Complex rotation numbers and renormalization

Nataliya Goncharuk, University of Toronto natalia.goncharuk@utoronto.ca

MSRI Connections Workshop: Complex Dynamics from special families to natural generalizations in one and several variables

February 3, 2022

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

- rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit
- [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

- rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit
- [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Ε

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

- rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit
- [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Ε

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

- rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit
- [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Ε

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

• rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit

• [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

• rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit

• [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

• rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit

• [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

• rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit

• [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

Let F be a lift of $f: \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$ to \mathbb{R} .

$$
rot(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}
$$

• rot $f \in \mathbb{Q} \Leftrightarrow f$ has a periodic orbit

• [Denjoy] rot $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$ is continuously conjugate to the rotation by rot f if f is C^2 -smooth.

 $\text{Im } z = 0$ $\begin{array}{c} 0 \\ 0 \end{array}$ $\begin{array}{c} x \\ x \end{array}$ $\text{Im } z = \text{Im } \omega$ $F_\omega(0)$ $F_\omega(x)$ $F_\omega(1)$

• Idea: let us add a *complex* shift to f, $f_{\omega} = f + \omega$.

- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

重

• Idea: let us add a complex shift to f, $f_{\omega} = f + \omega$.

- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* with marked generators.
- Consider its modulus $\tau_f(\omega)$ the complex rotation number of $f + \omega$.

重

Im z = 0 Im z = Im ω 0 Fω(0) 1 Fω(1) x Fω(x)

• Idea: let us add a complex shift to f, $f_{\omega} = f + \omega$.

- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* with marked generators.

• Consider its modulus $\tau_f(\omega)$ — the complex rotation number of $f + \omega$.

$$
f^+\omega\left[\begin{array}{cc} \hline \ \ \end{array}\right]\;Im\;\omega
$$

GB.

$$
\operatorname{Im} z = \operatorname{Im} \omega \frac{F_{\omega}(0) - F_{\omega}(x) - F_{\omega}(1)}{\sqrt{\pi} + \sqrt{\pi} + \sqrt{\pi} + \sqrt{\pi}}
$$

$$
\operatorname{Im} z = 0 \frac{F_{\omega}(0) - F_{\omega}(x) - F_{\omega}(1)}{\sqrt{\pi} + \sqrt{\pi} + \sqrt{\pi}}
$$

- Idea: let us add a complex shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a complex torus with marked generators.

• Consider its modulus $\tau_f(\omega)$ — the complex rotation number of $f + \omega$.

$$
f^+\omega\left[\begin{array}{cc} \hline \\ \hline \end{array}\right]\;Im\;\omega
$$

GB.

$$
\operatorname{Im} z = \operatorname{Im} \omega \underbrace{\begin{array}{c} F_{\omega}(0) & F_{\omega}(x) & F_{\omega}(1) \\ \text{Im} z = 0 & \text{if } 0 \end{array}}_{\text{A}}.
$$

- Idea: let us add a complex shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* with marked generators.

• Consider its modulus $\tau_f(\omega)$ — the complex rotation number of $f + \omega$.

$$
f^+\omega\begin{array}{|c|c|}\n\hline\n\end{array}\n\quad \int Im\ \omega
$$

 2990

GB.

$$
\operatorname{Im} z = \operatorname{Im} \omega \underbrace{\begin{array}{c} F_{\omega}(0) & F_{\omega}(x) & F_{\omega}(1) \\ \text{Im} z = 0 & \begin{array}{c} \text{min} \\ \text{min} \end{array} \end{array}}_{X \ 1}
$$

- Idea: let us add a complex shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* with marked generators.
- Consider its modulus $\tau_f(\omega)$ the **complex rotation number** of $f + \omega$.

 2990

GB.

- Idea: let us add a complex shift to f, $f_{\omega} = f + \omega$.
- Take the quotient space of the annulus $0 \leq \text{Im } z \leq \text{Im } \omega$ in \mathbb{C}/\mathbb{Z} by $x \mapsto f(x) + \omega$.
- We obtain a *complex torus* with marked generators.
- Consider its modulus $\tau_f(\omega)$ the **complex rotation number** of $f + \omega$.

$$
f^+\omega\begin{array}{|c|c|}\n\hline\n\end{array}\n\quad \int Im\ \omega
$$

 299

重

- **Example:** If $f(x)$ is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$. \bullet
- **Remark:** τ_f is holomorphic. \bullet
- Arnold's question, 1978: what happens as $\omega \to a \in \mathbb{R}$?

 2990

- **Example:** If $f(x)$ is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic. \bullet

• Arnold's question, 1978: what happens as $\omega \to a \in \mathbb{R}$?

 2990

- **Example:** If $f(x)$ is a rotation by ϕ , then $\tau_f(\omega) = \omega + \phi$.
- **Remark:** τ_f is holomorphic.
- Arnold's question, 1978: what happens as $\omega \to a \in \mathbb{R}$?

 299

Bubbles: overview of results

 $\tau_f: \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

-
-
-
-
-

←何 ▶ → ヨ ▶ → ヨ ▶

 \equiv

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near Diophantine numbers, the bubbles are much smaller.

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near Diophantine numbers, the bubbles are much smaller.

Bubbles: overview of results

 $\tau_f: \mathbb{H} \to \mathbb{H}$ extends continuously to \mathbb{R} . Let $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$.

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near Diophantine numbers, the bubbles are much smaller.

 QQ

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points. \bullet
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near Diophantine numbers, the bubbles are much smaller.

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.

Near Diophantine numbers, the bubbles are much smaller.

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near Diophantine numbers, the bubbles are much smaller.

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. (Stairs)
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.
- Near Diophantine numbers, the bubbles are much smaller.

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis; NG
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. Risler; Moldavskis; Lacroix; X.Buff, NG
- **•** Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near Diophantine numbers, the bubbles are much smaller. NG, I.Gorbovickis

- $f + a$ is hyperbolic $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$. Ilyashenko, Moldavskis; NG
- Otherwise, $\hat{\tau}_f(a) = \text{rot}(f + a)$. Risler; Moldavskis; Lacroix; X.Buff, NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the $\frac{p}{q}$ -bubble is at most $\frac{C}{q^2}$.X.Buff, NG
- Near Diophantine numbers, the bubbles are much smaller. NG, I.Gorbovickis

Zero bubbles for perturbations of $z \mapsto \frac{az+b}{cz+d}$, approximation.

 QQ

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.
$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set. Wolfgang Bever, zoomed $CC-BY-SA3.0$

重き

Ε

 Ω

4 00 16

Renormalization Rf is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.
$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set. Wolfgang Bever, zoomed $CC-BY-SA3.0$

重き

 \Rightarrow Ε Ω

4 00 16

Renormalization Rf is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.
$$

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set. Wolfgang Bever, zoomed $CC-BY-SA3.0$

重き

 \Rightarrow Ε Ω

4 00 16

Renormalization Rf is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f)=-\tfrac{1}{\hat{\tau}(f)}\!\!\mod 1.
$$

Lavaurs maps — through the eggbeater

 $\mathcal{R}(f + a) \rightarrow L_c$ as $a \rightarrow 0$ where L_c are Lavaurs maps, $c \in \mathbb{R}/\mathbb{Z}$.

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set. Wolfgang Bever, zoomed CC-BY-SA 3.0

A + + = + + = +

Ε

 Ω

4 00 16

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.
$$

Lavaurs maps - through the eggbeater

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, **Wolfgang Beyer, zoomed CC-BY-SA 3.0**

Barbara

Ε

 Ω

 -10.16

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f)=-\tfrac{1}{\hat{\tau}(f)}\mod 1.
$$

Lavaurs maps — through the eggbeater

 -111

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, **Volfgang Beyer, zoomed C-BY-SA3.0**

Ε

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.
$$

Lavaurs maps — through the eggbeater

 -111

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, **Volfgang Beyer, zoomed C-BY-SA3.0**

Ε

Renormalization $\mathcal{R}f$ is the first-return map under f to the circle $[0, f(0)]/f$.

$$
\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.
$$

Lavaurs maps — through the eggbeater

 -111

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, **Wolfgang Beyer, zoomed** C-BY-SA 3.0

Ε

- Golden ratio rotation is a hyperbolic fixed point for \mathcal{R}^2
- \Rightarrow bubbles are small near the golden ratio (Gorbovickis, NG; in progress). \bullet

Thank you for your attention!

 2990

- Golden ratio rotation is a hyperbolic fixed point for \mathcal{R}^2
- $\bullet \Rightarrow$ bubbles are small near the golden ratio (Gorbovickis, NG; in progress).

Thank you for your attention!

 2990

- Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).
- $\bullet \Rightarrow$ bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?

Thank you for your attention!

 QQ

- Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).
- $\bullet \Rightarrow$ bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?

Thank you for your attention!

 QQ

- Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).
- $\bullet \Rightarrow$ bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?

Thank you for your attention!

- • Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).
- $\bullet \Rightarrow$ bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?

Thank you for your attention!