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Context

» Euclidean Quantum Field Theories (QFT) model statistical physics.

» Physical content is encoded in expectation values of observables (fields), which are called
correlation functions.

> At critical temperature = further conformal symmetries (i.e. Conformal Field Theories
CFT).

» Belavin-Polyakov-Zamolodchikov (Conformal Bootstrap, 1984) observed that these extra
symmetries constrain the system strongly and used it to classify CFTs. They gave explicit
expressions for the correlation functions of several CFTs in 2D (minimal models, e.g.
critical Ising model).

> In 3D, Conformal Bootstrap has recently led to spectacular numerical predictions (e.g. 3D
Ising model) by Rychkov and collaborators.
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» Segal’s axioms approximative
» Vertex Operator Algebras in » stochastic quantization

representation theory .



(Conformal Bootstrap)

o ~ \ This talk: Liouville CFT
Axiomatic approach:

Constructive approach:

» Wightman's or

Osterwalder-Schader'’s » path integral
axioms » perturbative or
» Segal’s axioms approximative
» Vertex Operator Algebras in » stochastic quantization

representation theory .



Plan of the talk

Path integral for Liouville CFT

Conformal bootstrap

Structure of Liouville CFT
Structure constants and the DOZZ formula
Segal's axioms or CFT Lego game
Spectrum of Liouville CFT



Path integral for Liouville CFT



Path integral for Liouville CFT

On Riemannian surface (X, g), a functional measure

F / Ye = (*&) D physics def / formal

where D® is the formal Lebesgue measure on L(X,v,) and the Liouville action is

1
5:(0.8) = 5 |40 + QK+ )i,

with 11 >0, @ =2/y+7/2 and v € (0,2), Kz = scalar curvature of g

» Critical points of Sg(g, ®) are related to finding ®g s.t. Kg.e,, = negative constant.



Probabilistic construction (David-Guillarmou-Kupiainen-R-Vargas 14-16")
Gaussian Free Field on (X, g): let X be the GFF on X in the metric g

Xg(x)
s %Z e
with

» (ay)n iid standard Gaussian r.v.

> (en)n orthonormal basis of eigenfunctions of Laplacian A, with eigenvalues (A,), and b.c.
f): epdvg =0

> the series converges a.s. in the Sobolev spaces H*(X, g) for s < 0.

» Covariance E[Xgz(x)Xg(x")] = Gg(x, x") Green function of the Laplacian.

Gaussian integral:

/F(¢)e*ﬁ Jz 149 dve p — (det'(Ag)/vg(z))*W/]R{E[F(ng)} de|  maths




Probabilistic construction (David-Guillarmou-Kupiainen-R-Vargas 14-16")

Liouville path integral

(F)sg = /F(d))e*ﬁ Je(1d® 2+ QK d+e7®)dv, g physics def / formal

(F)s g = (det’(Ag)/Vg(z))—l/z/

E [F(c + X, )e f:(QKg<c+Xg>+ue"<”Xg>>dVg] dc|  maths
R

where
» >0, v€(0,2)and Q =2/y+~/2
> Xz be the GFF on X in the metric g
» e"Xedv, is a random measure (Gaussian multiplicative chaos, Eero's talk)

,Y2
e Wdvy (x) = lim €7 X (Idv (x)
€E—r

with Xg . a regularization of X,



Correlation functions
Fix arbitrarily some points xi,...,x, € ¥ and some weights a1,...,a, € R

(H Vo, (X))xz.g = /e“lq)(xl) e ®n) =52 (®8) D physics def / formal
j=1

and the math definition

E |: H eaj(c+Xg(x,-))efﬁ fz(QKg(c+Xg)+e7(“+Xg>)dvg dc

Jj=1

(I Ve, Gz & (det'(Ag)/Vg():))flp/
Jj=1

R




Correlation functions
Fix arbitrarily some points xq,...,x, € ¥ and some weights a1,...,a, € R

(H Vo, (X))xz.g = /e“lq)(xl) e ®n) =52 (®8) D physics def / formal
j=1

and the math definition

E [ H eaj(c+Xg(x,-))efﬁ fz(QKg(c+Xg)+e"’(“+Xg>)dvg dc

Jj=1

(I Ve, Gz & (det'(Ag)/Vg(z))fl/z/
Jj=1

R

Theorem (David-Guillarmou-Kupiainen-Rhodes-Vargas '14-'16)

The correlation functions are non trivial iff the Seiberg bounds are satisfied
Vi o <@ and Za; > x(X)Q
i=1

with x(X) the Euler characteristics.



The probabilistic construction of the Liouville model is a CFT

» Diffeomorphism invariance: for ¢ : ¥ — ¥ diffeo

([T Vot = ([T Vol ove

» Weyl covariance: for ¢ : ¥ — R smooth
<H Vai(zi)>2,e¢g = e%r I ‘d¢|§+2Kg‘/’<H e Baiolz ) H Vo, Z,
i I
where

- c € C is the central charge (which classifies CFTs).
- A, is called conformal weight of the primary field V,,. For Liouville CFT

=%0@-%)



Conformal bootstrap



Riemann sphere and structure constants

If £ = C is Riemann equipped with round metric gp, the 3 point correlation function

(Vo (x1) Vo, (%2) Vs (33))
depends trivially on x1, x2, x3 by diffeomorphism invariance and Weyl covariance. One can

then take x; = 0,x = 1, x3 = +00.

The quantity
(Vau (O) Va, (1) Va3(00)>(f:7g0

is then called the structure constant of the CFT.



Moduli space and plumbing coordinates

Let M}, , be the moduli space of Riemann surfaces, h = genus(X) and n marked points.

, Choose a pant decomposition of the sur- Q

face

py 2

At each splitting curve, glue a annulus of » bk arf)
> . .

modulus |g| with twist arg(q) ) (j ({

Moduly

The mapping g € D3'=3+" s ¥ (q) provides a system \ %,
» of complex local coordinates on My, , (for well chosen I =

curves, see Hinich-Vaintrob) =Q



General physics conjecture for CFTs
For a closed Riemannian surface (X, g) with n marked points x = (x1,...,x,) € "

(Voo (3) .- Ve, (5n)) 5.6 = G / o(p. )\ Fepon ()2

3h—3+n

> p(p, ) is a product of structure constants

v

q — Fe p.a(gq) = conformal blocks holomorphic in g = (g1, .., g3n—3+n), plumbing
(complex) coordinates on the moduli space My, ,, h = genus(X).

> /11 is a measure over a subset & (called spectrum) of primary fields of the CFT

v

Cg > 0 an explicit constant depending on g.



General physics conjecture for CFTs
For a closed Riemannian surface (X, g) with n marked points x = (x1,...,x,) € "

(Voo (3) .- Ve, (5n)) 5.6 = G / o(p. )\ Fepon ()2

3h—3+n

» p(p, ) is a product of structure constants

v

q — Fe p.a(gq) = conformal blocks holomorphic in g = (g1, .., g3n—3+n), plumbing
(complex) coordinates on the moduli space My, ,, h = genus(X).

> /11 is a measure over a subset & (called spectrum) of primary fields of the CFT
» C; > 0 an explicit constant depending on g.

Remarks (first round):
» structure constants are model dependent, Conformal blocks universal

» the measure m can be finite sum of Dirac masses (minimal models or rational CFTs) or
diffuse (non compact CFTs)

» Conformal blocks can be expanded as power series in g with coefficients depending only on
the commutation relations of the Virasoro algebra. Convergence of the series is unknown



General physics conjecture for CFTs
For a closed Riemannian surface (X, g) with n marked points x = (x1,...,x,) € "

(Vo (30) - Vo (xn)) .6 = G / p(p. )| Fepan (9

3h—3+n

» p(p, ) is a product of structure constants

v

q — Fe p.a(q) = conformal blocks holomorphic in g = (g1, .., g3n—3+n), plumbing
(complex) coordinates on the moduli space My, ,, h = genus(X).

» 11 is a measure over a subset & (called spectrum) of primary fields of the CFT
Cg > 0 an explicit constant depending on g.

v

Remarks (second round):
> Vertex Operator Algebras (Borcherds, Frenkel,...) make sense of CFTs via the right-hand
side
» consistency conditions (crossing symmetry/modular invariance) hard to check

> in the VOA context, the case of rational CFTs about to be treated by Y-Z. Huang, B. Gui
and collaborators



General physics conjecture for CFTs
For a closed Riemannian surface (X, g) with n marked points x = (x1,...,x,) € "

(Voo (31) .- Ve, (3n)) 5.6 = G / o(p. )| Fepo ()2

3h—3+n

» p(p, ) is a product of structure constants
q — Fc p.a(q) = conformal blocks holomorphic in g = (g1, .., g3n—3+n), plumbing
(complex) coordinates on the moduli space My, ,, h = genus(X).
is a measure over a subset S (called spectrum) of primary fields of the CFT
Cg > 0 an explicit constant depending on g.

v

vy

Theorem (Guillarmou-Kupiainen-Rhodes-Vargas '21)

The conformal bootstrap holds for the probabilistic construction of the Liouville CFT.



General physics conjecture for CFTs
For a closed Riemannian surface (X, g) with n marked points x = (x1,...,x,) € "

3h—3+n

(Voo (31) .- Ve, (3n)) 5.6 = G / o(p. )| Fepo ()2

» p(p, ) is a product of structure constants
q — Fc p.a(q) = conformal blocks holomorphic in g = (g1, .., g3n—3+n), plumbing
(complex) coordinates on the moduli space My, ,, h = genus(X).
is a measure over a subset S (called spectrum) of primary fields of the CFT
Cg > 0 an explicit constant depending on g.

v

vy

Theorem (Guillarmou-Kupiainen-Rhodes-Vargas '21)

The conformal bootstrap holds for the probabilistic construction of the Liouville CFT.

» Convergence (and maths def) of the conformal blocks is an output of our proof

» Probabilistic representation of the conformal block for torus 1-point correlation function
(Ghosal-Rémy-Sun-Sun '20).



Solving CFTs

Vor)-- VoGl = G [ o)l Fepas (@) m(d)

3 key steps to solve CFTs
» show that the above factorization holds

» determine the structure constants

> determine the spectrum (S, m)



Solving CFTs

Vor)- - Vo Gollss = G [ o)l Fepa (@) m(dp)

3 key steps to solve CFTs (Liouville CFT)

» show that the above factorization holds (Segal’s axioms)
> determine the structure constants (DOZZ formula)

» determine the spectrum (S, m) (Scattering theory)
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DOZZ formula
Theorem (Kupiainen Rhodes Vargas, '17)
Assume the Seiberg bounds Vi, a; < Q and >, a; >2Q. Then

<VOL1(O) VO&Q(]')VOG(OO»@,gO = C'lyj,;?zz(alaa%a?:)

with C,ESZZ(CQ,OZQ,OQ,) =

r2 2, P T (0) 2 (1) T2 ()T (a3)

(7r,u ( 4 )2 (1)2_7 /2) % 2 2 2 _
ra-2) z

2

with & = a3 + ap + a3 and the function Ty defined as analytic continuation of the following
integral defined for 0 < R(z) < R(Q)

> 2 o (sinh((3 — 2)3))?
In'T‘%(z):/O <(§—z) < sinh(%)sinh(%) )a;t
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Warm-up: amplitudes for semigroups
Consider a semigroup (P;)¢>0 acting on some space L2(7) with integral kernel

PeF(x) = / pe(x, Y)F(y)m(dy)

Amplitudes: assign the kernel p;_g to each segment [s, ¢]

Brs (o)

In Qut
=S o — —
) F

Gluing segments maps to composition of operators (gluing kernels):

pt—r(XaZ) = /Ps—r(XJ)Pt—s(y’Z)W(d}’)

PG 9 1 (y,2) Pr.. Go2)
T 2 — =
s * r +



Warm-up: amplitudes for semigroups
Consider a semigroup (P;)¢>0 acting on some space L?(7) with integral kernel

PeF(x) = / pe(x, Y)F(y)m(dy)

Amplitudes: assign the kernel p;_g to each segment [s, ¢]

Brs (o)

Tn Qot
=S o — —

= F

Gluing segments maps to composition of operators (gluing kernels):

pt—r(XaZ) = /Ps—r(XJ)Pt—s(y’Z)W(d}’)

Psr ("973 Pr-s (Y/ Z\ [N (5,2)
. s P 2
s * r +

Segal’s axioms are a generalization of this picture to Riemann surfaces



Segal axioms (physics heuristics)

¢ E

Disintegration of path integral using conditioning on C = 0% = 0X;: if the action is local
Sz(q),g) = SZ1(¢|):17g) + 522(¢|):27g)

one should have

—55(®,g) :/ / _Szl(d)lMl’g) / _Szz(d)‘ng)
. Do _ e Do _ e D® ) Dy
/{¢:>:—>1R} {p:C—oR} ( {iiz;jf’ )( {gfij]]?’ )

C
- / s, () Az, (9)Dy
E(C)

As; is called amplitude of ;.



Segal axioms

A Conformal Field Theory is
» Object: H a Hilbert space attached to S! (for us: H = L2(H=5(S!), uo))

» Morphism: to each Riemannian surface (X, g) with parametrized boundary 0¥ = U%_C;,
we associate an amplitude

Az € LP(HT(8Y)°, o) = @°H

e,
& >
R ) e



Segal axioms
A Conformal Field Theory is

» Object: H a Hilbert space attached to S! (for us: H = L2(H=5(S!), uo))
» Morphism: to each Riemannian surface (X, g) with parametrized boundary % = L?_,C;,
we associate an amplitude

Asg € LP(H™*(SN)®, uf) = @"H

> natural behaviour under geometrical moves (diffeomorphism invariance and Weyl
covariance)

> Gluing rule: if we glue (X1, g1) with (X2, g2) by identifying the circle C then the amplitude
of the glued surface ¥;§Y, is obtained by integrating out the C-component of As,
against the C component of Ay, ,,

‘A);g = Azl;g1 oc 'A):27g2




Segal's axioms for Liouville CFT
Hilbert space: take Q := (R2)N* equipped with Gaussian measure
P = anl %e_%(xg"’yﬁ)dxndyn'

]H = L*(Re x Q,dc®P) = LZ(H—E(Sl),uo)\

where g is pushfoward of dc ® P by the real-valued random field

: 1 x, + iy,
2 /‘ inf - n n
(*) ‘ n#0 A o 2 ﬁ 7

If b disjoint circles, H®> = [2(H=(S), ug), take b independent copies of .

n>0



Segal's axioms for Liouville CFT
Hilbert space: take Q := (R2)N* equipped with Gaussian measure
P = anl %e_%(xg"’yﬁ)dxndyn'

]H = L*(Re x Q,dc®P) = L2(H_E(Sl)7ﬂo)‘

where g is pushfoward of dc ® P by the real-valued random field

: 1 x, + iy,
2 /‘ inf - n n
(*) ‘ n#0 A o 2 ﬁ 7

If b disjoint circles, H®> = [2(H=(S), ug), take b independent copies of .

Amplitudes: let (X, g) with b parametrized boundary circles and n weighted marked points
(xi, ap):

n>0

As g xa(p) = AD:H& [[e*®e ®8Dd  formal def
Ple=p} J=1
with ¢ = (¢1,...,¢P) € H=(SY)b.
Rigorous definition similar to Liouville path integral with further conditioning related to the
GFF.



Hamiltonian of Liouville CFT

Consider the annulus

Define the operator S(t) : H — H:

Vo e M, |(S(t)F)(») ::AAAI((P»@/)F(W/)CIMO(W/)




Hamiltonian of Liouville CFT

Consider the annulus
Define the operator S(t) : H — H:

@( " B voeH, |(S(6)F)(p) iZAAAI(cp,w’)F(w’)duo(tp’)

idea 1: gluing two annuli produces bigger an-
nuli
= S5(t) should be a semi-group.



Hamiltonian of Liouville CFT

Consider the annulus
Define the operator S(t) : H — H:

R, fzecie bl ¢l

ith medric q= —d'—l:
Q" TR e |(SOR) = [ Al )P ()
idea 1: gluing two annuli produces bigger an-  idea 2: gluing annulus A, with a disk D
nuli with one marked point at 0 produces a
= 5(t) should be a semi-group. bigger disk

= S(t)Ap,0,0 = M Ap .0




Recall Q := (R?)"" with measure P =[], 5~ =305 dx, dy,, and

; 1x,+ iy

* in® n n
—c § e I n>0

() T no‘)én b (#I‘I 2 \/E )

Proposition (GuiIIarmou—Kupiainen—Rhodes—Vargas '20)

The operator e~ (*&~ )tS( t) = e~tH is a Markovian contraction semi-group on

H = L?(R x Q; dc ® P) with self-adjoint generator

1
H= 5(—83 + Q% + 2P + pe™V)

T~ .. .
with P the infinite harmonic oscillator and V € L>* () a positive potential/measure:

) . ) 1 :
P = 3 nl(0)'00 + (0,01, V()= 5= [ e10ap

n=1

where p = ¢ — c.



Flow of deformations (GKRV+Baverez, soon)

Take a holomorphic vector field v := v(z)d, on D with

v(z) = — Z v,z

n>—1

If Re(Zv(z)) < 0 on 9D then 8:f(z) = v(f:(2))
generates a flow of conformal maps

fi:D— D, CD.

Define |f’|
S'F(p) = ct /H F(e+ QIn ﬁ)AD\Dt(@v ©" ) po(de’)



Flow of deformations (GKRV+Baverez, soon)

Take a holomorphic vector field v := v(z)d, on D with

v(z) = — Z v,z

n>—1

If Re(Zv(z)) < 0 on 9D then 8:f(z) = v(f:(2))
generates a flow of conformal maps

ff:D— D, CD.

Define f’|
S'F(p) = ct /H F(e+ QIn ﬁ)AD\Dt(@v ©" ) po(de’)

Theorem

—tHv)

Under some conditions on v, this is a Markovian semigroup (e ¢ acting on L?(uo).



Representation of the Virasoro algebra

Consider the following generators of the deformation semigroup

1 ~ 1
Ly=5(Hy = iHa),  Ly=o(Hs+iHy) for vi=—2""0,

They form two commuting families of unitary representations of the Virasoro algebra
L, L,]=0  Li=L_, Li=L_,
[Lo, L] = (n— m)Lpym + 12( — n)dp,—mld,
[Lo, Lin] = (n— m)Lpym + 1fg(na — n)Op—mld.

with ¢, = 1 + 6Q? the central charge.

Remark: for v .= —z3,, the flow f; is the flow of dilations of the unit disk f;(z) = e~*z. Then
L, = Lo + Lo = H (generator of semigroup generated by the annulus amplitude)
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Spectrum of Liouville CFT (diagonalization of H using scattering theory)

Recall .
H= (-02+ Q> +2P + V)
with P the infinite harmonic oscillator and V' & L%_(Q) a positive potential /measure
C 1 o
= * * %) = (0) .
P ._;n[(@n) 0o +(0,)°0,], V(@)= 27T/S WOd (5= c)

Young diagrams: decreasing finite sequence v = (v1,..., k) with v; € N. Length [v| =3 . v;.



Spectrum of Liouville CFT (diagonalization of H using scattering theory)

Recall 1
H= 5(—af + Q%>+ 2P +e°V)

2
with P the infinite harmonic oscillator and V' € L+* () a positive potential/measure

P:= Z n[(0x,)" Ox, + (9y,)"0y,], V(§) = 5 /Se“*@(e)de (p=9—c)

T 2r
n=1

oo

Theorem (Guillarmou-Kupiainen-Rhodes-Vargas '20)

Let v € (0,2), Q =2/v + /2. There is a complete family of eigenstates
Vo i € e L3R, x Q) labeled by p € R, and Young diagrams v, ¥ s.t.
? P i
HV @ 1ipvi = (7 TS T vl + |V|)‘UQ+ip,u,ﬂ~

> Plancherel formula: Vs .5 is a complete family diagonalizing H: Yuy, up € L2(]R x Q)

(i) =">_ Y /0 (1, VQripwo) (Varipw o » u2) Qo ip(¥: V') Qo in(, ') dp

[v/|=|v| |2 |=|7|



Spectrum of Liouville CFT (diagonalization of H using scattering theory)
Theorem (Guillarmou-Kupiainen-Rhodes-Vargas '20)

Let v € (0,2), Q =2/v + /2. There is a complete family of eigenstates

Voiipws € e L2(R. x Q) labeled by p € Ry and Young diagrams v, s.t.
2 2

HWQ-&-I'p,v,ﬂ = (g + P

o+ 5 W+ 171) Yaripus:

Plancherel formula: W q.ip.,5 is a complete family diagonalizing H: Vuy, up € L2(R x Q)

v

o0
()= Y > /O (U1, Voripo) (W arip o » t2) QoL (v, V) Qo (7, 7') dp

v/ |=lv| 12’ ]=|7]

v

Qq+ip(v,P) is a Gram matrix, called Schapovalov form. Uniquely determined by the
commutation relations of the Virasoro algebra.
W otip,v,i are not orthonormal! Formally

v

~ o~

(WQrip i Varip o) = Op=prOjur (=01 017 1=151 L ip (1 V) Qo ip (7, ')

Mathematical formulation of the Operator Product Expansion in the physics language.

v



Link with the amplitude of the disk
Proposition (Guillarmou-Kupiainen-Rhodes-Vargas '20)

1) The eigenstates can be analytically continued on some domain of C
o \U%%ﬁ

The spectrum corresponds to o € Q + iR, .

Tm ook

1
Analyticity région Spectrum line
1
: Q+ iRy
I
1
1
r

D
|
~
|
=
o
I3
=
]
Q



Link with the amplitude of the disk
Proposition (Guillarmou-Kupiainen-Rhodes-Vargas '20)

1) The eigenstates can be analytically continued on some domain of C
o Wa7y,5

The spectrum corresponds to o € Q + iR, .
2) For oo < Q real, we have a probabilistic representation of the eigenstates. In particular,

> W, 0,0 is the amplitude of the disk with one marked point at x = 0 and weight o.

> \UQ)V’;, = L_l,1 e L—l’kL—171 A L_piwmo,o

Tm ook

1
Analyticity région Spectrum line
1
: Q+ iRy
1
Probabilistic region !
1
r

o
|
=~
|
=
o
I3
=
]
Q



Pant amplitude

Consider the amplitude of a pant Apant.

We want to evaluate

3
<Apant ) ®j:1 wQ+ipj,0,0>’H3

[
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Consider the amplitude of a pant Apant.
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3
<Apant’ ®j:1WQ+ipj,0,0>’H3
[
This can be analytically continued to real o;
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Pant amplitude

Consider the amplitude of a pant Apant.
We want to evaluate

3
<Apant’ ®j:1WQ+ipj,0,0>’H3
[
This can be analytically continued to real o;

<Apanta ®?:1waj,0,0>7-£3

S \'\e,r;( Wl\')ﬂ \5
- ) 3 marked pomm
Playing with Segal yields @i‘sﬂ\)

(Apant, ®j— 1‘Uaj700> CDOZZ(al,Oéz,Oéa)

&



Pant amplitude

Consider the amplitude of a pant Apant.
We want to evaluate

3
<Apant’ ®j:1WQ+ipj,0,0>’H3
[
This can be analytically continued to real o;

<Apanta ®?:1waj,0,0>7-£3

S \wu\: with

— — 3 mgr\(e \aoln\s
Playing with Segal yields e_e%;‘)
(Apant, ®j— 1"’%0 0) 33 CDOZZ(Oél,Oéz, az)
Similar idea, using Ward identities yields @
(Apant ®J3-:1Waj,u,-,§,>7{3 = factor contributing to the conformal blocks x CESZZ(al, ap, a3)



Conformal Bootstrap: idea of the proof in genus 2 partition function

» Choose a pant decomposition of the surface = —
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Conformal Bootstrap: idea of the proof in genus 2 partition function

» Choose a pant decomposition of the surface = —

» Use Segal’s gluing rule: (1)y o = (As, g, Ax, g)nes
Segal

£ =,

» Use the Plancherel identity

<A21,ga AZz,g>‘H®3

= > /R3 (Axyg: @71V Qtipy ) 1o3 (@71 Y Qipp 77, Ay g )wes X Schapo.dpidpadps
Young diag. +



Conformal Bootstrap: idea of the proof in genus 2 partition function

» Choose a pant decomposition of the surface = —

» Use Segal’s gluing rule: (1)y o = (As, g, Ax, g)nes
Sesqi

= Cfi’j@

» Use the Plancherel identity

<A21,ga AZz,g>H®3

= Z / AZ1,g7 j= 1\UQ+IP/,V/,VJ>H®3< j= 1\UQ+IPJ ! ’7A)Z1,g>?-[®3 XSChaPO-dpldP2dP3

Young diag.

» Use the pant computations

(U5, g =/( ) CPO%2(Q + ip1, Q + ip2, Q + ip3) CPO%4(Q — ip1, @ — ip2, Q — ip3)| Fp|?dp
R+)3



Conformal Bootstrap: idea of the proof in genus 2 partition function

» Choose a pant decomposition of the surface = —

» Use Segal’s gluing rule: (1)y o = (As, g, Ax, g)nes
» Use the Plancherel identity

<A217g7 A227g>?-t®3

= Z /3 <A):17g, ®J3:1\|/Q+,'pj,yj7l7j>7_[®3 <®?:1\|}Q+ipj1/.' ,;J_/,Azhg>7_£®3 X Schapo.dpldpgdp3
R3

i
Young diag.

» Use the pant computations
(1)s,q = / CPYEHQ + i1, Q + iz, Q + ip3) CPOP(Q — ip1, Q — ip2, Q — ips)| [ *dp
(R*)

» Change of moduli of surface: glue annuli of moduli ¢ = (q1, 92, q3) € D* between ¥; and
¥,, this only enters the conformal block

()5, g = / 3 CPO%2(Q + ip, Q + ip2, Q + ip3) CPO%2(Q — ip1, Q — ipa, Q — ip3)|Fp(q)[>dp
(R*)



Another example: torus 1 point

s

1-point function on torus T2 = C/(27Z + 277Z), with g = €™

14602
%]

q - : N1 —2B0
Vsl = 95 [7 0@+ s, @~ el 220 () P
0



Remarks:

» first mathematical proof of the full bootstrap formulae proposed by physicists (Knizhnik,
Belavin, Sonoda, Polchinski, Teschner ...).

> the bootstrap formula depends on the chosen decomposition into pairs of pants, annuli
with 1 marked point/insertion and disks with 1 or 2 marked points/insertions

> proves crossing symmetries: formulas for correlations functions given by bootstrap
approach do not depend on the decomposition into geometric blocks (although conformal
blocks do)

» implies convergence a.e. P € R of conformal block series (this was an open problem)

k3h—3+n
Fra(@) = > wile,p)at .. gz il

keNgh73+n

for g = (q1,- -, @3n_3+n) € D373+" Marden-Kra plumbing coordinates; here wy(c, p) are
representation theoretic constants depending only on Virasoro commutation relations.



Perspectives:

>

Conformal bootstrap for Liouville CFT on open surfaces (with Baojun Wu).
Based on recent developments to compute the boundary structure constants (Nina's talk,
works by Ang, Holden, Rémy, Sun, Zhu)

General probabilistic construction of the conformal blocks ? (Ghosal, Rémy, Sun, Sun)

Representation of Mapping class group in the space of conformal blocks, modular functor,
link with Quantum Teichmuller (Teschner,...)

Use conformal welding (Nina's talk) to bridge Liouville CFT with CFT of CLE ? (Ang,
Holden, Rémy, Sun, Wu...)

(Long run) Develop these techniques for CFTs with extended symmetry algebra, e.g. Toda
CFT (Cerclé, Huang)

Other approaches to solve CFTs: Y.Z. Huang and collaborators on the way to provide the
VOA solution for rational CFTs.
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