΣ,g ∈ L2(H−s(S1)b, µb
0) = ⊗bH



Segal axioms
A Conformal Field Theory is

I Object: H a Hilbert space attached to S1 (for us: H = L2(H−s(S1), µ0))
I Morphism: to each Riemannian surface (Σ, g) with parametrized boundary ∂Σ = tbi=1Ci ,

we associate an amplitude

AΣ,g ∈ L2(H−s(S1)b, µb
0) = ⊗bH

I natural behaviour under geometrical moves (diffeomorphism invariance and Weyl
covariance)

I Gluing rule: if we glue (Σ1, g1) with (Σ2, g2) by identifying the circle C then the amplitude
of the glued surface Σ1]Σ2 is obtained by integrating out the C-component of AΣ1,g1

against the C component of AΣ2,g2

AΣ,g = AΣ1,g1 ◦C AΣ2,g2



Segal’s axioms for Liouville CFT
Hilbert space: take Ω := (R2)N

∗
equipped with Gaussian measure

P =
∏

n≥1
1

2π e
− 1

2 (x2
n+y2

n )dxndyn,

H := L2(Rc × Ω, dc ⊗ P) = L2(H−ε(S1), µ0)

where µ0 is pushfoward of dc ⊗ P by the real-valued random field

(∗) ϕ = c +
∑
n 6=0

ϕne
inθ, ϕn =

1

2

xn + iyn√
n

, n > 0

If b disjoint circles, H⊗b = L2(H−ε(S1)b, µb
0), take b independent copies of ϕ.

Amplitudes: let (Σ, g) with b parametrized boundary circles and n weighted marked points
(xi , αi ):

AΣ,g ,x,α(ϕ) =

∫
{Φ:Σ→R,
Φ|C=ϕ}

n∏
j=1

eαjΦ(xj )e−SΣ(Φ,g)DΦ formal def

with ϕ = (ϕ1, . . . , ϕb) ∈ H−ε(S1)b.
Rigorous definition similar to Liouville path integral with further conditioning related to the
GFF.

Theorem (Guillarmou-Kupiainen-Rhodes-Vargas ’21)

These probabilistic amplitudes satisfy Segal’s axioms.
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Hamiltonian of Liouville CFT
Consider the annulus

Define the operator S(t) : H → H:

∀ϕ ∈ H, (S(t)F )(ϕ) :=

∫
H
AAt (ϕ,ϕ

′)F (ϕ′)dµ0(ϕ′)

idea 1: gluing two annuli produces bigger an-
nuli
=⇒ S(t) should be a semi-group.

idea 2: gluing annulus At with a disk D
with one marked point at 0 produces a
bigger disk
=⇒ S(t)AD,0,α = eλtAD,0,α.
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Recall Ω := (R2)N
∗

with measure P =
∏

n≥1
1

2π e
− 1

2 (x2
n+y2

n )dxndyn, and

(∗) ϕ = c +
∑
n 6=0

ϕne
inθ, ϕn =

1

2

xn + iyn√
n

, n > 0

Proposition (Guillarmou-Kupiainen-Rhodes-Vargas ’20)

The operator e−( 1+6Q2

12 )tS(t) = e−tH is a Markovian contraction semi-group on
H = L2(R× Ω; dc ⊗ P) with self-adjoint generator

H =
1

2
(−∂2

c + Q2 + 2P + µeγcV )

with P the infinite harmonic oscillator and V ∈ L
2
γ2−(Ω) a positive potential/measure:

P :=
∞∑
n=1

n[(∂xn)∗∂xn + (∂yn)∗∂yn ], V (ϕ̃) :=
1

2π

∫
S
eγϕ̃(θ)dθ

where ϕ̃ = ϕ− c .



Flow of deformations (GKRV+Baverez, soon)

Take a holomorphic vector field v := v(z)∂z on D with

v(z) = −
∑
n≥−1

vnz
n+1

If Re(z̄v(z)) < 0 on ∂D then ∂t ft(z) = v(ft(z))
generates a flow of conformal maps

ft : D→ Dt ⊂ D.

Define

SvF (ϕ) = ct

∫
H
F (ϕ+ Q ln

|f ′t |
|ft |

)AD\Dt
(ϕ,ϕ′)µ0(dϕ′)

Theorem

Under some conditions on v, this is a Markovian semigroup (e−tHv )t acting on L2(µ0).
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Representation of the Virasoro algebra

Consider the following generators of the deformation semigroup

Ln =
1

2
(Hv − iHiv), L̃n =

1

2
(Hv + iHiv) for v := −zn+1∂z

They form two commuting families of unitary representations of the Virasoro algebra

[Ln, L̃m] = 0, L∗n = L−n, L̃∗n = L̃−n

[Ln,Lm] = (n −m)Ln+m +
cL
12

(n3 − n)δn,−mId,

[L̃n, L̃m] = (n −m)L̃n+m +
cL
12

(n3 − n)δn,−mId.

with cL = 1 + 6Q2 the central charge.

Remark: for v := −z∂z , the flow ft is the flow of dilations of the unit disk ft(z) = e−tz . Then

Lv = L0 + L̃0 = H (generator of semigroup generated by the annulus amplitude)



Path integral for Liouville CFT

Conformal bootstrap

Structure of Liouville CFT
Structure constants and the DOZZ formula
Segal’s axioms or CFT Lego game
Spectrum of Liouville CFT



Spectrum of Liouville CFT (diagonalization of H using scattering theory)
Recall

H =
1

2
(−∂2

c + Q2 + 2P + eγcV )

with P the infinite harmonic oscillator and V ∈ L
2
γ2−(Ω) a positive potential/measure

P :=
∞∑
n=1

n[(∂xn)∗∂xn + (∂yn)∗∂yn ], V (ϕ̃) :=
1

2π

∫
S
eγϕ̃(θ)dθ (ϕ̃ = ϕ− c)

Young diagrams: decreasing finite sequence ν = (ν1, . . . , νk) with νj ∈ N. Length |ν| =
∑

j νj .

Theorem (Guillarmou-Kupiainen-Rhodes-Vargas ’20)

Let γ ∈ (0, 2),Q = 2/γ + γ/2. There is a complete family of eigenstates
ΨQ+ip,ν,ν̃ ∈ e−εcL2(Rc × Ω) labeled by p ∈ R+ and Young diagrams ν, ν̃ s.t.

HΨQ+ip,ν,ν̃ =
(Q2

2
+

p2

2
+ |ν|+ |ν̃|

)
ΨQ+ip,ν,ν̃ .

I Plancherel formula: ΨQ+ip,ν,ν̃ is a complete family diagonalizing H: ∀u1, u2 ∈ L2(R× Ω)

〈u1, u2〉 =
∑
|ν′|=|ν|

∑
|ν̃′|=|ν̃|

∫ ∞
0

〈u1,ΨQ+ip,ν,ν̃〉〈ΨQ+ip,ν′,ν̃′ , u2〉Q−1
Q+ip(ν, ν′)Q−1

Q+ip(ν̃, ν̃′) dp
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Q+ip(ν, ν′)Q−1
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I QQ+ip(ν, ν̃) is a Gram matrix, called Schapovalov form. Uniquely determined by the
commutation relations of the Virasoro algebra.

I ΨQ+ip,ν,ν̃ are not orthonormal! Formally

〈ΨQ+ip,ν,ν̃ ,ΨQ+ip′,ν′,ν̃′〉 = δp=p′δ|ν′|=|ν|δ|ν̃′|=|ν̃|Q−1
Q+ip(ν, ν′)Q−1

Q+ip(ν̃, ν̃′)

I Mathematical formulation of the Operator Product Expansion in the physics language.



Link with the amplitude of the disk

Proposition (Guillarmou-Kupiainen-Rhodes-Vargas ’20)

1) The eigenstates can be analytically continued on some domain of C

α 7→ Ψα,ν,ν̃

The spectrum corresponds to α ∈ Q + iR+.

2) For α < Q real, we have a probabilistic representation of the eigenstates. In particular,

I Ψα,0,0 is the amplitude of the disk with one marked point at x = 0 and weight α.

I Ψα,ν,ν̃ = L−ν1 . . .L−νk L̃−ν̃1 . . . L̃−ν̃k̃ Ψα,0,0

Q

Spectrum line
Q + iR+

0

Im α

Re α

Probabilistic region

Analyticity region

Q − |ν| − |ν̃|

Figure: Analytic continuation of eigenstates Ψα,ν,ν̃ .
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Pant amplitude

Consider the amplitude of a pant Apant.
We want to evaluate

〈Apant,⊗3
j=1ΨQ+ipj ,0,0〉H3

This can be analytically continued to real αj

〈Apant,⊗3
j=1Ψαj ,0,0〉H3

Playing with Segal yields

〈Apant,⊗3
j=1Ψαj ,0,0〉H3 = CDOZZ

γ,µ (α1, α2, α3)

Similar idea, using Ward identities yields

〈Apant,⊗3
j=1Ψαj ,νj ,ν̃j 〉H3 = factor contributing to the conformal blocks× CDOZZ

γ,µ (α1, α2, α3)
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Conformal Bootstrap: idea of the proof in genus 2 partition function

I Choose a pant decomposition of the surface

I Use Segal’s gluing rule: 〈1〉Σ,g = 〈AΣ1,g ,AΣ2,g 〉H⊗3

I Use the Plancherel identity

〈AΣ1,g ,AΣ2,g 〉H⊗3

=
∑

Young diag.

∫
R3

+

〈AΣ1,g ,⊗3
j=1ΨQ+ipj ,νj ,ν̃j 〉H⊗3〈⊗3

j=1ΨQ+ipjν′j ,ν̃
′
j
,AΣ1,g 〉H⊗3 × Schapo.dp1dp2dp3

I Use the pant computations

〈1〉Σq,gq =

∫
(R+)3

CDOZZ(Q + ip1,Q + ip2,Q + ip3)CDOZZ(Q − ip1,Q − ip2,Q − ip3)|Fp|2dp



Conformal Bootstrap: idea of the proof in genus 2 partition function

I Choose a pant decomposition of the surface

I Use Segal’s gluing rule: 〈1〉Σ,g = 〈AΣ1,g ,AΣ2,g 〉H⊗3

I Use the Plancherel identity

〈AΣ1,g ,AΣ2,g 〉H⊗3

=
∑

Young diag.

∫
R3

+

〈AΣ1,g ,⊗3
j=1ΨQ+ipj ,νj ,ν̃j 〉H⊗3〈⊗3

j=1ΨQ+ipjν′j ,ν̃
′
j
,AΣ1,g 〉H⊗3 × Schapo.dp1dp2dp3

I Use the pant computations

〈1〉Σq,gq =

∫
(R+)3

CDOZZ(Q + ip1,Q + ip2,Q + ip3)CDOZZ(Q − ip1,Q − ip2,Q − ip3)|Fp|2dp



Conformal Bootstrap: idea of the proof in genus 2 partition function

I Choose a pant decomposition of the surface

I Use Segal’s gluing rule: 〈1〉Σ,g = 〈AΣ1,g ,AΣ2,g 〉H⊗3

I Use the Plancherel identity

〈AΣ1,g ,AΣ2,g 〉H⊗3

=
∑

Young diag.

∫
R3

+

〈AΣ1,g ,⊗3
j=1ΨQ+ipj ,νj ,ν̃j 〉H⊗3〈⊗3

j=1ΨQ+ipjν′j ,ν̃
′
j
,AΣ1,g 〉H⊗3 × Schapo.dp1dp2dp3

I Use the pant computations

〈1〉Σq,gq =

∫
(R+)3

CDOZZ(Q + ip1,Q + ip2,Q + ip3)CDOZZ(Q − ip1,Q − ip2,Q − ip3)|Fp|2dp



Conformal Bootstrap: idea of the proof in genus 2 partition function

I Choose a pant decomposition of the surface

I Use Segal’s gluing rule: 〈1〉Σ,g = 〈AΣ1,g ,AΣ2,g 〉H⊗3

I Use the Plancherel identity

〈AΣ1,g ,AΣ2,g 〉H⊗3

=
∑

Young diag.

∫
R3

+

〈AΣ1,g ,⊗3
j=1ΨQ+ipj ,νj ,ν̃j 〉H⊗3〈⊗3

j=1ΨQ+ipjν′j ,ν̃
′
j
,AΣ1,g 〉H⊗3 × Schapo.dp1dp2dp3

I Use the pant computations

〈1〉Σq,gq =

∫
(R+)3

CDOZZ(Q + ip1,Q + ip2,Q + ip3)CDOZZ(Q − ip1,Q − ip2,Q − ip3)|Fp|2dp



Conformal Bootstrap: idea of the proof in genus 2 partition function

I Choose a pant decomposition of the surface

I Use Segal’s gluing rule: 〈1〉Σ,g = 〈AΣ1,g ,AΣ2,g 〉H⊗3

I Use the Plancherel identity

〈AΣ1,g ,AΣ2,g 〉H⊗3

=
∑

Young diag.

∫
R3

+

〈AΣ1,g ,⊗3
j=1ΨQ+ipj ,νj ,ν̃j 〉H⊗3〈⊗3

j=1ΨQ+ipjν′j ,ν̃
′
j
,AΣ1,g 〉H⊗3 × Schapo.dp1dp2dp3

I Use the pant computations

〈1〉Σq,gq =

∫
(R+)3

CDOZZ(Q + ip1,Q + ip2,Q + ip3)CDOZZ(Q − ip1,Q − ip2,Q − ip3)|Fp|2dp

I Change of moduli of surface: glue annuli of moduli q = (q1, q2, q3) ∈ D3 between Σ1 and
Σ2, this only enters the conformal block

〈1〉Σq,gq =

∫
(R+)3

CDOZZ(Q + ip1,Q + ip2,Q + ip3)CDOZZ(Q − ip1,Q − ip2,Q − ip3)|Fp(q)|2dp



Another example: torus 1 point

1-point function on torus T2
τ = C/(2πZ + 2πτZ), with q = e2iπτ

〈Vα1 (x1)〉T2
τ

=
|q|− 1+6Q2

12

2π

∫ ∞
0

C (Q + ip, α1,Q − ip)|q|−2∆Q+ip |Fp,α1 (q)|2dp



Remarks:

I first mathematical proof of the full bootstrap formulae proposed by physicists (Knizhnik,
Belavin, Sonoda, Polchinski, Teschner ...).

I the bootstrap formula depends on the chosen decomposition into pairs of pants, annuli
with 1 marked point/insertion and disks with 1 or 2 marked points/insertions

I proves crossing symmetries: formulas for correlations functions given by bootstrap
approach do not depend on the decomposition into geometric blocks (although conformal
blocks do)

I implies convergence a.e. P ∈ R of conformal block series (this was an open problem)

FP,α(q) =
∑

k∈N3h−3+n
0

wk(α, p)qk1
1 . . . q

k3h−3+n

3h−3+n

for q = (q1, . . . , q3h−3+n) ∈ D3h−3+n Marden-Kra plumbing coordinates; here wk(α, p) are
representation theoretic constants depending only on Virasoro commutation relations.



Perspectives:

I Conformal bootstrap for Liouville CFT on open surfaces (with Baojun Wu).
Based on recent developments to compute the boundary structure constants (Nina’s talk,
works by Ang, Holden, Rémy, Sun, Zhu)

I General probabilistic construction of the conformal blocks ? (Ghosal, Rémy, Sun, Sun)

I Representation of Mapping class group in the space of conformal blocks, modular functor,
link with Quantum Teichmuller (Teschner,...)

I Use conformal welding (Nina’s talk) to bridge Liouville CFT with CFT of CLE ? (Ang,
Holden, Rémy, Sun, Wu...)

I (Long run) Develop these techniques for CFTs with extended symmetry algebra, e.g. Toda
CFT (Cerclé, Huang)

I Other approaches to solve CFTs: Y.Z. Huang and collaborators on the way to provide the
VOA solution for rational CFTs.
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