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HOLOMORPHIC DYNAMICS

Let f : C → C be an entire map.

f n ..= f◦ n· · · ◦f

I Fatou set: set of stability.

small perturbations small perturbations.

F(f) = {z ∈ C : {f n}n∈N is a normal family near z} .
I Julia set: locus of chaotic behaviour. J(f) = C \ F(f).

I escaping set: points that escape to infinity under iteration:

I(f) = {z ∈ C : f n(z) → ∞}.

In particular, J(f) = ∂I(f) .
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DIVERSITY OF JULIA SETS

-Dynamics within the Fatou set are fairly well-understood.

-However, Julia sets can be quite complicated and diverse...

Goal: To describe (the dynamics of entire maps on their) Julia sets.

*Pictures by L. Rempe.
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CURVES IN THE ESCAPING SET

I Fatou observed in 1926 that the escaping sets of certain functions
in the sine family contain arcs to infinity.

I In the eighties, Devaney, with several co-authors, found many
such curves for maps in the exponential family fλ(z) = λez.

I These curves are known as (Devaney) hairs or dynamic rays.
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CANTOR BOUQUET JULIA SETS

Definition
J(f) is a Cantor bouquet if
I Every conn. comp. of J(f) is an arc to infinity, called hair;
I J(f) is topologically straight, i.e., there is a homeo. φ : C → C such
that the image of every hair is a straight horizontal line.

Theorem (Aarts–Oversteegen, ’93)

The Julia set of any λ sin(z) with λ ∈ (0, 1) and µ exp(z) with
µ ∈ (1, 1/e) is a Cantor bouquet.

4



CANTOR BOUQUET JULIA SETS

Definition
J(f) is a Cantor bouquet if
I Every conn. comp. of J(f) is an arc to infinity, called hair;
I J(f) is topologically straight, i.e., there is a homeo. φ : C → C such
that the image of every hair is a straight horizontal line.

Theorem (Aarts–Oversteegen, ’93)

The Julia set of any λ sin(z) with λ ∈ (0, 1) and µ exp(z) with
µ ∈ (1, 1/e) is a Cantor bouquet.

4



CONNECTION WITH POLYNOMIAL DYNAMICS

⋆ Hairs of transcendental maps as analogues of external rays of
polynomials.
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CONNECTION WITH POLYNOMIAL DYNAMICS

⋆ Hairs of transcendental maps as analogues of external rays of
polynomials.

-External rays for pd as preimages of straight lines under Bottcher’s
map.
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CONNECTION WITH POLYNOMIAL DYNAMICS

⋆ Hairs of transcendental maps as analogues of external rays of
polynomials.

-When J(pd) is connected and locally connected, the conjugacy
extends to Julia sets and dynamic rays land.
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CRINIFEROUS FUNCTIONS

Eremenko’s conjecture (Strong version): For all transcendental
entire f, every z ∈ I(f) can be connected to infinity by a curve of
escaping points.

Definition (Benini-Rempe ’20)

An entire function f is criniferous if for every z ∈ I(f) and for all
sufficiently large n, there is an arc γn connecting fn(z) to∞, such that
I f maps γn injectively onto γn+1;
I minz∈γn |z| → ∞ as n→ ∞.

Remark: If f is criniferous, then every z ∈ I(f) can be connected to
infinity by a curve of escaping points.
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SINGULAR VALUES

The set of singular values S(f) is the smallest closed subset of C
such that f : C \ f−1(S(f)) → C \ S(f) is a covering map.

S(f) = { asymptotic and critical values of f }.

⋆ Eremenko-Lyubich class:

B ..=
{
f : C → C transcendental entire : S(f) is bounded

}
.

Remark: If f ∈ B, then I(f) ⊂ J(f).
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CRINIFEROUS FUNCTIONS

Examples of criniferous functions:

- Exponential family, [Schleicher-Zimmer ’03],

fλ(z) = λez.

- Cosine family, [Rottenfußer-Schleicher ’08],

fa,b(z) = aez + be−z.

- Functions of finite order in class B.
[Barański ’07], [Ruckert-Rottenfußer-Rempe-Schleicher ’11].

* f has finite order of growth if log log |f(z)| = O(log |z|).

- BRRRS: maps in B that satisfy a (uniform) head-start condition.
[RRRS]. UHSC
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NON-CRINIFEROUS FUNCTIONS

However, not all functions in B are criniferous:

I There is f ∈ B such that J(f), and hence I(f), contains no arc [RRRS].

I Different arc-like continua in J(f) ∪ {∞} [Rempe ’16].

I Alternative to rays: dreadlocks [Benini-Rempe ’20].
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DISJOINT TYPE MAPS
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DISJOINT TYPE MAPS

Definition
An entire function f is of disjoint type if f ∈ B and every point in S(f)
tends to an attracting fixed point of f under iteration.

Proposition
If f ∈ B, then λf is of disjoint type for |λ| sufficiently small.

⋆ λf is in the parameter space of f.
⋆ The dynamics of λf and f are related near infinity by some
analogue of Böttcher’s Theorem. [Rempe ’09] Conjugacy
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CANTOR BOUQUET JULIA SETS

⋆ Aarts and Oversteegen’s result generalizes to some disjoint type
functions:

Theorem (Barański-Jarque-Rempe ’12)

If f ∈ B is of finite order and of disjoint type, then J(f) is a Cantor
bouquet.
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CRINIFEROUS VS CANTOR BOUQUET

We want to understand the relation between criniferousness and
Cantor bouquets Julia sets...

⋆ If f is disjoint type, then

J(f) Cantor bouquet =⇒ f criniferous.

Question: f criniferous =⇒ J(f) Cantor bouquet?

Theorem A (P.- Rempe)

There is f ∈ B criniferous and of disjoint type such that J(f) is not a
Cantor bouquet.
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CHARACTERIZATION OF CANTOR BOUQUETS

Theorem (Alhabib-Rempe ’16)

A set X ⊂ C is a Cantor bouquet if and only if the following
conditions are satisfied:

1. X is closed.
2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.
4. The endpoints of X are dense in X.
5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)

14



CHARACTERIZATION OF CANTOR BOUQUETS

Theorem (Alhabib-Rempe ’16)

A set X ⊂ C is a Cantor bouquet if and only if the following
conditions are satisfied:
1. X is closed.

2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.
4. The endpoints of X are dense in X.
5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)

14



CHARACTERIZATION OF CANTOR BOUQUETS

Theorem (Alhabib-Rempe ’16)

A set X ⊂ C is a Cantor bouquet if and only if the following
conditions are satisfied:
1. X is closed.
2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.
4. The endpoints of X are dense in X.
5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)

14



CHARACTERIZATION OF CANTOR BOUQUETS

Theorem (Alhabib-Rempe ’16)

A set X ⊂ C is a Cantor bouquet if and only if the following
conditions are satisfied:
1. X is closed.
2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.

4. The endpoints of X are dense in X.
5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)

14



CHARACTERIZATION OF CANTOR BOUQUETS

Theorem (Alhabib-Rempe ’16)

A set X ⊂ C is a Cantor bouquet if and only if the following
conditions are satisfied:
1. X is closed.
2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.
4. The endpoints of X are dense in X.

5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)

14



CHARACTERIZATION OF CANTOR BOUQUETS

Theorem (Alhabib-Rempe ’16)

A set X ⊂ C is a Cantor bouquet if and only if the following
conditions are satisfied:
1. X is closed.
2. Every connected component of X is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn converging to a point y, the arcs [yn,∞)

converge to [y,∞) in the Hausdorff metric.
4. The endpoints of X are dense in X.
5. If x ∈ X is accessible from C \ X, then x is an endpoint of X.
(Equivalently, every hair of X is accumulated on by other hairs
from both sides.)

14



CRINIFEROUS FUNCTIONS

If f is of disjoint type and criniferous, then

1. J(f) is closed.

2. Every connected component of J(f) is an arc connecting a finite
endpoint to infinity.

3. For any sequence yn → y, the arcs [yn,∞) converge to [y,∞) in
the Hausdorff metric. ??

4. The endpoints of J(f) are dense in J(f).

5. Every hair of J(f) is accumulated on by other hairs from both
sides.
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A FEW WORDS ON THE PROOF

We design hooked thin tracts.
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FURTHER RESULTS



ABSORBING CANTOR BOUQUETS

Definition
We say that a subset A ⊂ J(f) is absorbing if it is forward-invariant,
every escaping point eventually enters A; i.e.

I(f) ⊂
∞∪
n=0

f−n(A),

and if γ ⊂ A is an arc to infinity, so is f(γ).

Theorem B (P.-Rempe)

Let f ∈ B be of disjoint type. The following are equivalent.
(a) J(f) is a Cantor bouquet.
(b) There is an absorbing Cantor bouquet X ⊂ J(f).
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AN APPLICATION

Definition
We say that f ∈ B belongs to the class CB if J(λf) is a Cantor bouquet
for |λ| sufficiently small.

Remark: All finite order functions in B belong to CB.

Theorem C (P. ’19)

All functions in CB are criniferous.

Theorem D (P.-Rempe)

Let f ∈ B. Then f ∈ CB if and only if J(f) contains an absorbing Cantor
bouquet.
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CONJUGACY NEAR INFINITY

Theorem (Rempe ’09)

Let f ∈ B and let g ..= λf be of disjoint type. Then there is R > 0 and a
continuous map

ϑ : {z ∈ J(g) : |gn(z)| ≥ R for all n ≥ 1} → J(f)

such that ϑ ◦ g = f ◦ ϑ and is a homeomorphism onto its image.

Disjoint type
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UNIFORM HEAD START CONDITION

Definition (Uniform head-start condition)

Let f ∈ B. We say that f satisfies a uniform head-start condition (with
respect to |z|) on its Julia set if there is an upper semicontinuous
function φ : [0,∞) → [0,∞) with the following properties for all
points z and w belonging to the same component of J(f).
(i) If |w| > φ(|z|), then |f(w)| > φ(|f(z)|).
(ii) If z ̸= w, then there is n ≥ 0 such that either |fn(w)| > φ(|fn(z)|) or

|fn(z)| > φ(|fn(w)|).
Note that the conditions imply, in particular, that φ(t) > t for all t.

Criniferous
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