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Introduction 1.

Any cubic polynomial map with marked critical point is
affinely conjugate to one of the form

F (z) = Fa,v (z) = z3 − 3a2z + (2a3 + v) .

Here a is the marked critical point,
F (a) = v is the marked critical value,
−a is the free critical point,
2a is the free co-critical point, F (2a) = F (−a)
−2a is the marked co-critical point, F (−2a) = F (a).

The set of all such maps F = Fa,v will be identi-
fied with the parameter space, consisting of all pairs
(a, v) ∈ C2.
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The Period p Curve 2.

Definition: the period p curve Sp ⊂ C2 , consists of all maps
F = Fa, v such that the marked critical point a has period
exactly p .

Theorem(Milnor). The curve Sp is a smooth affine curve in
C2.

Arfeux and Kiwi have recently proved the following very difficult
result:

This curve Sp is connected for every period p.

Difficulty: The genus of this Riemann Surface Sp grows
rapidly with p .

period p: 1 2 3 4 5 6
genus g: 0 0 1 15 93 393
#punctures N: 1 2 8 20 56 144
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Escape regions 3.
An escape region Ej in Sp is a connected component of the
open set consisting of those maps F = Fa,v such that the orbit
of −a under F escapes to infinity.

There is a one-to-one correspondence between escape regions
and puncture points.

A map F belongs to a parameter ray with co-critical angle
θ = t if the dynamic ray of angle θ passes through the
co-critical point 2a . The rays θ ± 1/3 crash together at the
free critical point −a .

a

-a
-2a

2a

t-1/3

t+1/3

t

Dynamical plane for F ∈ Ej . The equipotential through 2a
and −a is a figure eight curve.
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Co-period angles + Escape regions 4.

A rational angle t = θ ∈ Q/Z will be called co-periodic of
co-period q if either θ+ 1/3 or θ− 1/3 is periodic of period
q under tripling modulo Z .

Each Ej has a multiplicity µj > 0 , and there are always µj
different parameter rays for any given θ of co-period q .

Each puncture point ∞j in the Riemann surface Sp is
surrounded by an escape region Ej , which is conformally
diffeomorphic to CrD .

The connectedness locus X ⊂ Sp is a compact connected set.

The complement SprX is the
disjoint union of the open sets Ej .
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Dynamical External Rays. 5.

For a cubic polynomial in the connectedness locus, there is a
commutative diagram: CrK (f )

∼= //

f
��

CrD

(w 7→w3)
��

CrK (f )
∼= // CrD

1/8
2/8

3/8

6/8

7/85/8

Example in S2: The rays are labeled by angles in R/Z .
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Orbit Portraits 6.

The period q orbit portrait OPq for a cubic map is an
equivalence relation between angles of period q under angle
tripling:
Two angles are equivalent ⇐⇒ the corresponding rays land
at the same point.

1/8

2/8

3/8

5/8
7/8

6/8

Here q = 2 , and 1/8 ∼ 2/8 ∼ 3/8 ∼ 6/8, where

1/8↔ 3/8 , 1/4↔ 3/4 , 5/8↔ 7/8 .
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Landing Theorem (co-periodic case) 7.

Every parameter ray R with rational parameter angle θ lands at
a uniquely defined map F = FR which belongs to the boundary
of its escape region in Sp.

Case 1. If θ is co-
periodic of co-period
q, then this landing
map F has a parabolic
orbit of ray period q.
Furthermore, the dy-
namic ray of angle θ
for F lands at the
root point of the Fa-
tou component which
contains the co-critical
point 2a.

6 Cubic Polynomial Maps, Part III
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Figure 2: A parabolic example with ray period one: Julia set for the landing map of the 5/6
parameter ray in the inner escape region Ein of S2 . Here the two dynamic rays of angle 5/6±1/3
land on the boundary of the fixed parabolic component, with 1/2 landing at the parabolic fixed
point. (See Figure 5 left for the corresponding point in parameter space.) In this example we
have period q = 1 , so that the critical basin U(−a) is equal to the critical value basin U(v′) .

See for example [DH1, Prop. 8.5]. This contrasts with the behavior at a parabolic landing
point, where there is no such stability.

Proof of Lemma 2.6. The ray R must have at least one accumulation point F̂ in
the boundary ∂Eh . Since the parameter angle θ is rational, and since F̂ belongs to the
connectedness locus, the associated dynamical ray RF̂ (θ) lands at some periodic or pre-

periodic point z0(F̂ ) in the Julia set J(F̂ ) . In fact, if we choose a multiple 3kθ which is
periodic under angle tripling, then the dynamic ray F ◦k(R) will land at a periodic point
which is either parabolic or repelling. (See for example [M3, §18.10].) If it is a parabolic

point, then the map F̂ is parabolic by definition.
On the other hand, if this periodic point zk(F̂ ) is repelling, then we will prove that the

landing point z0(F̂ ) is equal to the co-critical point 2a = 2aF̂ , so that F̂ is critically finite.

Let F vary over a small neighborhood of F̂ in Sp . By Lemma 2.7, the entire dynamical
ray RF (θ) will vary continuously with F . In particular, its landing point z0(F ) will vary
continuously. If we choose F to lie on the parameter ray RE(θ) , then the co-critical point
2aF will lie on this dynamical ray RF (θ) . (Compare Figure 1.) Choosing a sequence

of maps Fj tending to F̂ and all belonging to the parameter ray REh(θ) , recall from
Lemma 2.7 that the dynamic ray RFj(θ) converges uniformly to RF̂ (θ) , when these rays
are parametrized by the respective Green’s functions. But the Green’s function gFj(2aFj)
will tend to gF̂ (2aF̂ ) = 0 , hence the distance between 2aFj and the landing point z0(Fj)
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which is either parabolic or repelling. (See for example [M3, §18.10].) If it is a parabolic

point, then the map F̂ is parabolic by definition.
On the other hand, if this periodic point zk(F̂ ) is repelling, then we will prove that the

landing point z0(F̂ ) is equal to the co-critical point 2a = 2aF̂ , so that F̂ is critically finite.

Let F vary over a small neighborhood of F̂ in Sp . By Lemma 2.7, the entire dynamical
ray RF (θ) will vary continuously with F . In particular, its landing point z0(F ) will vary
continuously. If we choose F to lie on the parameter ray RE(θ) , then the co-critical point
2aF will lie on this dynamical ray RF (θ) . (Compare Figure 1.) Choosing a sequence

of maps Fj tending to F̂ and all belonging to the parameter ray REh(θ) , recall from
Lemma 2.7 that the dynamic ray RFj(θ) converges uniformly to RF̂ (θ) , when these rays
are parametrized by the respective Green’s functions. But the Green’s function gFj(2aFj)
will tend to gF̂ (2aF̂ ) = 0 , hence the distance between 2aFj and the landing point z0(Fj)
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Every parameter ray R with rational parameter angle θ lands at
a uniquely defined map F = FR which belongs to the boundary
of its escape region in Sp.

Case 1. If θ is co-
periodic of co-period
q, then this landing
map F has a parabolic
orbit of ray period q.
Furthermore, the dy-
namic ray of angle θ
for F lands at the
root point of the Fa-
tou component which
contains the co-critical
point 2a.
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Case 2. If θ is ratio-
nal but not co-periodic,
then F is critically fi-
nite. In this case the
dynamic θ ray lands
at the co-critical point
2a, and the forward or-
bit of 2a (or equiva-
lently of −a) is eventu-
ally periodic repelling.
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Figure 4: A critically finite example. On the left, Julia set for the landing map
of the 1/9 parameter ray in the outer (basilica) escape region Eout of S2 . Note
that the dynamical 1/9 ray lands at the co-critical point, which is eventually peri-
odic repelling since 1/9 7→ 1/3 7→ 1 ≡ 0 . The two dynamic rays of angles
1/9 ± 1/3 land on the free critical point −a . The 1/9 parameter ray is shown in the fig-
ure on the right. Note that 1/9 is not co-periodic. Some co-periodic rays are also shown.
(Compare Figures 5 and 7.) Note that the landing point of the 1/9 dynamic ray looks very
much like the landing point of he 1/9 parameter ray. (This seems to be true in all critically finite
cases.)

F ∈ Sp with a parabolic basin of period q > 1 we have the diagram.1

GFED@ABC2a
F //GFED@ABCv′

F ◦q−1
// GFED@ABC−a

F
oooo

Here F maps the Fatou component U(2a) of the co-critical point 2a biholomorphically
onto the Fatou component U(v′) of the free critical value v′ = F (−a) = F (2a) , which
in turn maps biholomorphically onto successive forward images until we reach the critical
Fatou component U(−a) . However F maps U(−a) by a two-fold branched covering map
back onto U(v′) . Since F is holomorphic everywhere, it certainly extends continuously to
the closure of each of these parabolic basins.

For q = 1 there is a simpler diagram with the component U(2a) mapping biholomor-
phically onto U(−a) = U(v′) , and with U(−a) mapping by a two-fold branched covering
onto itself.

1Here we are only concerned with the orbit of the free critical point: the marked critical point is not
involved in this discussion.
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The period q tessellation of Sp . 9.

Let q ∈ N .

The period q tessellation Tesq(Sp) of Sp
consists of: The collection of all parameter rays of co-period q
in all escape regions, together with their landing points. It
decomposes Sp into a finite number of connected open sets
Fk , which we will call the faces of the tessellation.
The edges of the tessellation consist of all parameter rays of
co-period q ; The vertices consist of:
(1) parabolic vertices: the landing points of these rays; and
(2) ideal vertices (or puncture points): the points of SprSp .

Every edge joins a parabolic vertex to an ideal vertex.

Conjecture. All faces of the tessellation Tesq(Sp) are
simply-connected if and only if either p = q or p = 1.
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The Period q Tessellation (continued) 10.

For any q ≥ 1 and any p ≥ 1 the parameter rays of co-period
q in the compactified parameter space Sp divide it up into a
number of faces Fk . The case q = p = 2.
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Figure 7: Showing the 24 parameter rays of co-period 2 for S2 (twelve inside and twelve outside).
Four of these rays are shown on the left, and the remaining twenty on the right. These rays divide
the plane into sixteen period 2 regions. Compare Figure 8.

path within the unit disk whenever the corresponding dynamic rays land at a common point
in the Julia set. This can always be done so that two such paths intersect only when all
of the associated dynamic rays land at a common point. As examples, the orbit portrait
O2 described in the preceding paragraph corresponds to the circle diagram at the top of
Figure 8; while the portrait O2 = {{2, 5, 6, 7} with denominator 8 corresponds to the top
right circle diagram in Figure 8.

Such a diagram can be thought of as the period q part of the Thurston lamination for
F . See Figures 5 and 8 which show the orbit portraits associated with the various faces of
the period one and two tessellations for the curve S2 .

Definition 3.7 (Size). It is sometimes convenient to introduce an integer s ≥ 0 which
measures the size or complexity of an orbit portrait. There are several possible choices for
such a size function, but perhaps the simplest one is to define s as the number of unordered
pairs which are equivalent to each other. For example, with this definition, the various
portraits in Figure 8 have sizes 1, 2, 3, and 6. (Note that collection of n mutually equivalent
angles makes a contribution of n(n− 1)/2 to the size.)

Definition 3.8 (Parabolic Multiplicity). We return to the study of tessellations. By
the parabolic multiplicity µpar of a face Fk of a tessellation Tesq(Sp) we will mean

16 Cubic Polynomial Maps, Part III

5/24 7/24

17/2419/24

1/24

2/24
10/24

11/24

13/24

14/2422/24

23/24

1/24

2/24

5/24
7/24

10/24

11/24
13/24
14/24

17/24
19/24

22/24
23/24

Figure 7: Showing the 24 parameter rays of co-period 2 for S2 (twelve inside and twelve outside).
Four of these rays are shown on the left, and the remaining twenty on the right. These rays divide
the plane into sixteen period 2 regions. Compare Figure 8.

path within the unit disk whenever the corresponding dynamic rays land at a common point
in the Julia set. This can always be done so that two such paths intersect only when all
of the associated dynamic rays land at a common point. As examples, the orbit portrait
O2 described in the preceding paragraph corresponds to the circle diagram at the top of
Figure 8; while the portrait O2 = {{2, 5, 6, 7} with denominator 8 corresponds to the top
right circle diagram in Figure 8.

Such a diagram can be thought of as the period q part of the Thurston lamination for
F . See Figures 5 and 8 which show the orbit portraits associated with the various faces of
the period one and two tessellations for the curve S2 .

Definition 3.7 (Size). It is sometimes convenient to introduce an integer s ≥ 0 which
measures the size or complexity of an orbit portrait. There are several possible choices for
such a size function, but perhaps the simplest one is to define s as the number of unordered
pairs which are equivalent to each other. For example, with this definition, the various
portraits in Figure 8 have sizes 1, 2, 3, and 6. (Note that collection of n mutually equivalent
angles makes a contribution of n(n− 1)/2 to the size.)

Definition 3.8 (Parabolic Multiplicity). We return to the study of tessellations. By
the parabolic multiplicity µpar of a face Fk of a tessellation Tesq(Sp) we will mean



The Period q Tessellation (continued) 10.

For any q ≥ 1 and any p ≥ 1 the parameter rays of co-period
q in the compactified parameter space Sp divide it up into a
number of faces Fk .

The case q = p = 2.
16 Cubic Polynomial Maps, Part III

5/24 7/24

17/2419/24

1/24

2/24
10/24

11/24

13/24

14/2422/24

23/24

1/24

2/24

5/24
7/24

10/24

11/24
13/24
14/24

17/24
19/24

22/24
23/24

Figure 7: Showing the 24 parameter rays of co-period 2 for S2 (twelve inside and twelve outside).
Four of these rays are shown on the left, and the remaining twenty on the right. These rays divide
the plane into sixteen period 2 regions. Compare Figure 8.

path within the unit disk whenever the corresponding dynamic rays land at a common point
in the Julia set. This can always be done so that two such paths intersect only when all
of the associated dynamic rays land at a common point. As examples, the orbit portrait
O2 described in the preceding paragraph corresponds to the circle diagram at the top of
Figure 8; while the portrait O2 = {{2, 5, 6, 7} with denominator 8 corresponds to the top
right circle diagram in Figure 8.

Such a diagram can be thought of as the period q part of the Thurston lamination for
F . See Figures 5 and 8 which show the orbit portraits associated with the various faces of
the period one and two tessellations for the curve S2 .

Definition 3.7 (Size). It is sometimes convenient to introduce an integer s ≥ 0 which
measures the size or complexity of an orbit portrait. There are several possible choices for
such a size function, but perhaps the simplest one is to define s as the number of unordered
pairs which are equivalent to each other. For example, with this definition, the various
portraits in Figure 8 have sizes 1, 2, 3, and 6. (Note that collection of n mutually equivalent
angles makes a contribution of n(n− 1)/2 to the size.)

Definition 3.8 (Parabolic Multiplicity). We return to the study of tessellations. By
the parabolic multiplicity µpar of a face Fk of a tessellation Tesq(Sp) we will mean

16 Cubic Polynomial Maps, Part III

5/24 7/24

17/2419/24

1/24

2/24
10/24

11/24

13/24

14/2422/24

23/24

1/24

2/24

5/24
7/24

10/24

11/24
13/24
14/24

17/24
19/24

22/24
23/24

Figure 7: Showing the 24 parameter rays of co-period 2 for S2 (twelve inside and twelve outside).
Four of these rays are shown on the left, and the remaining twenty on the right. These rays divide
the plane into sixteen period 2 regions. Compare Figure 8.

path within the unit disk whenever the corresponding dynamic rays land at a common point
in the Julia set. This can always be done so that two such paths intersect only when all
of the associated dynamic rays land at a common point. As examples, the orbit portrait
O2 described in the preceding paragraph corresponds to the circle diagram at the top of
Figure 8; while the portrait O2 = {{2, 5, 6, 7} with denominator 8 corresponds to the top
right circle diagram in Figure 8.

Such a diagram can be thought of as the period q part of the Thurston lamination for
F . See Figures 5 and 8 which show the orbit portraits associated with the various faces of
the period one and two tessellations for the curve S2 .

Definition 3.7 (Size). It is sometimes convenient to introduce an integer s ≥ 0 which
measures the size or complexity of an orbit portrait. There are several possible choices for
such a size function, but perhaps the simplest one is to define s as the number of unordered
pairs which are equivalent to each other. For example, with this definition, the various
portraits in Figure 8 have sizes 1, 2, 3, and 6. (Note that collection of n mutually equivalent
angles makes a contribution of n(n− 1)/2 to the size.)

Definition 3.8 (Parabolic Multiplicity). We return to the study of tessellations. By
the parabolic multiplicity µpar of a face Fk of a tessellation Tesq(Sp) we will mean



The Period q Tessellation (continued) 10.

For any q ≥ 1 and any p ≥ 1 the parameter rays of co-period
q in the compactified parameter space Sp divide it up into a
number of faces Fk . The case q = p = 2.
16 Cubic Polynomial Maps, Part III

5/24 7/24

17/2419/24

1/24

2/24
10/24

11/24

13/24

14/2422/24

23/24

1/24

2/24

5/24
7/24

10/24

11/24
13/24
14/24

17/24
19/24

22/24
23/24

Figure 7: Showing the 24 parameter rays of co-period 2 for S2 (twelve inside and twelve outside).
Four of these rays are shown on the left, and the remaining twenty on the right. These rays divide
the plane into sixteen period 2 regions. Compare Figure 8.

path within the unit disk whenever the corresponding dynamic rays land at a common point
in the Julia set. This can always be done so that two such paths intersect only when all
of the associated dynamic rays land at a common point. As examples, the orbit portrait
O2 described in the preceding paragraph corresponds to the circle diagram at the top of
Figure 8; while the portrait O2 = {{2, 5, 6, 7} with denominator 8 corresponds to the top
right circle diagram in Figure 8.

Such a diagram can be thought of as the period q part of the Thurston lamination for
F . See Figures 5 and 8 which show the orbit portraits associated with the various faces of
the period one and two tessellations for the curve S2 .

Definition 3.7 (Size). It is sometimes convenient to introduce an integer s ≥ 0 which
measures the size or complexity of an orbit portrait. There are several possible choices for
such a size function, but perhaps the simplest one is to define s as the number of unordered
pairs which are equivalent to each other. For example, with this definition, the various
portraits in Figure 8 have sizes 1, 2, 3, and 6. (Note that collection of n mutually equivalent
angles makes a contribution of n(n− 1)/2 to the size.)

Definition 3.8 (Parabolic Multiplicity). We return to the study of tessellations. By
the parabolic multiplicity µpar of a face Fk of a tessellation Tesq(Sp) we will mean
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The Period q Tessellation (continued) 10.

For any q ≥ 1 and any p ≥ 1 the parameter rays of co-period
q in the compactified parameter space Sp divide it up into a
number of faces Fk . The case q = p = 2.
16 Cubic Polynomial Maps, Part III
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Figure 8: Cartoon showing the tessellation Tes2(S2) , together with the period 2 orbit portrait
associated with each of the sixteen faces. Note that adjacent faces have different orbit portraits.
Conjecturally this is true for all Tesq(Sp) . (Compare Remark 3.15.)

the number of times that we pass though a parabolic vertex when traversing the boundary
of Fk (or all of the components of the boundary if there is more than one.) Equivalently, we
could define it as the number of times we pass through an ideal vertex, or as half the number
of edges of the face. The equivalence of these three numbers is clear, since as we traverse
the boundary we must alternately encounter parabolic vertices and ideal vertices, always
separated by a single edge. (However there is one difference. There are many examples of
faces where a path around the boundary traverses a dead end edge twice, or intersects an
ideal vertex two or more times. Compare Figures 5 and 22. However we do not know any
case where it passes through a parabolic vertex more than once.) This number is significant
since each additional parabolic boundary point will often impose an additional upper bound
on the associated orbit portrait by Remark 3.11 below. Thus, as a rough principle, faces of
high parabolic multiplicity will tend to have relatively small orbit portraits.

The complexity of the tessellation Tesq(Sp) increases rapidly as either p or q increase.
For period q = 3, there are 48 angles of co-period three, all of the form j/26 ± 1/3 with
denominator 78. (Compare Table 4.) Tes3(S1) consists of a flower-like cluster of 24 faces
surrounding the unique ideal point together with one complimentary face, as illustrated in



Theorem: Persistence of Orbit Portraits 12.

For each F ∈ Fk , and each angle θ0 ∈ Q/Z of period q under
tripling, the dynamic ray RF (θ0) lands at a repelling periodic
point z(F ) ∈ J(F ) ⊂ C.

Furthermore, the correspondence
F 7→ z(F ) defines a holomorphic function Fk → C.
Two maps in the same face of Tesq(Sp), always have the same
well defined period q orbit portrait.

(But faces with an edge in common always seem to have
different orbit portraits.)
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The Case q = 2, p = 3. 13.
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This figure shows the tessellation Tes2(S3), lifted to the
universal covering space of the torus S3.
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Period 2 Orbit Portraits for Part of S3. 14.1
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Parabolic Limits: 15.

The correspondence F 7→ OPq(F ) is upper semi-continuous
at each parabolic point F0 ∈ Sp, in the sense that F0 has a
neighborhood U so that OPq(F ) ⊂ OPq(F0) for all F ∈ U.
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Wakes. 16

A wake W in Sp is a simply connected open subset of Sp which
satisfies the following conditions:

(1) W is a bounded by two parameter rays of the same
co-period q which lie in a common escape region Ej and
land at a common parabolic point in the boundary of Ej .

(2) Each wake W contains a hyperbolic component of Type D
which has the common landing point on its boundary. The
portrait OPq(F ) for points in this “root” hyperbolic
component is non-trivial, and is contained in the portrait for
any point of W .

(3) W does not intersect any escape region other than Ej .
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Wake Conjecture 17.

Any two rays in the same escape region with a common parabolic
landing point bound a uniquely determined wake.

F
µ

"
✗

"

HUH:# 11k¥
i••%✗
Ñ%

⇐

÷÷÷÷÷i÷÷*÷÷÷÷÷÷÷;:
÷÷÷÷÷÷÷÷É÷÷¥÷É

*

→
6
8

5
.8

¥
¥

7

1. ¥
74

58

%



Wake Conjecture 17.

Any two rays in the same escape region with a common parabolic
landing point bound a uniquely determined wake.

F
µ

"
✗

"

HUH:# 11k¥
i••%✗
Ñ%

⇐

÷÷÷÷÷i÷÷*÷÷÷÷÷÷÷;:
÷÷÷÷÷÷÷÷É÷÷¥÷É

*

→
6
8

5
.8

¥
¥

7

1. ¥
74

58

%



Mandelbrot Copy Conjecture 18.

McMullen has shown that quasi-conformal copies of the
Mandelbrot set are ubiquitous in one-parameter families of
rational maps.

Our families Sp are no exception.

Conjecture. Every parabolic point P in Sp is contained in a
unique complete copy M ⊂ Sp of the Mandelbrot set. It follows
that P is the root point of a unique hyperbolic component
HP ⊂ M, which is of Type D, with disjoint attracting orbits of
period p and q, where q is the ray period of the point P.

Here P and maps in HP have the same orbit portrait.

Proposition. Assuming both, the Mandelbrot Copy Conjecture,
and the Wake Conjecture, then it follows that every boundary
point of an escape region is the landing point of at most two
parameter rays from this region.
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Primary and Secondary Rays 19.

If two or more parameter rays of co-period q land at P, then the
two of these rays which are closest to HP will be called primary
rays, or equivalently primary edges of the tessellation
Tesq(Sp). These play a special role, since they form part (or
all) of the boundary for the face of this tessellation which
contains H. Any additional rays landing on P will be called
secondary rays (or secondary edges).

The Wake Conjecture implies that the secondary ray must be
contained in a different escape region.

We will call primary wakes those which are bounded by
primary rays, and secondary wakes which are bounded by
secondary rays.
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Monotonicity and Non-Monotonicity Conjectures 20.

Monotonicity Conjecture. As we cross any primary ray of
co-period q, the period q orbit portrait always changes, and this
change is always monotonic, in the sense that the new orbit
portrait either contains or is contained in the old one. More
precisely, if the ray lands at the root point P of a hyperbolic
component HP , then the orbit portrait is always strictly larger on
the side which contains HP . In particular, the orbit portrait is
always larger inside a primary wake than it is outside.

Non-Monotonicity Conjecture. As we cross a secondary ray
of co-period q, the period q orbit portrait changes
non-monotonically, so that neither of the two orbit portraits
contains the other.
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Moving Around a Parabolic Point 21.

We have never seen more than four parameter rays landing at
a parabolic point P.

In studying orbit portraits in the faces around P we distinguish
between 2 kinds of equivalence relation:

I background relations equivalence relations θ ∼ θ′

which hold uniformly for all of the faces incident to P,
I distinguishing relations which hold for at least one such

face, but not for all of them.

Notational Convention: θ co-periodic angle.
θ = 3θ corresponding periodic angle.
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Hypothesis for the 4-Rays Landing Conjecture 22.
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There is an integer 0 < h < q
such that

α ≡ 3hγ and δ ≡ 3hβ (mod Z) .

Furthermore the co-periodic
angles α and β are
consecutive,
β = α+ 1/3(3q − 1).
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Theorem: 4-Rays Landing 23.
Assuming the above three conjectures, and the previous
Hypothesis, the distinguishing equivalence relations for the
orbit portraits of the four faces around P are completely
determined by the four parameter angles; as follows:

• For the primary face F0:

3kα ∼ 3kβ ∼ 3kγ ∼ 3kδ for every k ≥ 0 .

• For the side face F1:

3kα ∼ 3kγ for k ≥ 0 .

• For the secondary face F2:

3kα ∼ 3kδ ⇐⇒ 3kβ ∼ 3kγ for k ≥ 0 .

• For the side face F3:

3kβ ∼ 3kδ for k ≥ 0 .
It follows that the orbit portrait for the primary face is the
amalgamation of the orbit portraits for the two side faces.
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Mandelbrot copy across the boundary between 010− and the
airplane region.

Here (α, β, γ, δ) = (211, 212, 139, 148)/240
while (α, β, γ, δ) = (51, 52, 59, 68)/80.
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3-Rays Landing Case 25.
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Consider three parameter rays
landing at P, assuming the four
Conjectures, and assuming that
β = α+1/(3q−1), the distinguish-
ing relations are as follows.

• For F0: 3kα ∼ 3kβ ∼ 3kγ for k > 0 .
• For F1: 3kα ∼ 3kγ for k ≥ 0 .
• For F2: 3kβ ∼ 3kγ for k ≥ 0 .

Thus the orbit portrait for F0 is the amalgamation of the orbit
portraits for F1 and F2.
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Example Orbit Portraits Airplane 26.
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Mandelbrot copy M(5,3) 27. 1
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The Two Ray Case 28.

Dp

F0

F1

β−
α−

The distinguishing relations in
the primary face F0 are

3kα ∼ 3kβ for k ≥ 0 ;

and there are no distinguish-
ing relations in the opposite
face F1. The only obvious re-
striction is that α 6= β.

In some cases the two angles belong to the same grand orbit;
while in other cases they belong to different grand orbits.
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