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Rotation number of a circle diffeomorphism.

Let F be a lift of f: R/Z — R/Z to R.
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Rotation number of a circle diffeomorphism.

Let F be a lift of f: R/Z — R/Z to R.

ot(F) = lim F"(x) ~ im # turns around R/Z under n iterates

n— oo n n— oo n

o rotf € Q & f has a periodic orbit

o [Denjoy] rotf € R\ Q < f is continuously conjugate to the rotation by rot f
if f is C%-smooth.
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Rotation number of a circle diffeomorphism.

Let F be a lift of f: R/Z — R/Z to R.

ot(F) = lim F"(x) ~ im # turns around R/Z under n iterates

n— oo n n— oo n

o rotf € Q & f has a periodic orbit

o [Denjoy] rotf € R\ Q < f is continuously conjugate to the rotation by rot f
if f is C%-smooth.

rot(f + a)
1
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Rotation number of a circle diffeomorphism.

Let F be a lift of f: R/Z — R/Z to R.

F" R/Z i
ot(F) = lim (x) ~im # turns around R/Z under n iterates

n—oo n n—o00 n

o rotf € Q & f has a periodic orbit

o [Denjoy] rotf € R\ Q < f is continuously conjugate to the rotation by rot f
if f is C%-smooth.
rot(f + a)

! f+a

0

Hyperbolic: (f + a)'(f.p.) #1
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Rotation number of a circle diffeomorphism.

Let F be a lift of f: R/Z — R/Z to R.

F" R/Z i
ot(F) = lim (x) ~im # turns around R/Z under n iterates

n—oo n n—o00 n

o rotf € Q & f has a periodic orbit

o [Denjoy] rotf € R\ Q < f is continuously conjugate to the rotation by rot f
if f is C%-smooth.
rot(f + a)

! f+a
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Parabolic: (f + a)'(f.p.) =1

Nataliya Goncharuk Complex rotation numbers and renormalization



Rotation number of a circle diffeomorphism.

Let F be a lift of f: R/Z — R/Z to R.

F" R/Z i
ot(F) = lim (x) ~im # turns around R/Z under n iterates

n—oo n n—o00 n

o rotf € Q & f has a periodic orbit

o [Denjoy] rotf € R\ Q < f is continuously conjugate to the rotation by rot f
if f is C%-smooth.
rot(f + a)

! f+a

0

1Stairs Parabolic: (f + a)'(f.p.) =1
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Arnold's construction (1978)

Let f: R/Z — R/Z be an analytic circle diffeomorphism.

f+w® 'Ima)
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Arnold's construction (1978)

Let f: R/Z — R/Z be an analytic circle diffeomorphism.

Fu(0) Fu(x) Fu(1)
Imz=Imw / \ /
0 x 1

Imz=0

o Idea: let us add a complex shift to f, f, = f + w.

f"'w@ 'Ima)
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Arnold's construction (1978)

Let f: R/Z — R/Z be an analytic circle diffeomorphism.

F.(0) Fu(x) Fu(1)
Imz=Imw / \ /
0 x 1

Imz=0

o |dea: let us add a complex shift to f, f, = f +

@ Take the quotient space of the annulus 0 < Imz < Imw in C/Z by
x = f(x) +w.

f"'w@ 'Ima)
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Arnold's construction (1978)

Let f: R/Z — R/Z be an analytic circle diffeomorphism.

Fw(o) Fw(X) Fo
Imz=Imw / \ /
0 x 1

Imz=0

o |dea: let us add a complex shift to f, f, = f +

@ Take the quotient space of the annulus 0 < Imz < Imw in C/Z by
x = f(x) +w.

o We obtain a complex torus

f"'w@ 'Ima)
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Arnold's construction (1978)

Let f: R/Z — R/Z be an analytic circle diffeomorphism.
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/ \ /

Imz=0

o |dea: let us add a complex shift to f, f, = f +

@ Take the quotient space of the annulus 0 < Imz < Imw in C/Z by
x = f(x) +w.

@ We obtain a complex torus with marked generators.
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Arnold's construction (1978)

Let f: R/Z — R/Z be an analytic circle diffeomorphism.

W

/ \ /

Imz=0

o |dea: let us add a complex shift to f, f, = f +
@ Take the quotient space of the annulus 0 < Imz < Imw in C/Z by
x = f(x) +w.
@ We obtain a complex torus with marked generators.
o Consider its modulus 7¢(w) — the complex rotation number of f + w.

f"'w@ 'Ima)
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Arnold's construction (1978)

Let f: R/Z +— R/Z be an analytic circle diffeomorphism.

F (O X) Fo 1 Modulus

Imz=Imw
/ \ / biholom Tri(D‘
—_—
Imz=0 0 1

o Idea: let us add a complex shift to f, f, = f + w.
@ Take the quotient space of the annulus 0 < ITmz < Imw in C/Z by
x = f(x) +w.
@ We obtain a complex torus with marked generators.
o Consider its modulus 7¢(w) — the complex rotation number of f + w.
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Arnold's construction (1978)

Let f: R/Z +— R/Z be an analytic circle diffeomorphism.

Imz = Imw Fo (O X) Fo 1 Modulus
/ \ / biholom T'"(:JDL
g
Imz=0 0 1

o Example: If f(x) is a rotation by ¢, then 7r(w) = w + ¢.
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Arnold's construction (1978)

Let f: R/Z +— R/Z be an analytic circle diffeomorphism.

Imz = Imw Fo (O X) Fo 1 Modulus
/ \ / biholom Tri(D‘
—
Imz=0 0 1

e Example: If f(x) is a rotation by ¢, then 7¢(w) = w + ¢.
@ Remark: 77 is holomorphic.
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Arnold's construction (1978)

Let f: R/Z +— R/Z be an analytic circle diffeomorphism.

Imz = Imw Fo (O X) Fo 1 Modulus
/ \ / biholom Tri(D‘
—
Imz=0 0 1

e Example: If f(x) is a rotation by ¢, then 7¢(w) = w + ¢.
@ Remark: 77 is holomorphic.

o Arnold’s question, 1978: what happens as w — a € R?
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Bubbles: overview of results

7r: H — H extends continuously to R. Let 7¢(a) := lim 7¢(w).
w—ra
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Bubbles: overview of results

7r: H — H extends continuously to R. Let 7¢(a) := J@a T (w).
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—_—
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Bubbles: overview of results

7r: H — H extends continuously to R. Let 7¢(a) := lim 7¢(w).
w—ra

o f + ais hyperbolic = 7r(a) € H. (Stairs)
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Bubbles: overview of results

7r: H — H extends continuously to R. Let 7¢(a) := lim 7¢(w).
w—ra

o f + ais hyperbolic = 7r(a) € H. (Stairs)
o Otherwise, 7¢(a) = rot(f + a). (Outside stairs)
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Bubbles: overview of results

7r: H — H extends continuously to R. Let 7¢(a) := lim 7¢(w).
w—ra

o f + ais hyperbolic = 7r(a) € H. (Stairs)
o Otherwise, 7¢(a) = rot(f + a). (Outside stairs)

@ Bubbles are (generically) self-similar near rational points.
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Bubbles: overview of results

7r: H — H extends continuously to R. Let 7¢(a) := lim 7¢(w).
w—ra

f + a is hyperbolic = 7¢(a) € H. (Stairs)
Otherwise, 7¢(a) = rot(f + a). (Outside stairs)
Bubbles are (generically) self-similar near rational points.

Size of the g—bubble is at most q—cz.
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Bubbles: overview of results

7r: H — H extends continuously to R. X.Buff, NG Let 7¢(a) := lim 7¢(w).

w—a

o f + ais hyperbolic = 7¢(a) € H. llyashenko, Moldavskis; NG
Otherwise, 7r(a) = rot(f + a). Risler; Moldavskis; Lacroix; X.Buff, NG
Bubbles are (generically) self-similar near rational points. NG

@ Size of the g—bubble is at most q—cz.X.BufF, NG

Near Diophantine numbers, the bubbles are much smaller. NG, |.Gorbovickis
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Bubbles: overview of results

7r: H — H extends continuously to R. X.Buff, NG Let 7¢(a) := lim 7¢(w).

w—a

o f + ais hyperbolic = 7¢(a) € H. llyashenko, Moldavskis; NG
Otherwise, 7r(a) = rot(f + a). Risler; Moldavskis; Lacroix; X.Buff, NG
Bubbles are (generically) self-similar near rational points. NG

@ Size of the g—bubble is at most q—cz.X.BufF, NG

@ Near Diophantine numbers, the bubbles are much smaller. NG, |.Gorbovickis
8 =
N dal 7
? 2 2?2 2?2 ? 2 2?2 ? 2
Zero bubbles for perturbations of z — j;ig approximation.
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Self-similarity of bubbles
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.

T(Rf) = —+(1f) mod 1.
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.

T(Rf) = _?(lf) mod 1.

Lavaurs maps — through the eggbeater
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.

F(Rf) = —+(1f) mod 1.

Lavaurs maps — through the eggbeater

e
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Dynamics of f and f +a,a > 0: “
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.

F(Rf) = —+(1f) mod 1.

Lavaurs maps — through the eggbeater

e
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Dynamics of f and f +a,a > 0: “

R(f + a) — L. as a — 0 where L. are Lavaurs maps, c € R/Z.

-1/z

m
07\ V@ \7 V@

0

Nataliya Goncharuk Complex rotation numbers and renormalization



Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.
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Self-similarity of bubbles

Renormalization Rf is the first-return map under f to the circle [0, f(0)]/f.

T(Rf) = _f(lf) mod 1.

Lavaurs maps — through the eggbeater
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R(f + a) — L. as a — 0 where L. are Lavaurs maps, ¢ € R/Z.
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Renormalization and bubbles

@ Golden ratio rotation is a hyperbolic fixed point for R?

rot = golden ratio
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Renormalization and bubbles

@ Golden ratio rotation is a hyperbolic fixed point for R?

@ = bubbles are small near the golden ratio (Gorbovickis, NG; in progress).

rot = golden ratio
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Renormalization and bubbles

@ Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).

@ = bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
(]

rot = golden ratio
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Renormalization and bubbles

@ Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).
@ = bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).
@ Do critical maps have bubbles? Are they self-similar?

rot = golden ratio
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Renormalization and bubbles

@ Brjuno rotations are a hyperbolic set for R (joint with M. Yampolsky).
@ = bubbles are small near Brjuno numbers (Gorbovickis, NG; in progress).

@ Do critical maps have bubbles? Are they self-similar?

rot = golden ratio

UUU WU

g ﬁWL/W I

Thank you for your attention!
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