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Motivation: Real Analysis

In 1963 Lorenz proposed a system of three coupled first order ODEs
with a strange attractor to model atmospheric convection:

ẋ = σ(y − x)
ẏ = rx− y − xz
ż = xy − bz.

Based on numerical experiments by Pomeau, Lanford, and Ruelle,
in 1976 Michel Hénon proposed a model map for a Poincaré map of
the Lorenz system:

Hc,a

(
x
y

)
=

(
x2 + c− ay

x

)
.
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FIG. 3. The Lorenz attractor. From Lanford (1977).

C. Attractors

Physical experiments and computer experiments with
dynamical systems usually exhibit transient behavior fol-
lowed by what seems to be an asymptotic regime. There-
fore the point f'x representing the system should eventu-
ally lie on an attracting set (or near it). However, in prac-
tice smaller sets, which we call attractors, will be obtained
(they should be carefully distinguished from attracting
sets). This is because some parts of an attracting set may
not be attracting (Fig. 4).
We should also like to include in the mathematical def-

inition of an attractor A the requirement of irreducibility
(i.e., the union of two disjoint attractors is not considered
to be an attractor). This (unfortunately) implies that one
can no longer impose the requirement that there be an
open fundamental neighborhood U of A such that
f'U~A when taboo. Instead of trying to give a precise
mathematical definition of an attractor, we shall use here
the operational definition, that it is a set on which experi-
mental points f'x accumulate for large t. We shall come
back later to the significance of this operational definition
and its relation to more mathematical concepts.

p( t) =(p(0)+cot (mod2m. ), (2.7)

where m=2m!T. This may be thought of as representing
the time evolution of a simple oscillator. Consider now a
collection of k oscillators with frequencies ~&, . . . , cok
(without rational relations between the co;: no linear com-
bination with nonzero integer coefficients vanishes). The
motion of the oscillators is described by

y;(t)=p;(0)+co;t (mod2m), i =1, . . . , k, (2.8)

Examples.
(a) Attracting fixed point Let P be a fixed point for our

d namical system, i.e., f'P=P for all t. The derivativeynamica
Dpf ' of f ' (time-one map) at the fixed point is an m )&m
matrix or an operator in Hilbert space. If its spectrum is
in a disk Iz:

~
z

~
& aI with a & I, then P is an attracting

fixed point. It is an attracting set (and an attractor).
When the time evolution is defined by the differential
equation (1.1) in R, the attractiveness condition is that
the eigenvalues of DpF„all have a negative real part. For
a discrete-time dynamical system, we say that
(Pi, . . . , P„) is an attracting periodic orbit, of period n, if
fP & Pz, .——. . ,fP„=Pi, and P; is an attracting fixed
point for f".
(b) Attracting periodic orbit for continuous time For .a

continuous-time dynarnicaI system, suppose that there are
a point a and a T )0, such that f"a =a but f'a~a when
0 c t & T. Then a is a periodic point of period T, and
I = I f'a:0 & t & TI is the corresponding periodic orbit (or
closed orbit). The derivative D,f has an eigenvalue 1

corresponding to the direction tangent to I at a. If the
rest of the spectrum is in I z: ~

z
~
& a I with a & 1, then I

is an attracting periodic orbit. It is again an attracting set
and an attractor. The attracting character of a periodic
orbit may also be studied with the help of a Poincare sec-
tion (see Sec. II.H).
(c) Quasiperiodic attractor Aperio. die orbit for a con-

tinuous system is really a circle, and the motion on it (by
proper choice of coordinate y) may be written

an d this motion takes place on the product of k circles,
k(k ~ I), which is a k-dimensional torus T . Suppose that

the torus T is embedded in IR, m &k (or in Hilbert
space), as the periodic orbit I" was in the previous exam-
ple', suppose, furthermore, that this torus is an attracting
set. Then we say that T is a quasiperiodic attractor.
Asymptotically, the dynamical system wi11 thus be
described by

x(t) =f'x =4 [q &(t), . . . , ipk(t)] (2.9)

= P(toit, . . . , co t)k (2.10)

~ 3 ~FIG. 4. The dynamical system is xl ——x~ —x ~, x~ ———x„.. The
segment A,B is the universal attracting set, but only the points
A, B are attractors. In other words, the whole space is attracted
to the segment A, B but only A and B are attractors.

where 4 is periodic, of period 2m. , in each argument. A
function of the form t~4(co, t, . . . , cokt) is known as a
quuasiperiodic function (with k different periods) Quasi-.
periodic attractors are a natural generalization of periodic
orbits, and they occur fairly frequently in the description
of moderately excited physical systems.
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Figure: Poincaré section of the Lorenz system (O. Lanford 1977)
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Figure: The Lorenz attractor in yellow and a particular trajectory in blue
(E. Ghys 2013)
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Motivation: Complex Analysis

Theorem (Friedland, Milnor 1989)

Every polynomial automorphism of C2 is conjugate by a polynomial
automorphism to one of the following maps:

(a) affine maps

(
x
y

)
→
(
a b
c d

)(
x
y

)
+

(
k
k′

)
, ad− bc 6= 0

(b) elementary maps

(
x
y

)
→
(
ax+ p(y)
by + c

)
, ab 6= 0

(c) compositions of Hénon maps

(
x
y

)
→
(
p(x)− ay

x

)
, a 6= 0
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Motivation: Universality

Berger, Palis, Takens: Hénon-like maps

fc,a

(
x
y

)
=

(
x2 + c− ay

x

)
+ g(x, y).

where g has small norm, appear in unfoldings of homoclinic tangen-
cies between the stable and unstable manifold of a saddle periodic
point in dissipative systems with one unstable Lyapunov exponent.

The study of part of the local dynamics in these unfoldings is reduced
to the study of the dynamics of Hénon-like maps.
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Dynamical sets of a Hénon map

For the standard complex Hénon map Hc,a : C2 → C2

Hc,a

(
x
y

)
=

(
x2 + c− ay

x

)
, a 6= 0.

we define the dynamical objects:

K± = points in C2 with bounded forward/backward orbit

J± = ∂K±, K = K− ∩K+ and J = J− ∩ J+

U± = C2 −K± (escaping sets)

J∗ = closure of saddle periodic points

The sets J , J+ and J− are the Julia sets of the Hénon map.

J∗ ⊂ J is the small Julia set. It is open problem whether J = J∗

(of J. Hubbard).
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Differences between 1D and 2D

Different methods: Many tools from complex analysis and complex
dynamics in one variable do not extend to higher dimensions.
Different phenomenons: For example, unlike for 1D polynomials,
the number of attracting periodic points (sinks) of a Hénon map is
not bounded by the degree of the map!

Theorem (Newhouse Phenomenon)

There exist Hénon maps with infinitely many sinks, accumulating
on a Smale’s horseshoe.

Theorem (Coexistence Phenomenons - Benedicks, Palmisano)

For every k ≥ 1 there exists a set of parameters Ek in the parameter
space of real Hénon maps such that for every (a, b) ∈ Ek the map
fa,b has at least k attractive periodic orbits and a strange attractor.
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Differences between 1D and 2D

1D: Critical points play a fundamental role for the dynamics of
polynomials.

The Julia set of a polynomial is connected if and only if all
critical points have bounded forward orbits.

Easy to plot in the parameter space.

A polynomial of degree d has at most d− 1 non-repelling
cycles.

2D: The Hénon map is a biholomorphism of C2, hence it has no
critical points in the usual sense.
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Böttcher coordinates

|x|

|y|

V V +

V −

R

R

Figure: Dynamical filtration of C2

The (forward) escaping set is given by U+ =
⋃
k≥0

H−◦k(V +).

There exists a unique holomorphic function ϕ+ : V + → C− D,

ϕ+ ◦H = (ϕ+)2

ϕ+(x, y) ∼ x, when (x, y)→∞ in V +.
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Böttcher coordinates

|x|

|y|

V V +

V −

R

R

Figure: Dynamical filtration of C2

The (backward) escaping set is given by U− =
⋃
k≥0

H◦k(V −).

There exists a unique holomorphic function ϕ− : V − → C− D,

(ϕ−/a) ◦H−1 = (ϕ−/a)2

ϕ−(x, y) ∼ y, when (x, y)→∞ in V −.
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The foliation of U+

U+ is foliated by copies of C, which have a natural affine structure.

ϕ+ defines a holomorphic foliation on V +.

(ϕ+)
2k

= ϕ+◦H◦k defines a holomorphic foliation onH−◦k(V +).

ϕ+
∣∣∣∣
V+

= ξ ϕ+
∣∣∣∣
V+

= −ξ

(
ϕ+

)2 ∣∣∣∣
H−1(V+)

= ξ2
(
ϕ+

)4 ∣∣∣∣
H−2(V+)

= ξ4

Figure: A fiber Fξ of the foliation of U+
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Critical locus

The critical locus C is the set of tangencies between the foliation of
the escaping set U+ and the foliation of U−.

The set C is a nonempty, closed analytic subvariety of U+∩U− and
is invariant under the Hénon map.
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Stable/unstable critical loci

Unstable Critical Locus Cu: the set of tangencies between the
foliation of U+ and the “lamination” of J−.

Stable Critical Locus Cs: set of tangencies between the foliation of
the escaping set U− and the “lamination” of J+.
J+ and J− are not always laminar.

Theorem (Bedford, Smillie)

C ∩ J+ ∩ U− 6= ∅ and C ∩ J− ∩ U+ 6= ∅.
It is not true that Cs = ∂C ∩ (J+ ∩U−) and Cu = ∂C ∩ (J− ∩U+).

The relation between C, Cs and Cu is ”rather mysterious is general”.
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General Questions

General properties of the critical locus C.
Is the critical locus smooth or can it have singularities?

Topological models of the critical locus C.

Relations between the critical loci C, Cs, Cu.

Connections between the properties of the critical locus and
the dynamical properties of the map, and the connectivity of
the Julia set J .
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Unstable connectivity

Theorem (Bedford, Smillie)

For a dissipative complex Hénon map the following are equivalent:

J is connected.

K is connected.

W u(p) ∩K+ is connected for some saddle periodic point p.

W u(p) ∩K+ is connected for any saddle periodic point p.

Remark The unstable manifold of any saddle periodic point is
dense in J−.
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∗

Figure: The unstable manifold of the hyperbolic fixed point q of a complex
Hénon map Hc,a(x, y) = (x2 + x+ ay, ax) with a semi-Siegel fixed point
with an eigenvalue λ = e2πiα, α = (

√
5 − 1)/2 and small Jacobian. The

black region represents K+ restricted to the unstable manifold. We notice
an unstable critical point (in red) of the Green function G+|Wu(q) and
that Wu(q) ∩K+ is disconnected.

Raluca Tanase — Dynamics of complex Henon maps



Models for the Critical locus I

Theorem (Lyubich, Robertson)

Let H be a Hénon map that is a small perturbation of a hyperbolic
quadratic polynomial p with connected Julia set.

There exists a unique primary component C0 of the critical
locus, which is asymptotic to the x-axis.
C0 is biholomorphic to C− D and it is everywhere transverse
to the foliations of U+ and U−. Its boundary is
homeomorphic to the Julia set Jp.

All other components of C are iterates of C0 under H.

So the Julia set is connected & the critical locus in disconnected.
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Models for the Critical locus II

Theorem (Firsova)

Let H be a Hénon map that is a small perturbation of a hyperbolic
quadratic polynomial with disconnected Julia set. The critical lo-
cus is connected, smooth and homeomorphic to a Riemann surface
which is a countable collection of truncated spheres with countably
many handles, glued by dynamics.

Remark: this model was conjectured by J. Hubbard.

So the Julia set is disconnected & the critical locus in connected.

General Question: The Julia set J of the Hénon map is connected
if and only if the critical locus C is disconnected.
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From each hemisphere we remove a countable collection of disks
and a Cantor set. We further remove a point from the equator.
The resulting topological object is a truncated sphere.

Figure: A hemisphere of a truncated sphere.
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Application: description of J

We used the Lyubich-Robertson critical locus as a common trans-
verse to the foliation of U+ and the lamination of J+ to extend the
Hubbard-Oberste-Vorth analytic structure of the escaping set U+ to
the boundary and describe the Julia set J+:

Theorem (T.)

Consider complex Hénon maps that are singular perturbations of a
hyperbolic polynomial with connected Julia set. The Julia set J+

is homeomorphic to the quotient of S1 × C by a discrete group of
automorphisms isomorphic to Z[1/2]/Z and an equivalence relation.
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Critical locus in the Horseshoe Region

The Hénon map is a complex horseshoe in the HOV region

HOV =
{
|c| > 2(1 + |a|)2

}

For β = (5 + 2
√
5)/4 this was proved by Oberste-Vorth in his

thesis.
In particular, in the Horseshoe Region, the Hénon map is hyperbolic,
J is a Cantor set and J = J∗.
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Figure: A Hénon horseshoe (by H. Dullin)
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For β ≥ 2 we look at HOV-like regions from the Horseshoe Region:

HOVβ =
{
(c, a) ∈ C2 : |c| > β(1 + |a|)2

}
.

Theorem (Firsova, Radu, T.)

There exists β > 2 (for example, β = 18.75) such that in the HOVβ
region, the critical locus is connected, smooth and homeomorphic
to a Riemann surface which is a countable collection of truncated
spheres with countably many handles, glued by dynamics.

Remark: As expected, since HOVβ contains small perturbations, the
model is the same as the Firsova model for small perturbations, but
in this theorem there are no restrictions on the Jacobian. The proof
is based on non-perturbative, non-numerical techniques. The bound
on β is not optimal and can be improved.
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Figure: The punctured disks S0 and S1 are part of the critical locus
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Figure: Truncated sphere
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Parabolic implosion

Let Pλ denote the set of parameters (c, a) ∈ C2 for which the
Hénon map has a fixed point with an eigenvalue λ. In particular,
P1 : c = (1+a)2/4 is the curve of Hénon maps with a semi-parabolic
fixed point with an eigenvalue 1. It passes through the tip of the
Mandelbrot set at c = 1/4.

The parametric region

Hδ,δ′ =
{
(c, a) ∈ P1+it : 0 < |a| < δ and − δ′ < t < δ′, t 6= 0

}

sits at the right of the semi-parabolic curve P1.

Theorem (Bedford, Smillie, Ueda)

The sets J , J+, K and K+ vary discontinuously with the parameters
as t→ 0, while J− and K− vary continuously.

The phenomenon described is a 2D analogue of parabolic implosion
in 1D (Lavaurs, Douady, Hubbard, etc.).
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Figure: Semi-parabolic implosion from the right (BSU), continuity of J &
J+ from the left (Radu-T.)
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Using the Radu-T. characterization of semi-parabolic Hénon maps
and their nearby perturbations, the Lyubich-Robertson description
of the critical locus holds for semi-parabolic Hénon maps from P1
with small Jacobian and throughout the corresponding parametric
region to the left of P1.

Question: Does the critical locus varies discontinuously with the
parameters as we approach the semi-parabolic curve P1 from the
horseshoe region?

Theorem (Firsova, Radu, T. – work in progress)

The model of the critical locus holds throughout the region Hδ,δ′ .
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Thank you!
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