### Complex rotation numbers and renormalization

Nataliya Goncharuk, University of Toronto natalia.goncharuk@utoronto.ca

MSRI Connections Workshop: Complex Dynamics from special families to natural generalizations in one and several variables



February 3, 2022

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

- rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit
- **[Denjoy]** rot  $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$  is continuously conjugate to the rotation by rot f if f is  $C^2$ -smooth.



$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

- rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit
- **[Denjoy]** rot  $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$  is continuously conjugate to the rotation by rot f if f is  $C^2$ -smooth.



$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

- rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit
- [Denjoy] rot f ∈ ℝ \ Q ⇔ f is continuously conjugate to the rotation by rot f if f is C<sup>2</sup>-smooth.



$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

- rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit
- **[Denjoy]** rot  $f \in \mathbb{R} \setminus \mathbb{Q} \Leftrightarrow f$  is continuously conjugate to the rotation by rot f if f is  $C^2$ -smooth.



Let F be a lift of  $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$  to  $\mathbb{R}$ .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

• rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit



Let F be a lift of  $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$  to  $\mathbb{R}$ .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

• rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit



Let F be a lift of  $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$  to  $\mathbb{R}$ .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

• rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit



Let F be a lift of  $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$  to  $\mathbb{R}$ .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

• rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit



Let F be a lift of  $f : \mathbb{R}/\mathbb{Z} \to \mathbb{R}/\mathbb{Z}$  to  $\mathbb{R}$ .

$$\operatorname{rot}(f) = \lim_{n \to \infty} \frac{F^n(x)}{n} = \lim_{n \to \infty} \frac{\# \text{ turns around } \mathbb{R}/\mathbb{Z} \text{ under } n \text{ iterates}}{n}$$

• rot  $f \in \mathbb{Q} \Leftrightarrow f$  has a periodic orbit

[Denjoy] rot f ∈ ℝ \ Q ⇔ f is continuously conjugate to the rotation by rot f if f is C<sup>2</sup>-smooth.



 $\operatorname{Im} z = \operatorname{Im} \omega \quad \frac{F_{\omega}(0) \quad F_{\omega}(x) \quad F_{\omega}(1)}{\left| \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$ 

• Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .

- Take the quotient space of the annulus  $0 \leq \operatorname{Im} z \leq \operatorname{Im} \omega$  in  $\mathbb{C}/\mathbb{Z}$  by  $x \mapsto f(x) + \omega$ .
- We obtain a complex torus with marked generators.
- Consider its modulus  $\tau_f(\omega)$  the **complex rotation number** of  $f + \omega$ .



$$\operatorname{Im} z = \operatorname{Im} \omega \quad \frac{F_{\omega}(0) \quad F_{\omega}(x) \quad F_{\omega}(1)}{\sqrt{2}}$$
$$\operatorname{Im} z = 0 \quad \frac{1}{0} \quad x \quad 1$$

• Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .

- Take the quotient space of the annulus  $0 \leq \text{Im} \, z \leq \text{Im} \, \omega$  in  $\mathbb{C}/\mathbb{Z}$  by
- Consider its modulus  $\tau_f(\omega)$  the complex rotation number of  $f + \omega$ .



3

- Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .
- Take the quotient space of the annulus  $0 \leq \operatorname{Im} z \leq \operatorname{Im} \omega$  in  $\mathbb{C}/\mathbb{Z}$  by  $x \mapsto f(x) + \omega$ .
- We obtain a complex torus with marked generators.
- Consider its modulus  $\tau_f(\omega)$  the complex rotation number of  $f + \omega$ .



-

$$\operatorname{Im} z = \operatorname{Im} \omega \xrightarrow[]{F_{\omega}(0)} F_{\omega}(x) F_{\omega}(1)$$
$$\operatorname{Im} z = 0 \xrightarrow[]{0} x 1$$

- Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .
- Take the quotient space of the annulus  $0 \leq \operatorname{Im} z \leq \operatorname{Im} \omega$  in  $\mathbb{C}/\mathbb{Z}$  by  $x \mapsto f(x) + \omega$ .
- We obtain a *complex torus* with marked generators.

• Consider its modulus  $\tau_f(\omega)$  — the complex rotation number of  $f + \omega$ .

$$f+\omega$$
  $f+\omega$   $f+\omega$ 

3

- Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .
- Take the quotient space of the annulus  $0 \leq \operatorname{Im} z \leq \operatorname{Im} \omega$  in  $\mathbb{C}/\mathbb{Z}$  by  $x \mapsto f(x) + \omega$ .
- We obtain a complex torus with marked generators.

• Consider its modulus  $\tau_f(\omega)$  — the complex rotation number of  $f + \omega$ .

$$f+\omega$$
  $f+\omega$   $f+\omega$ 

- Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .
- Take the quotient space of the annulus  $0 \leq \operatorname{Im} z \leq \operatorname{Im} \omega$  in  $\mathbb{C}/\mathbb{Z}$  by  $x \mapsto f(x) + \omega$ .
- We obtain a complex torus with marked generators.
- Consider its modulus  $\tau_f(\omega)$  the complex rotation number of  $f + \omega$ .

$$f+\omega$$
  $f+\omega$   $f+\omega$ 

3



- Idea: let us add a *complex* shift to f,  $f_{\omega} = f + \omega$ .
- Take the quotient space of the annulus  $0 \leq \text{Im } z \leq \text{Im } \omega$  in  $\mathbb{C}/\mathbb{Z}$  by  $x \mapsto f(x) + \omega$ .
- We obtain a *complex torus* with marked generators.
- Consider its modulus  $\tau_f(\omega)$  the complex rotation number of  $f + \omega$ .

 $f+\omega$ 

3



- **Example:** If f(x) is a rotation by  $\phi$ , then  $\tau_f(\omega) = \omega + \phi$ .
- **Remark:**  $\tau_f$  is holomorphic.
- Arnold's question, 1978: what happens as  $\omega \rightarrow a \in \mathbb{R}$ ?



- **Example:** If f(x) is a rotation by  $\phi$ , then  $\tau_f(\omega) = \omega + \phi$ .
- **Remark:**  $\tau_f$  is holomorphic.
- Arnold's question, 1978: what happens as  $\omega \rightarrow a \in \mathbb{R}$ ?



- **Example:** If f(x) is a rotation by  $\phi$ , then  $\tau_f(\omega) = \omega + \phi$ .
- **Remark:**  $\tau_f$  is holomorphic.
- Arnold's question, 1978: what happens as  $\omega \to a \in \mathbb{R}$ ?

# Bubbles: overview of results

 $\tau_f \colon \mathbb{H} \to \mathbb{H}$  extends continuously to  $\mathbb{R}$ . Let  $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$ .

- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{a}$ -bubble is at most  $\frac{C}{a^2}$
- Near Diophantine numbers, the bubbles are much smaller.

- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{a}$ -bubble is at most  $\frac{C}{a^2}$ .
- Near Diophantine numbers, the bubbles are much smaller.



- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{a}$ -bubble is at most  $\frac{C}{a^2}$ .
- Near Diophantine numbers, the bubbles are much smaller.





Limit values of  $\tau_f$  on  $\mathbb{R}$ .

### Bubbles: overview of results

 $au_f : \mathbb{H} \to \mathbb{H}$  extends continuously to  $\mathbb{R}$ . Let  $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$ .

- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .
- Near Diophantine numbers, the bubbles are much smaller





Limit values of  $\tau_f$  on  $\mathbb{R}$ .

### Bubbles: overview of results

 $au_f : \mathbb{H} \to \mathbb{H}$  extends continuously to  $\mathbb{R}$ . Let  $\hat{\tau}_f(a) := \lim_{\omega \to a} \tau_f(\omega)$ .

- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .
- Near Diophantine numbers, the bubbles are much smaller



- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .

Near Diophantine numbers, the bubbles are much smaller



- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .
- Near Diophantine numbers, the bubbles are much smaller.



- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . (Stairs)
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . (Outside stairs)
- Bubbles are (generically) self-similar near rational points.
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .
- Near Diophantine numbers, the bubbles are much smaller.



- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . Ilyashenko, Moldavskis; NG
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . Risler; Moldavskis; Lacroix; X.Buff, NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .X.Buff, NG
- Near Diophantine numbers, the bubbles are much smaller. NG, I.Gorbovickis



- f + a is hyperbolic  $\Rightarrow \hat{\tau}_f(a) \in \mathbb{H}$ . Ilyashenko, Moldavskis; NG
- Otherwise,  $\hat{\tau}_f(a) = \operatorname{rot}(f + a)$ . Risler; Moldavskis; Lacroix; X.Buff, NG
- Bubbles are (generically) self-similar near rational points. NG
- Size of the  $\frac{p}{q}$ -bubble is at most  $\frac{C}{q^2}$ .X.Buff, NG
- Near Diophantine numbers, the bubbles are much smaller. NG, I.Gorbovickis



Zero bubbles for perturbations of  $z \mapsto \frac{az+b}{cz+d}$ , approximation.

$$\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater

 $\mathcal{R}(f+a) 
ightarrow L_c$  as a 
ightarrow 0 where  $L_c$  are Lavaurs maps,  $c \in \mathbb{R}/\mathbb{Z}$ .





Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

- TR

$$\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater

 $\mathcal{R}(f+a) o L_c$  as a o 0 where  $L_c$  are Lavaurs maps,  $c \in \mathbb{R}/\mathbb{Z}$ .





Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

B> B

$$\hat{\tau}(\mathcal{R}f) = -\frac{1}{\hat{\tau}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater

 $\mathcal{R}(f+a) o L_c$  as a o 0 where  $L_c$  are Lavaurs maps,  $c \in \mathbb{R}/\mathbb{Z}$ .





Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

$$\hat{ au}(\mathcal{R}f) = -rac{1}{\hat{ au}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater

 $\mathcal{R}(f+a) 
ightarrow L_c$  as a 
ightarrow 0 where  $L_c$  are Lavaurs maps,  $c \in \mathbb{R}/\mathbb{Z}$ .





Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

**Renormalization**  $\mathcal{R}f$  is the first-return map under f to the circle [0, f(0)]/f.

$$\hat{\tau}(\mathcal{R}f) = -rac{1}{\hat{ au}(f)} \mod 1.$$

### Lavaurs maps — through the eggbeater







Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

4 3 5 4 3 5 5

**Renormalization**  $\mathcal{R}f$  is the first-return map under f to the circle [0, f(0)]/f.

$$\hat{\tau}(\mathcal{R}f) = -rac{1}{\hat{\tau}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater







Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

きょう きょう

**Renormalization**  $\mathcal{R}f$  is the first-return map under f to the circle [0, f(0)]/f.

$$\hat{\tau}(\mathcal{R}f) = -rac{1}{\hat{\tau}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater







Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

きょう きょう

**Renormalization**  $\mathcal{R}f$  is the first-return map under f to the circle [0, f(0)]/f.

$$\hat{\tau}(\mathcal{R}f) = -rac{1}{\hat{\tau}(f)} \mod 1.$$

#### Lavaurs maps — through the eggbeater





Elepha Produc en.wik Wolfga CC-BY

Elephant Valley Produced by Ultra Fractal 3 en.wikipedia.org/wiki/Mandelbrot set, Wolfgang Beyer, zoomed CC-BY-SA 3.0

- Golden ratio rotation is a hyperbolic fixed point for  $\mathcal{R}^2$
- ullet  $\Rightarrow$  bubbles are small near the golden ratio (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?



- Golden ratio rotation is a hyperbolic fixed point for  $\mathcal{R}^2$
- $\Rightarrow$  bubbles are small near the golden ratio (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?



Thank you for your attention!

- Brjuno rotations are a hyperbolic set for  $\mathcal{R}$  (joint with M. Yampolsky).
- $\Rightarrow$  bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?



- Brjuno rotations are a hyperbolic set for  $\mathcal{R}$  (joint with M. Yampolsky).
- $\Rightarrow$  bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?



- Brjuno rotations are a hyperbolic set for  $\mathcal{R}$  (joint with M. Yampolsky).
- $\Rightarrow$  bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?



- Brjuno rotations are a hyperbolic set for  $\mathcal{R}$  (joint with M. Yampolsky).
- $\Rightarrow$  bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
- Do critical maps have bubbles? Are they self-similar?

