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Introduction 1,

Any cubic polynomial map with marked critical point is
affinely conjugate to one of the form

F(z) = Fau(z) = 22 —3d&%z+ (28 + v).

Here a is the marked critical point,

F(a) = v is the marked critical value,

—a is the free critical point,

2a is the free co-critical point, F(2a) = F(—a)

—2a is the marked co-critical point, F(—2a) = F(a).

The set of all such maps F = F,, will be identi-
fied with the parameter space, consisting of all pairs
(a,v) € C2
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The Period p Curve

Definition: the period p curve S, C C?, consists of all maps
F = F5 v such that the marked critical point a has period
exactly p.

Theorem(Milnor). The curve S, is a smooth affine curve in
C2.
Arfeux and Kiwi have recently proved the following very difficult
result:

This curve Sy is connected for every period p.

Difficulty: The genus of this Riemann Surface S, grows
rapidly with p .

period p: 1.2 3 4 5 6
genus g 0 0 1 15 93 393
#punctures N: 1 2 8 20 56 144
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Escape regions 3.
An escape region & in Sy is a connected component of the
open set consisting of those maps F = F5, such that the orbit
of —a under F escapes to infinity.

There is a one-to-one correspondence between escape regions
and puncture points.

A map F belongs to a parameter ray with co-critical angle
f =t if the dynamic ray of angle 6 passes through the
co-critical point 2a. The rays 6 +1/3 crash together at the
free critical point —a.

Dynamical plane for F € &; . The equipotential through 2a
and —a is a figure eight curve.
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Co-period angles + Escape regions

A rational angle t =6 € Q/Z will be called co-periodic of
co-period q if either #+1/3 or 6 —1/3 is periodic of period
q under tripling modulo 7Z.

Each & has a multiplicity ;; > 0, and there are always
different parameter rays for any given 6 of co-period q .

Each puncture point oo; in the Riemann surface Sy is
surrounded by an escape region ¢&; , which is conformally
diffeomorphic to C~D .

The connectedness locus X C Sp is a compact connected set.

The complement S,~ X is the
disjoint union of the open sets ¢;.
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Dynamical External Rays.
For a cubic polynomial in the connectedness locus, there is a
commutative diagram: C~K(f) — C~D

lf j(m—>w3)

C\K(f) = .cD

Example in Sy:

The rays are labeled by angles in R/Z .
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The period g orbit portrait OP, for a cubic map is an
equivalence relation between angles of period g under angle

tripling:

Two angles are equivalent < the corresponding rays land

at the same point.
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Landing Theorem (co-periodic case) 7.

Every parameter ray 2R with rational parameter angle 6 lands at
a uniquely defined map F = Fyx which belongs to the boundary
of its escape region in Sp.

Case 1. |If 0 is co-
periodic of co-period

g, then this landing
map F has a parabolic 512
orbit of ray period g.
Furthermore, the dy-
namic ray of angle ¢
for F lands at the
root point of the Fa-
tou component which 7/
contains the co-critical
point 2a.

1/3 1/4 1/6
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Case 2. If 4 is ratio-
nal but not co-periodic,
then F is critically fi-
nite. In this case the
dynamic 6 ray lands
at the co-critical point
2a, and the forward or-
bit of 2a (or equiva-
lently of —a) is eventu-
ally periodic repelling.

Landing Theorem (not co-periodic case) 8.
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The period q tessellation of S,,. 9.

Let g € N. The period q tessellation Tesq(Sp) of Sp
consists of: The collection of all parameter rays of co-period g
in all escape regions, together with their landing points. It
decomposes S, into a finite number of connected open sets
Fk , which we will call the faces of the tessellation.

The edges of the tessellation consist of all parameter rays of
co-period q; The vertices consist of:

(1) parabolic vertices: the landing points of these rays; and
(2) ideal vertices (or puncture points): the points of Sp~Sp.
Every edge joins a parabolic vertex to an ideal vertex.

Conjecture. All faces of the tessellation Tesq(S,) are
simply-connected if and only if either p=qg or p=1.
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Forany g > 1 andany p > 1 the parameter rays of co-period
q in the compactified parameter space S, divide it up into a

number of faces Fy. Thecaseg=p=2.
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Theorem: Persistence of Orbit Portraits 12.

For each F € Fy, and each angle 6y € Q/Z of period q under
tripling, the dynamic ray Rg(6g) lands at a repelling periodic
point z(F) € J(F) c C. Furthermore, the correspondence

F — z(F) defines a holomorphic function Fx — C.

Two maps in the same face of Tesq(S,), always have the same
well defined period g orbit portrait.

(But faces with an edge in common always seem to have
different orbit portraits.)
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The Case g=2, p=23. | 13,

2T T

This figure shows the tessellation Tesz(S3), lifted to the
universal covering space of the torus Ss.



Period 2 Orbit Portraits for Part of Ss. 14.
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Wakes. 16

A wake W in S, is a simply connected open subset of S, which
satisfies the following conditions:

(1) W is a bounded by two parameter rays of the same
co-period g which lie in a common escape region &; and
land at a common parabolic point in the boundary of &;.

(2) Each wake W contains a hyperbolic component of Type D
which has the common landing point on its boundary. The
portrait OP4(F) for points in this “root” hyperbolic
component is non-trivial, and is contained in the portrait for
any point of W.

(38) W does not intersect any escape region other than &;.
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Mandelbrot Copy Conjecture 18.

McMullen has shown that quasi-conformal copies of the
Mandelbrot set are ubiquitous in one-parameter families of
rational maps. Our families Sy, are no exception.

Conjecture. Every parabolic point P in Sy is contained in a
unique complete copy M C S, of the Mandelbrot set. It follows
that P is the root point of a unique hyperbolic component

Hp C M, which is of Type D, with disjoint attracting orbits of
period p and g, where q is the ray period of the point P.

Here P and maps in Hp have the same orbit portrait.

Proposition. Assuming both, the Mandelbrot Copy Conjecture,
and the Wake Conjecture, then it follows that every boundary
point of an escape region is the landing point of at most two
parameter rays from this region.
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Primary and Secondary Rays 19,

If two or more parameter rays of co-period g land at P, then the
two of these rays which are closest to Hp will be called primary
rays, or equivalently primary edges of the tessellation
Tes,(Sp). These play a special role, since they form part (or
all) of the boundary for the face of this tessellation which
contains H. Any additional rays landing on P will be called
secondary rays (or secondary edges).

The Wake Conjecture implies that the secondary ray must be
contained in a different escape region.

We will call primary wakes those which are bounded by
primary rays, and secondary wakes which are bounded by
secondary rays.
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Monotonicity and Non-Monotonicity Conjectures 2o.

Monotonicity Conjecture. As we cross any primary ray of
co-period q, the period g orbit portrait always changes, and this
change is always monotonic, in the sense that the new orbit
portrait either contains or is contained in the old one. More
precisely, if the ray lands at the root point P of a hyperbolic
component Hp, then the orbit portrait is always strictly larger on
the side which contains Hp. In particular, the orbit portrait is
always larger inside a primary wake than it is outside.

Non-Monotonicity Conjecture. As we cross a secondary ray
of co-period g, the period g orbit portrait changes
non-monotonically, so that neither of the two orbit portraits
contains the other.



Detail Period 3-tessallation of S; 20a

| 9% QD@H /ljr




An Example with g =4 in S3 20b.
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Moving Around a Parabolic Point 21.

We have never seen more than four parameter rays landing at
a parabolic point P.

In studying orbit portraits in the faces around P we distinguish
between 2 kinds of equivalence relation:

» background relations equivalence relations 6 ~ ¢’
which hold uniformly for all of the faces incident to P,

» distinguishing relations which hold for at least one such
face, but not for all of them.

Notational Convention: ¢ co-periodic angle.
f = 36 corresponding periodic angle.
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Hypothesis for the 4-Rays Landing Conjecture 22,

Thereis aninteger0 < h< q
such that

o = 3Myands = 378 (mod Z) .

Furthermore the co-periodic
angles o and 3 are
consecutive,

B B=a+1/3(39-1).
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Theorem: 4-Rays Landing 23,
Assuming the above three conjectures, and the previous
Hypothesis, the distinguishing equivalence relations for the
orbit portraits of the four faces around P are completely
determined by the four parameter angles; as follows:

e For the primary face Fy:

3ka ~ 3Kg ~ 3Ky ~ 3K5 forevery k>0.
e For the side face Fji:
3ka ~3k'y for k>0.
e For the secondary face F»:
3kq ~ 3K «— 3k ~ 3Ky for k>0.
e For the side face Fj:

3k ~ 3k for k>0.
It follows that the orbit portrait for the primary face is the
amalgamation of the orbit portraits for the two side faces.
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Period 4 Orbit Portraits for 4-Ray Landing Case 24.

Mandelbrot copy across the boundary between 010— and the
airplane region. Here (a, 3,7,9) = (211, 212, 139, 148)/240
while («, 8,7,0) = (51, 52, 59, 68)/80.
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F2 y F

Consider three parameter rays
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3-Rays Landing Case 25,

F2 Y F .
Consider three parameter rays

landing at P, assuming the four
Conjectures, and assuming that
Dp g =a+1/(39—-1), the distinguish-

a 3 ing relations are as follows.
Fo

e For Fy: 3ka ~ 3kp ~ 3Ky for k>0.

e For Fi: 3ka ~ 3Ky for k>0.

For Fo»: 3k ~ 3Ky for kK>0.



3-Rays Landing Case 25,
F2 y F
Consider three parameter rays
landing at P, assuming the four
Conjectures, and assuming that
Dp g =a+1/(39—-1), the distinguish-
a 3 ing relations are as follows.
Fo
e For Fy: 3ka ~ 3kp ~ 3Ky for k>0.
e For Fy: 3ka ~ 3Ky for k>0.
e For Fo: 3k ~ 3Ky for kK>0.

Thus the orbit portrait for F is the amalgamation of the orbit

portraits for 71 and F».



Example Orbit Portraits Airplane




Mandelbrot copy M(5, 3)
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The distinguishing relations in
Fq the primary face Fy are

3%a ~ 3K for k>0;
@ and there are no distinguish-
ing relations in the opposite
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The Two Ray Case 28.

The distinguishing relations in
Fq the primary face Fy are

3%a ~ 3K for k>0;
@ and there are no distinguish-
- B ing relations in the opposite

0

face F1. The only obvious re-
striction is that o # f.

1R

In some cases the two angles belong to the same grand orbit;
while in other cases they belong to different grand orbits.
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