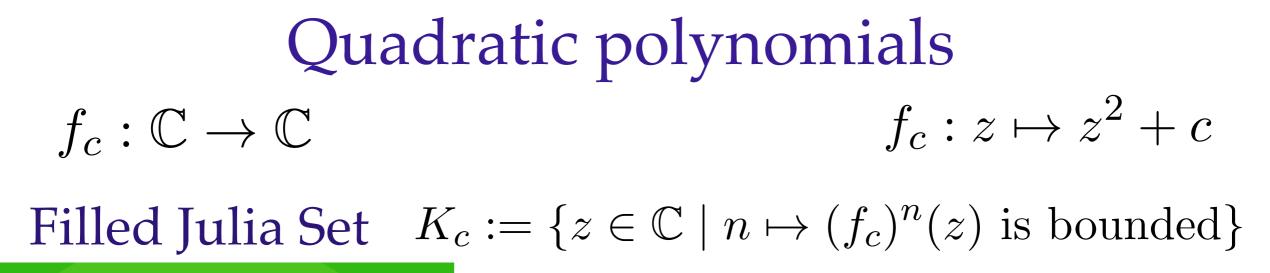
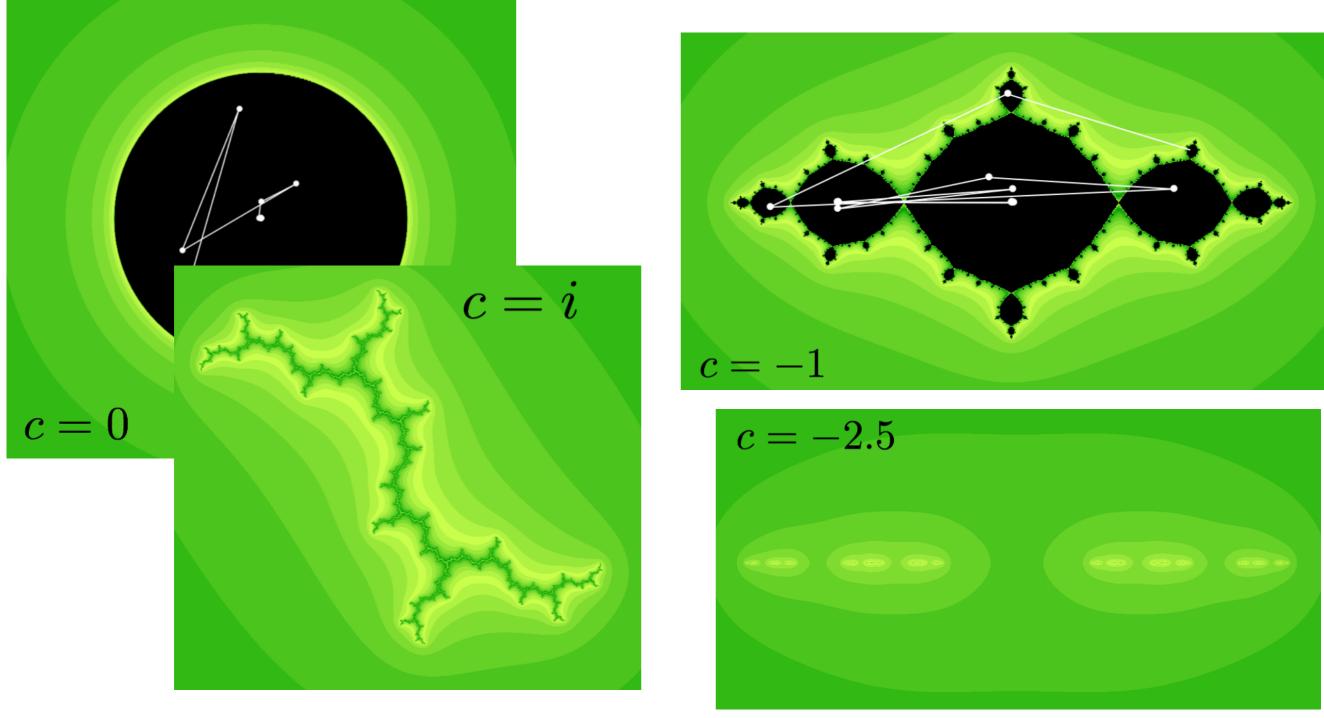
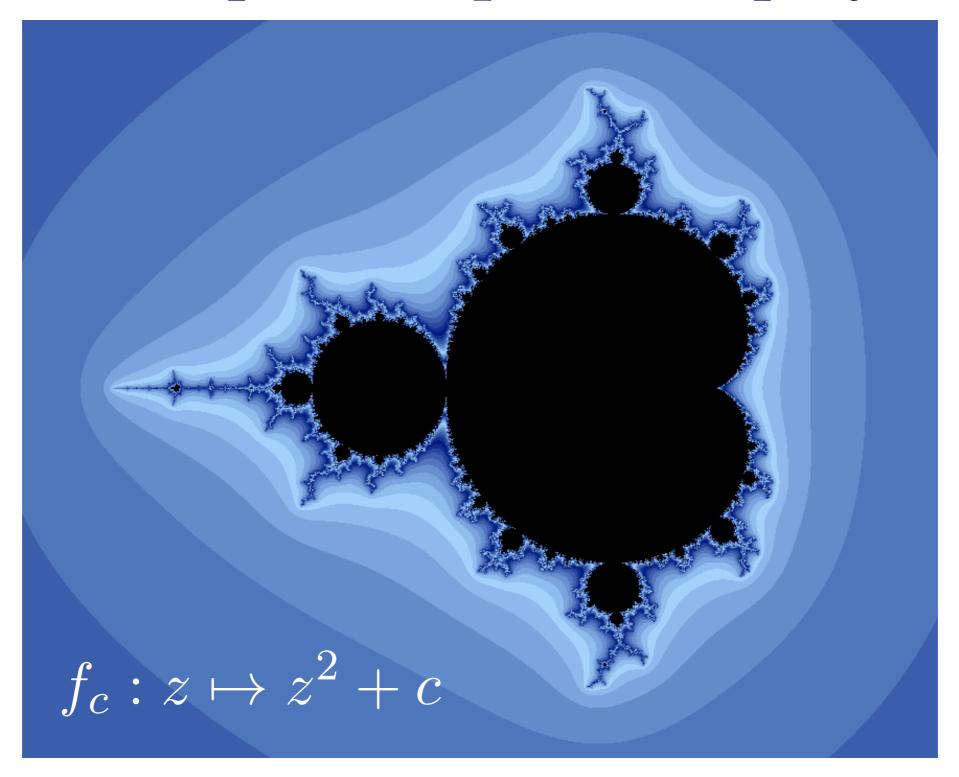
Dynamical moduli spaces

Sarah C. Koch University of Michigan



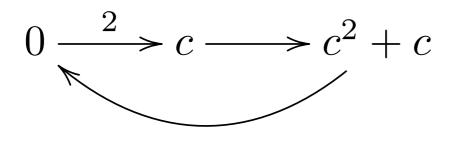


The moduli space of quadratic polynomials



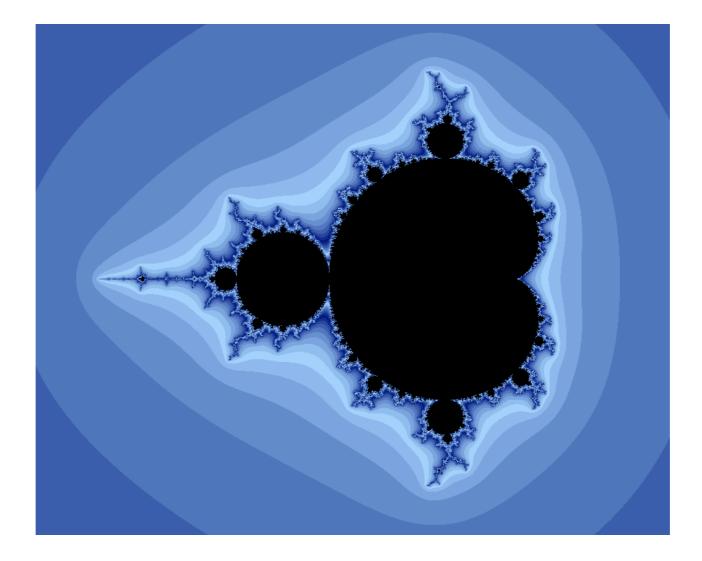
We obtain interesting subsets by constraining the critical orbit

Exercise: Find all c so that 0 is periodic of period 3 for f_c .

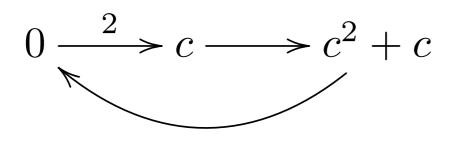


 $f_c: z \mapsto z^2 + c$

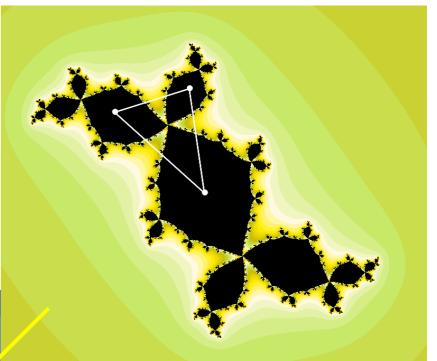
 $c(c^3 + 2c^2 + c + 1) = 0$

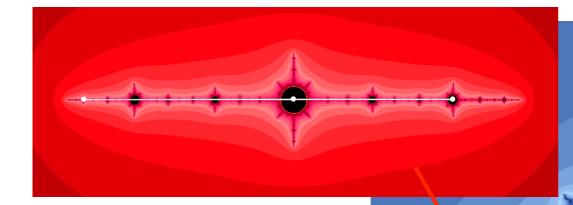


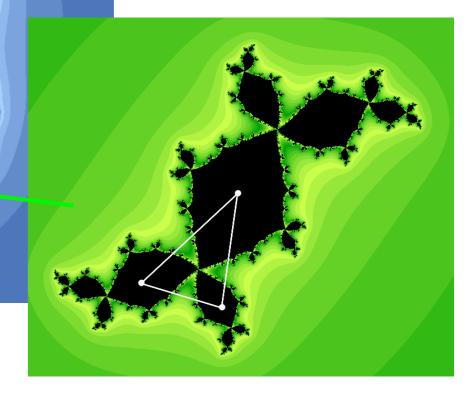
Exercise: Find all c so that 0 is periodic of period 3 for f_c .



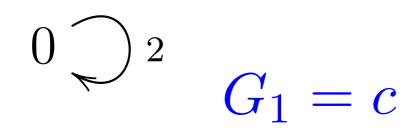
$$c(c^3 + 2c^2 + c + 1) = 0$$

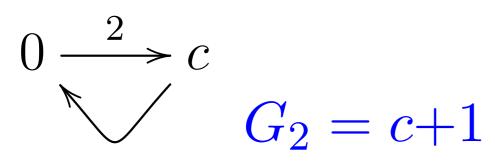


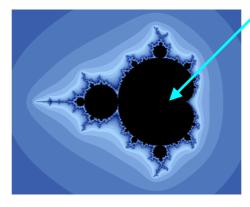


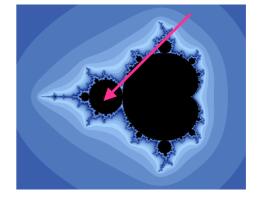


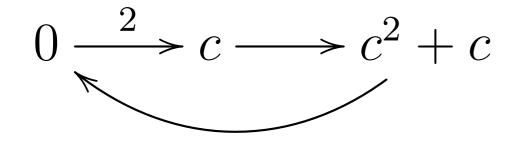
Subvarieties in moduli space

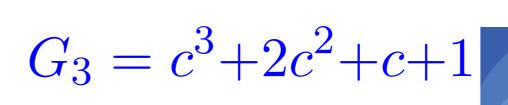


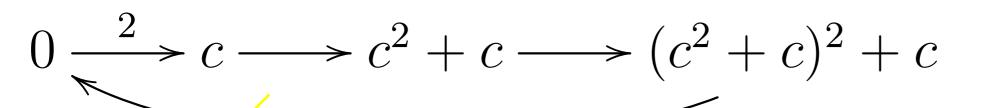




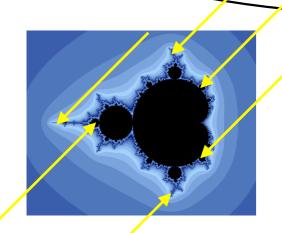








$G_4 = c^6 + 3c^5 + 3c^4 + 3c^3 + 2c^2 + 1$

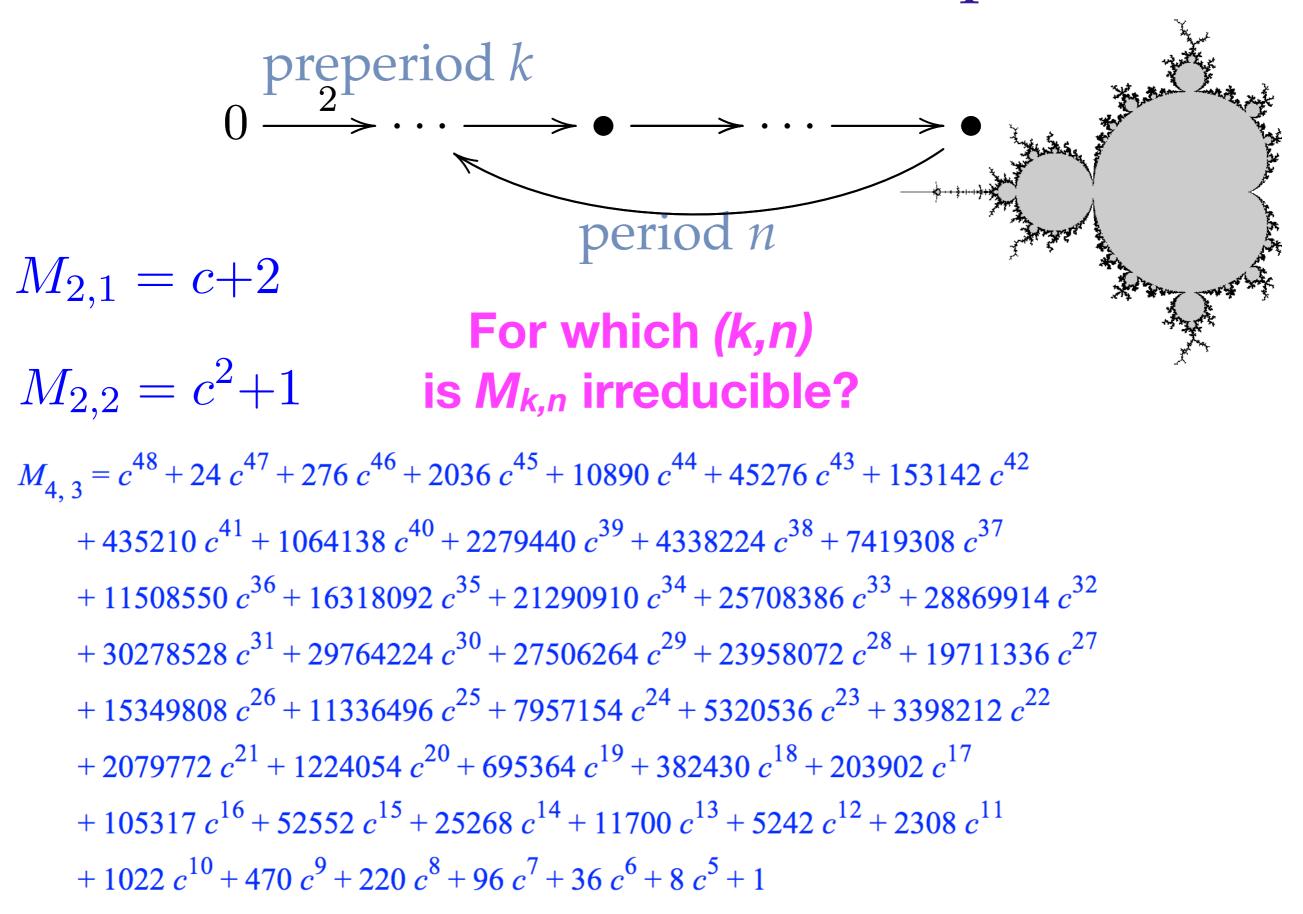


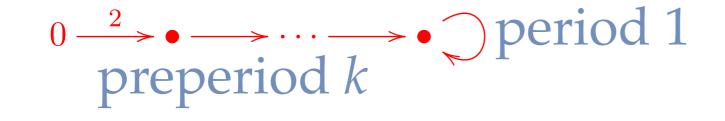
For which *n* is *G_n* irreducible?

Gleason polynomials

 $G_1 = c$ $G_2 = c + 1$ Count the number of $G_3 = c^3 + 2c^2 + c + 1$ hyperbolic components of period n $G_{4} = c^{6} + 3c^{5} + 3c^{4} + 3c^{3} + 2c^{2} + 1$ $G_5 = c^{15} + 8c^{14} + 28c^{13} + 60c^{12} + 94c^{11} + 116c^{10} + 114c^9$ $+94c^{8} + 69c^{7} + 44c^{6} + 26c^{5} + 14c^{4} + 5c^{3} + 2c^{2} + c + 1$ Theorem (Buff, Floyd, K, Parry) The number of The number of irreducible real roots factors mod 2

Subvarieties in moduli space

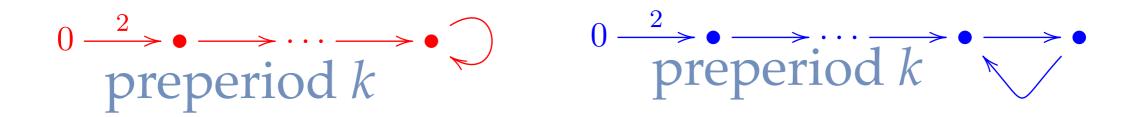




use Eisenstein, p=2 $M_{2,1} = c + 2$ $M_{3,1} = c^3 + 2c^2 + 2c + 2$ $M_{4\ 1} = c^7 + 4 c^6 + 6 c^5 + 6 c^4 + 6 c^3 + 4 c^2 + 2 c + 2$ $M_{5,1} = c^{15} + 8 c^{14} + 28 c^{13} + 60 c^{12} + 94 c^{11} + 116 c^{10} + 114 c^{9} + 94 c^{8} + 70 c^{7}$ $+ 48 c^{6} + 32 c^{5} + 20 c^{4} + 10 c^{3} + 4 c^{2} + 2 c + 2$ $M_{6,1} = c^{31} + 16 c^{30} + 120 c^{29} + 568 c^{28} + 1932 c^{27} + 5096 c^{26} + 10948 c^{25}$ $+ 19788 c^{24} + 30782 c^{23} + 41944 c^{22} + 50788 c^{21} + 55308 c^{20} + 54746 c^{19}$ $+ 49700 c^{18} + 41658 c^{17} + 32398 c^{16} + 23462 c^{15} + 15872 c^{14} + 10096 c^{13}$ $+ 6096 c^{12} + 3528 c^{11} + 1976 c^{10} + 1072 c^{9} + 564 c^{8} + 290 c^{7} + 144 c^{6}$ $+ 68 c^{5} + 28 c^{4} + 10 c^{3} + 4 c^{2} + 2 c + 2$

Polynomials in parameter space

Theorem. (Goksel; 2018) For all $k \ge 2$, the polynomials $M_{k,1}$ and $M_{k,2}$ are irreducible over \mathbb{Z} .



Theorem. (Buff, Epstein, K; 2018) For all $k \ge 2$, the polynomial $M_{k,3}$ is irreducible over \mathbb{Z} .

Quadratic rational maps

 $\operatorname{Rat}_2 \approx \mathbb{P}^5 \setminus \Delta$

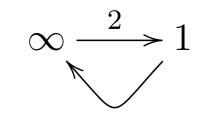
mod out by conjugation by Möbius transformations

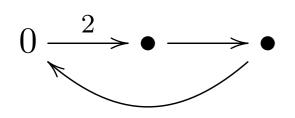
The quotient is the moduli space of quadratic rational maps; it is isomorphic to \mathbb{C}^2 (Milnor).

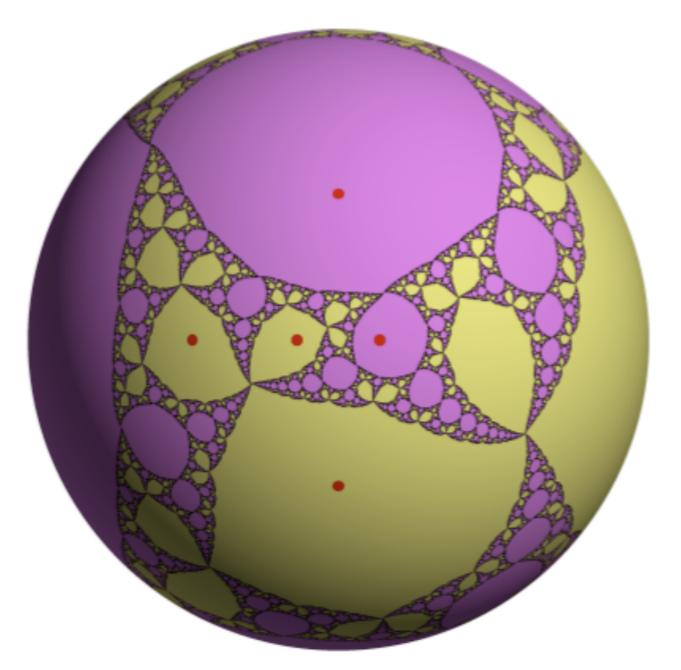
how do we understand this moduli space?

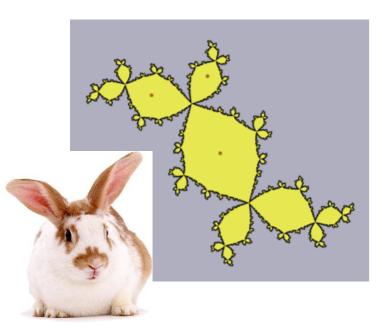
$$f_{a,b}(z) = \frac{z^2 + a}{z^2 + b} \qquad \begin{array}{c} 0 \xrightarrow{2} & \cdots \\ & \infty \xrightarrow{2} & 1 \longrightarrow \cdots \end{array}$$

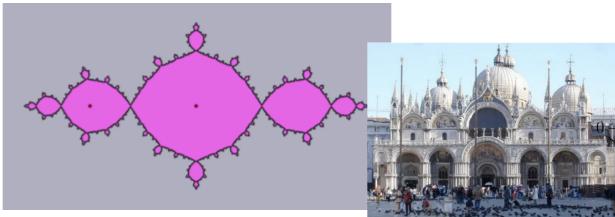
$$f(z) = \frac{z^2 - e^{-2\pi i/3}}{z^2 - 1}$$



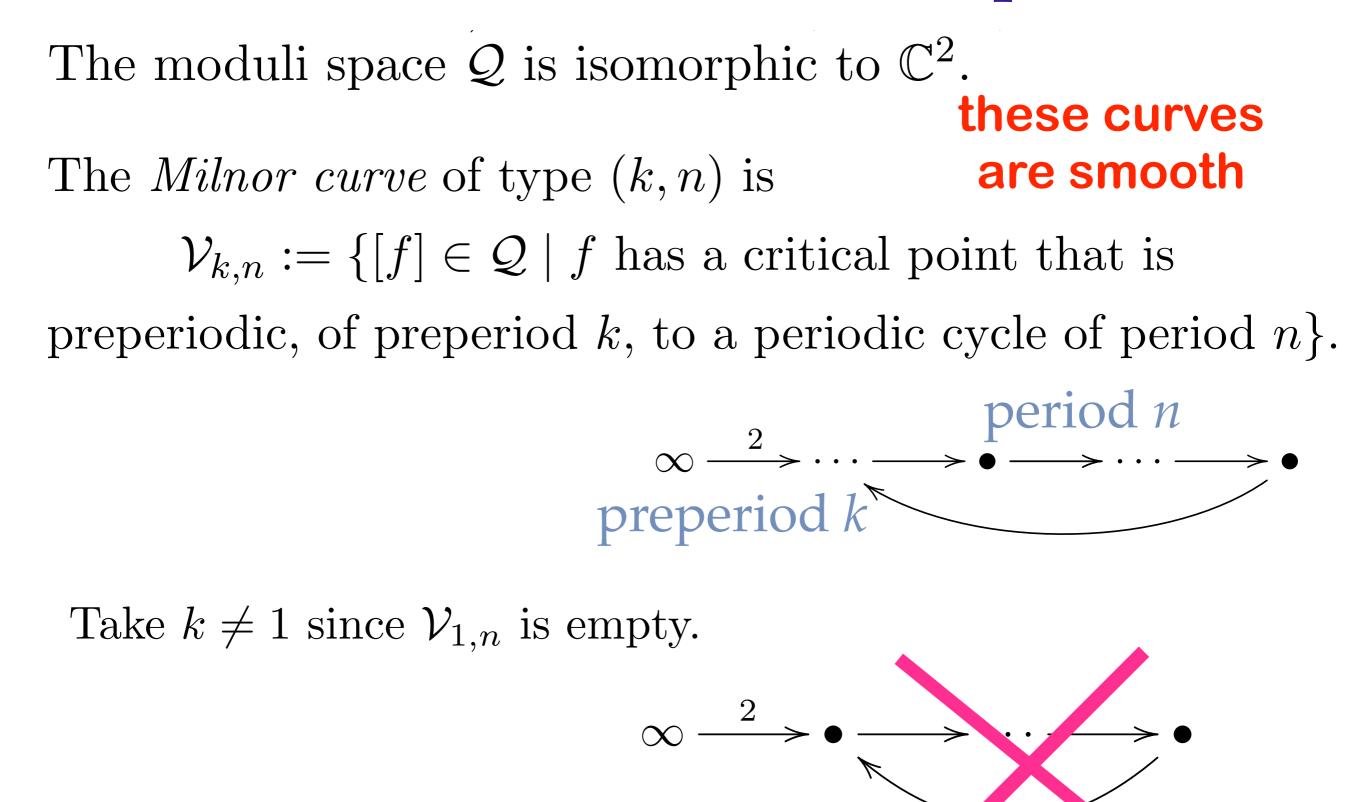


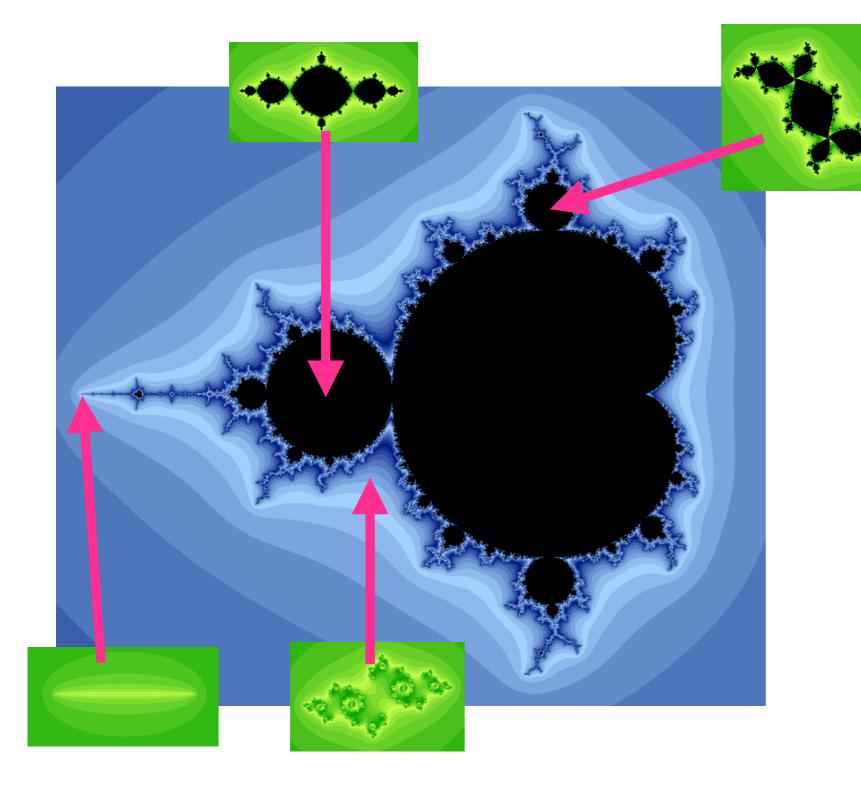






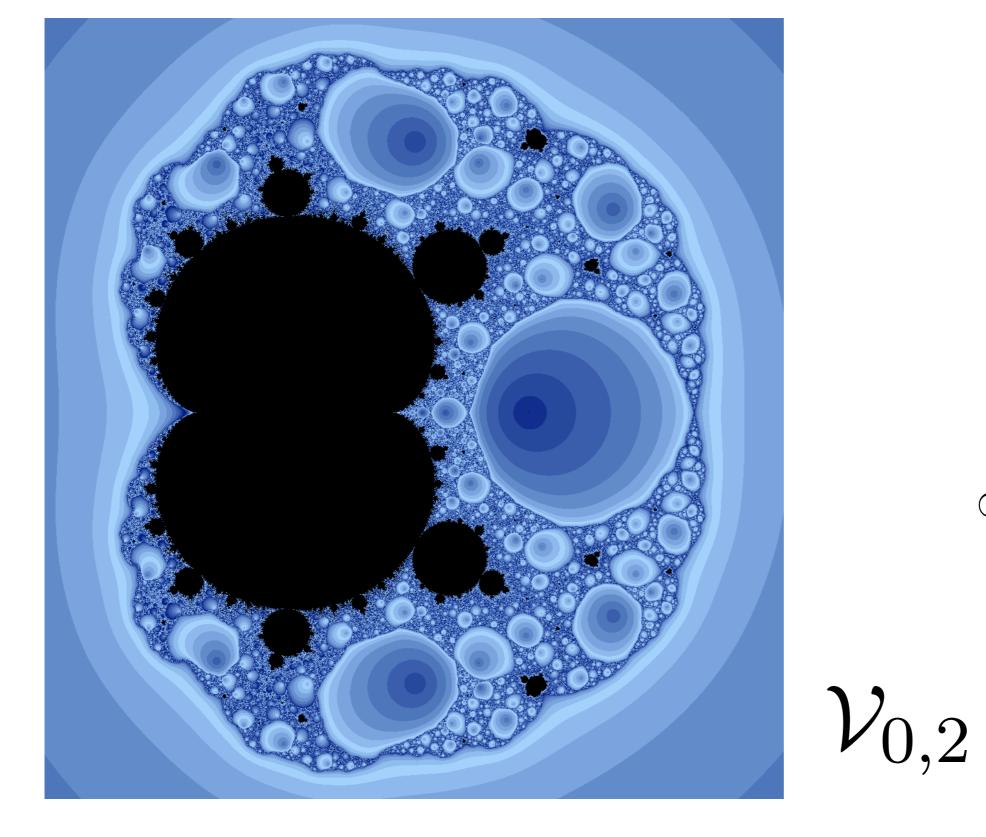
Quadratic rational maps

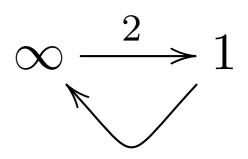


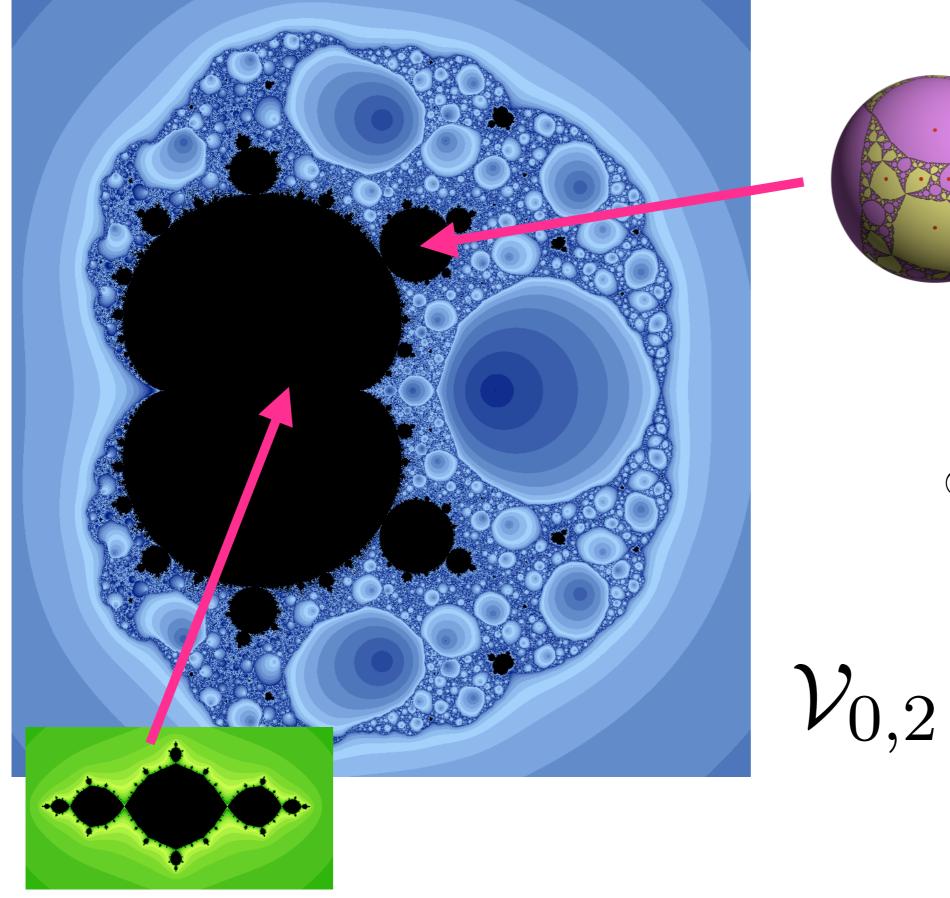


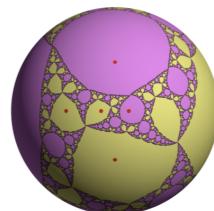
Polynomial slice

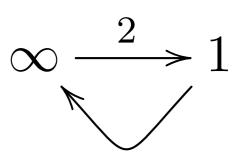
 $\mathcal{V}_{0,1}$

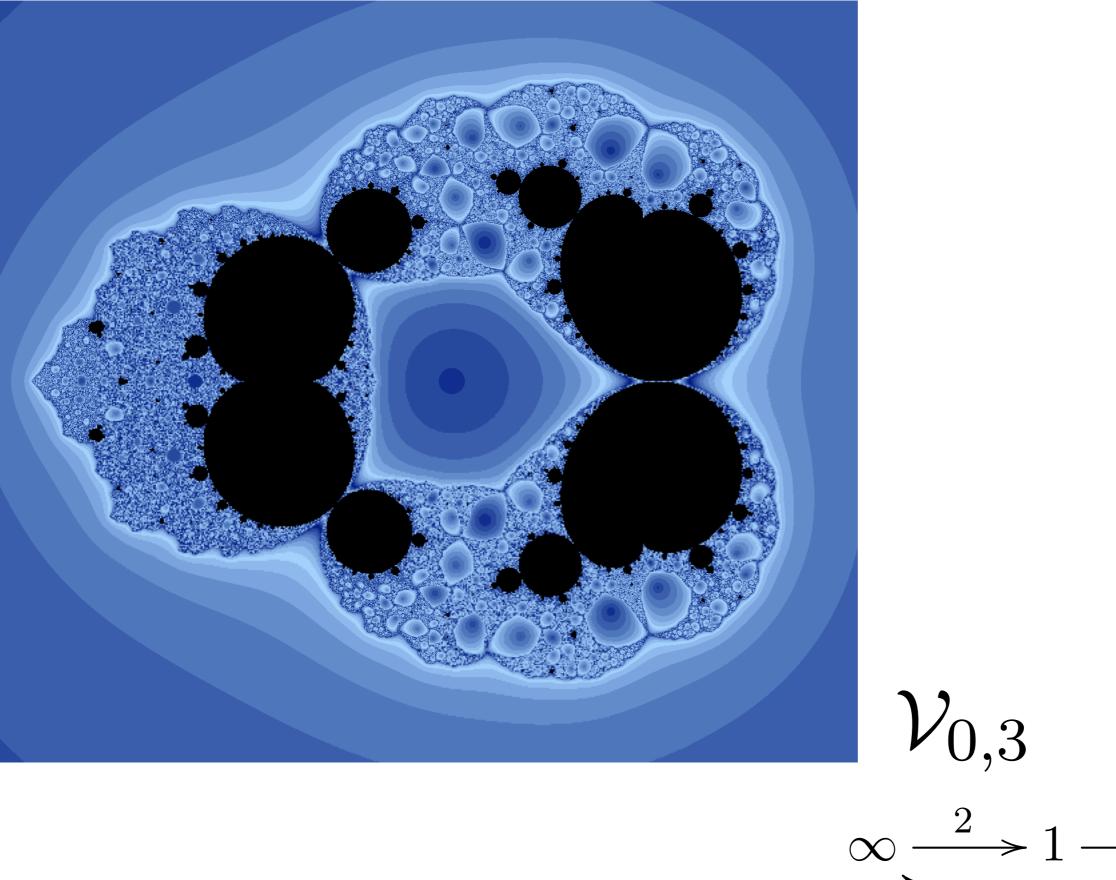


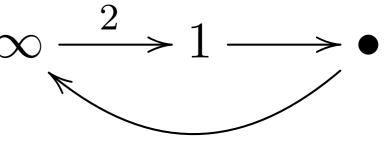


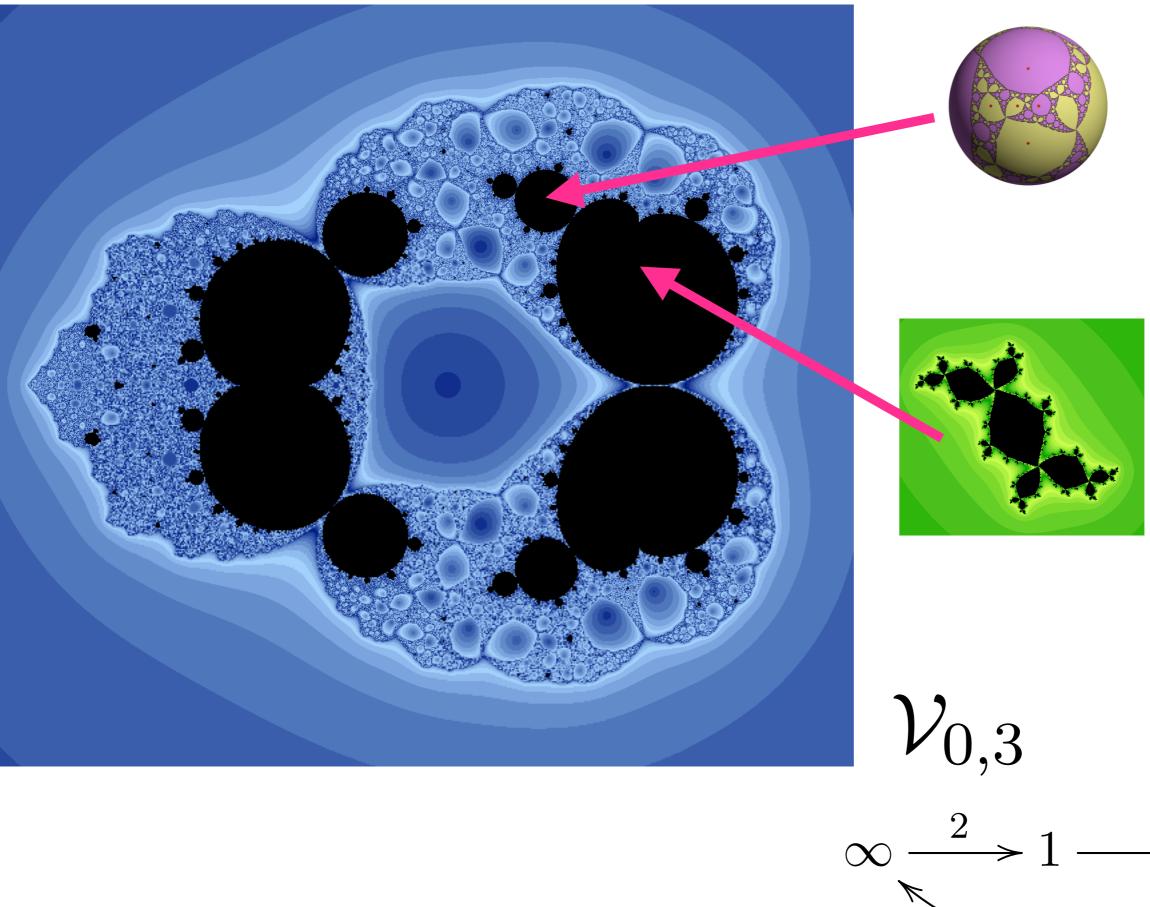




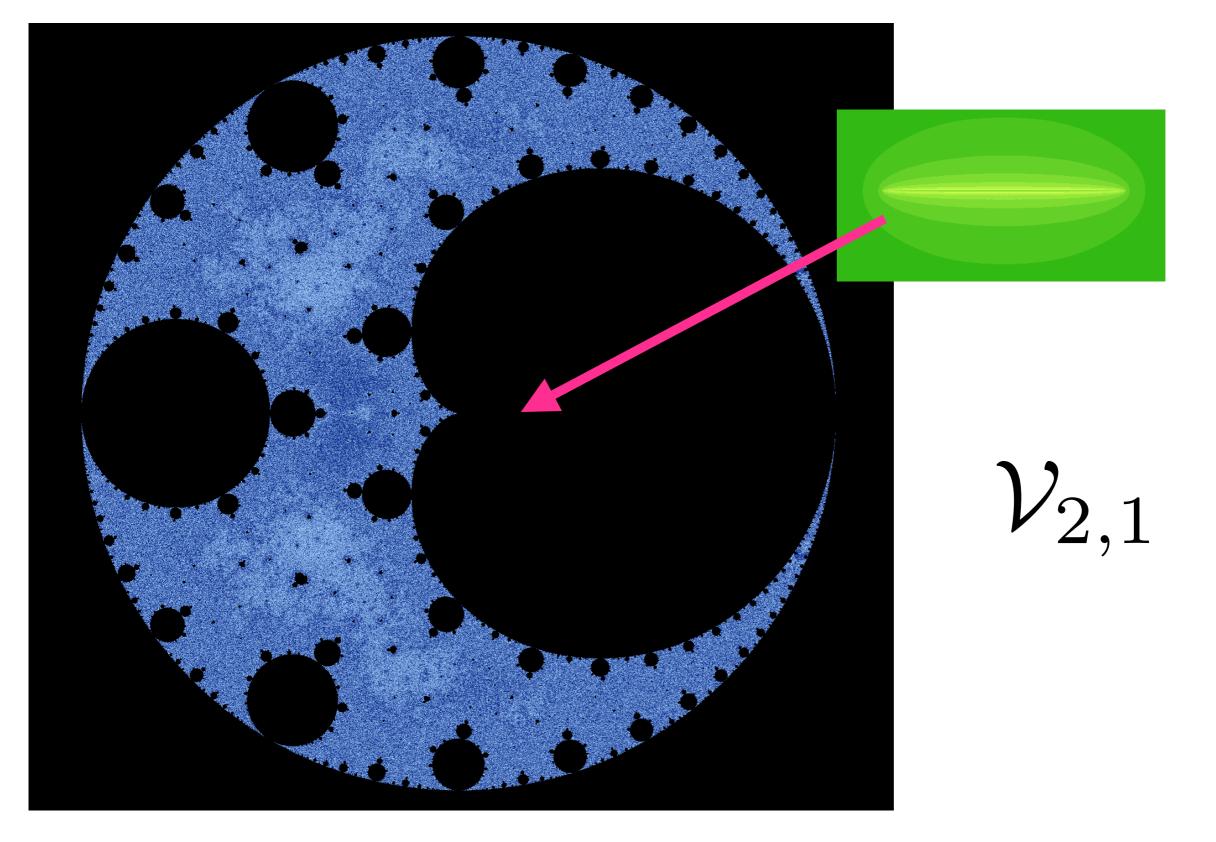


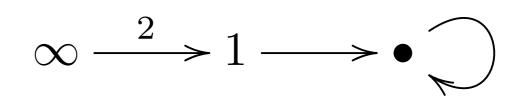


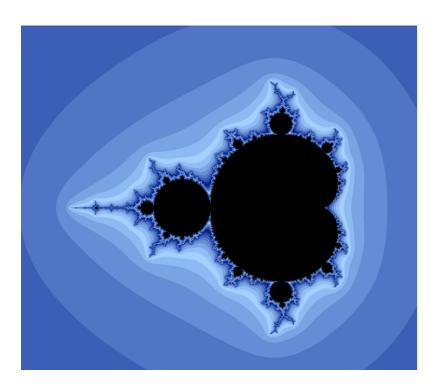


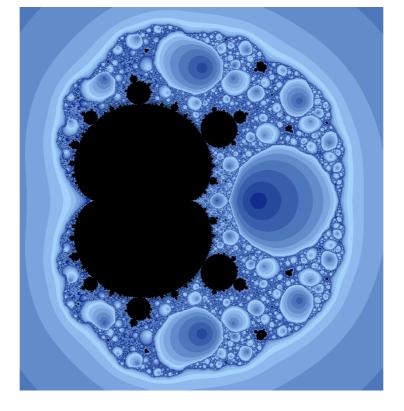


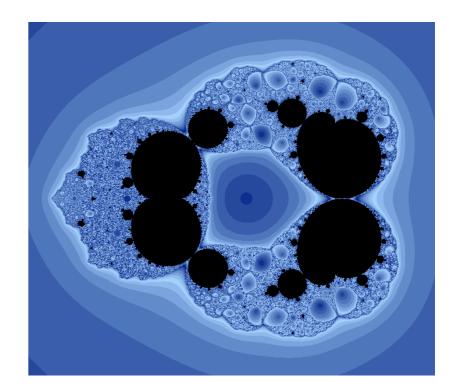


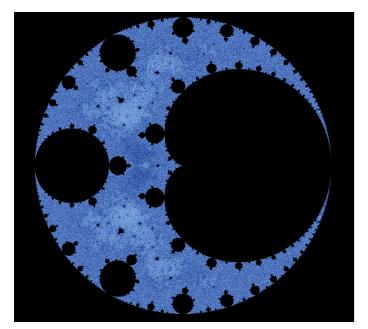


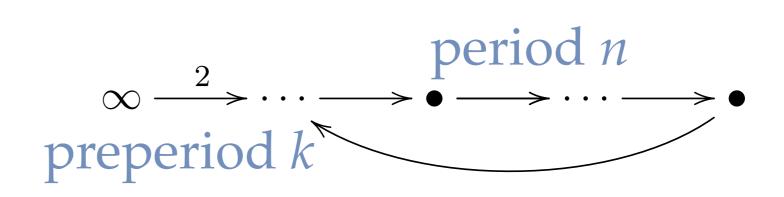








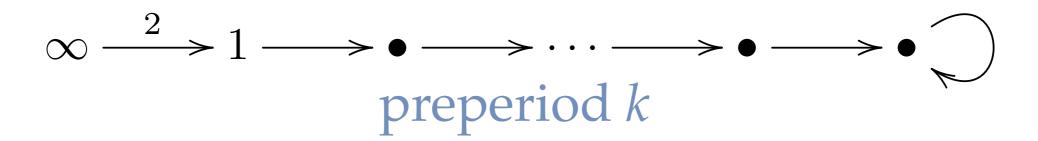


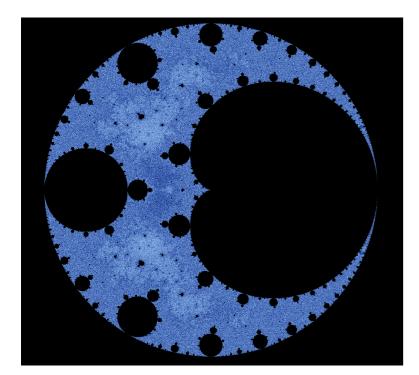


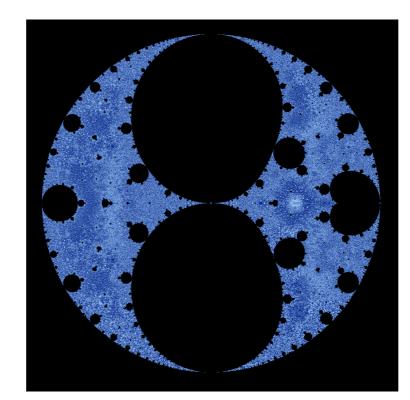
Conjecture. For all $k \in \{0, 2, 3, 4, ...\}$ and $n \ge 1$, the curve $\mathcal{V}_{k,n}$ is irreducible over \mathbb{C} .

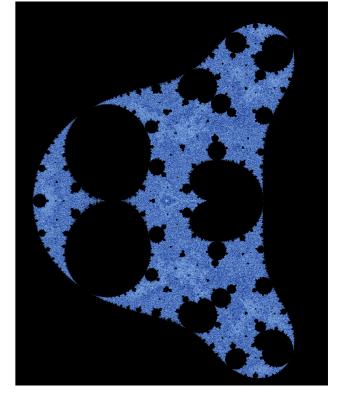
Because these curves are smooth, this is equivalent to asking if they are **connected**.

Theorem. (Buff, Epstein, K) For all $k \ge 2$, the curve $\mathcal{V}_{k,1}$ is irreducible (over \mathbb{C}).

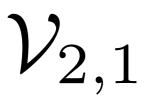


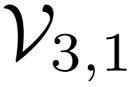




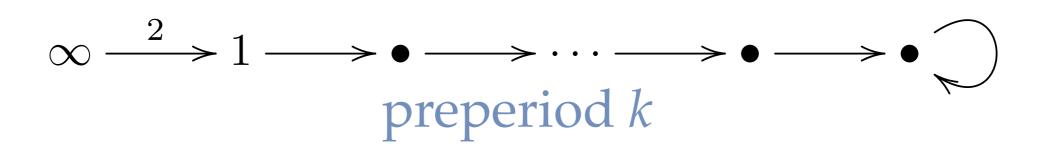


 $\mathcal{V}_{4,1}$





Theorem. (Buff, Epstein, K) For all $k \ge 2$, the curve $\mathcal{V}_{k,1}$ is irreducible (over \mathbb{C}).



Main ingredient in proof

Lemma. Let $R \in \mathbb{Q}[a, b]$, and suppose that the affine curve R = 0 contains a non-singular point $(a_0, b_0) \in \mathbb{Q}^2$. Then R is irreducible over \mathbb{Q} if and only if it is irreducible over \mathbb{C} .

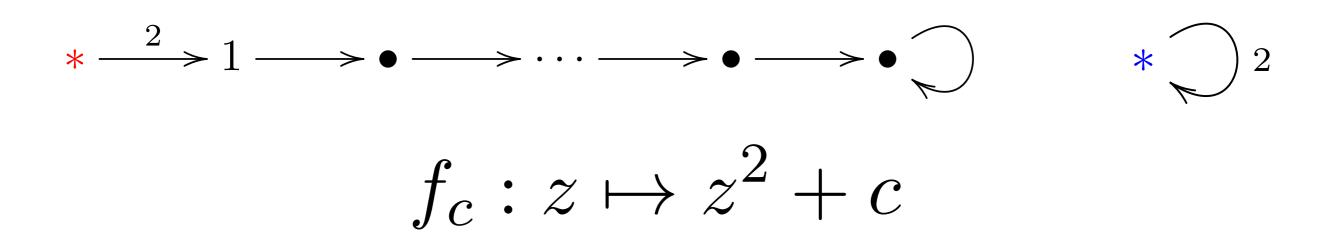
Step 0. Observe that $\mathcal{V}_{k,1}$ is given by some $R \in \mathbb{Q}[a, b]$.

Step 1. Find non-singular $(a_0, b_0) \in \mathbb{Q}^2$ on $\mathcal{V}_{k,1}$.

Step 2. Show $R \in \mathbb{Q}[a, b]$ that defines $\mathcal{V}_{k,1}$ is irreducible over \mathbb{Q} .

Step 2. Show $R \in \mathbb{Q}[a, b]$ that defines $\mathcal{V}_{k,1}$ is irreducible over \mathbb{Q} .

Do this by intersecting with polynomial slice $\mathcal{V}_{0,1}$ and use *Misiurewicz polynomials*.



Theorem. (Buff, Epstein, K) For all $k \ge 2$, the curve $\mathcal{V}_{k,1}$ is irreducible (over \mathbb{C}).

