TRANSCENDENTAL ENTIRE FUNCTIONS WITH CANTOR BOUQUET JULIA SETS

Leticia Pardo Simón

(joint work with L. Rempe)

MSRI, 4th February, 2022

The University of Manchester

Connections Workshop: Complex Dynamics

$$f^n := f \circ \cdot \stackrel{n}{\cdot} \cdot \circ f$$

$$f^n := f \circ \cdot \stackrel{n}{\cdots} \circ f$$

Fatou set: set of stability.

small perturbations ~> small perturbations.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family near } z\}.$

$$f^n := f \circ \cdot \stackrel{n}{\cdots} \circ f$$

Fatou set: set of stability.

small perturbations ~> small perturbations.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family near } z\}.$

▶ Julia set: locus of chaotic behaviour. $J(f) = \mathbb{C} \setminus F(f)$.

$$f^n := f \circ \cdot \stackrel{n}{\cdots} \circ f$$

Fatou set: set of stability.

small perturbations ~> small perturbations.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family near } z\}.$

- ▶ Julia set: locus of chaotic behaviour. $J(f) = \mathbb{C} \setminus F(f)$.
- escaping set: points that escape to infinity under iteration:

$$I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty\}.$$

$$f^n := f \circ \cdot \stackrel{n}{\cdots} \circ f$$

Fatou set: set of stability.

small perturbations ~> small perturbations.

 $F(f) = \{z \in \mathbb{C} : \{f^n\}_{n \in \mathbb{N}} \text{ is a normal family near } z\}.$

- ▶ Julia set: locus of chaotic behaviour. $J(f) = \mathbb{C} \setminus F(f)$.
- **escaping set**: points that escape to infinity under iteration:

$$I(f) = \{z \in \mathbb{C} : f^n(z) \to \infty\}.$$

In particular,

$$J(f) = \partial I(f)$$

-However, Julia sets can be quite complicated and diverse...

-However, Julia sets can be quite complicated and diverse...

*Pictures from Wikimedia commons.

-However, Julia sets can be quite complicated and diverse...

-However, Julia sets can be quite complicated and diverse...

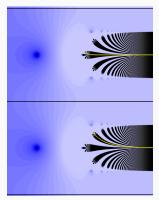
Goal: To describe (the dynamics of entire maps on their) Julia sets.

*Pictures by L. Rempe.

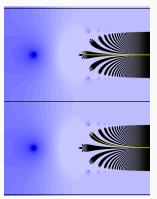
Fatou observed in 1926 that the escaping sets of certain functions in the sine family contain arcs to infinity.

- Fatou observed in 1926 that the escaping sets of certain functions in the sine family contain arcs to infinity.
- ► In the eighties, Devaney, with several co-authors, found many such curves for maps in the exponential family $f_{\lambda}(z) = \lambda e^{z}$.

- Fatou observed in 1926 that the escaping sets of certain functions in the sine family contain arcs to infinity.
- ► In the eighties, Devaney, with several co-authors, found many such curves for maps in the exponential family $f_{\lambda}(z) = \lambda e^{z}$.



- Fatou observed in 1926 that the escaping sets of certain functions in the sine family contain arcs to infinity.
- ► In the eighties, Devaney, with several co-authors, found many such curves for maps in the exponential family $f_{\lambda}(z) = \lambda e^{z}$.



These curves are known as (Devaney) hairs or dynamic rays.

CANTOR BOUQUET JULIA SETS

Definition

J(f) is a **Cantor bouquet** if

- Every conn. comp. of J(f) is an arc to infinity, called hair;
- ► J(f) is topologically straight, i.e., there is a homeo. $\varphi : \mathbb{C} \to \mathbb{C}$ such that the image of every hair is a straight horizontal line.

CANTOR BOUQUET JULIA SETS

Definition

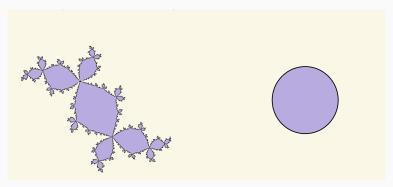
J(f) is a Cantor bouquet if

- Every conn. comp. of J(f) is an arc to infinity, called hair;
- ► J(f) is topologically straight, i.e., there is a homeo. $\varphi : \mathbb{C} \to \mathbb{C}$ such that the image of every hair is a straight horizontal line.

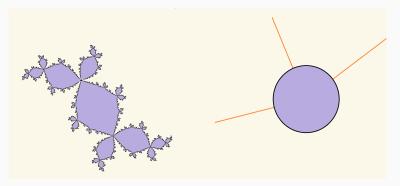
Theorem (Aarts-Oversteegen, '93)

The Julia set of any $\lambda \sin(z)$ with $\lambda \in (0, 1)$ and $\mu \exp(z)$ with $\mu \in (1, 1/e)$ is a Cantor bouquet.

 \star Hairs of transcendental maps as analogues of external rays of polynomials.

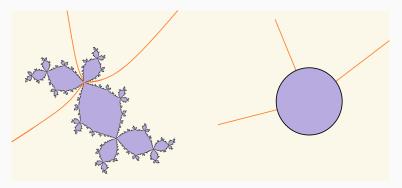


 \star Hairs of transcendental maps as analogues of external rays of polynomials.



CONNECTION WITH POLYNOMIAL DYNAMICS

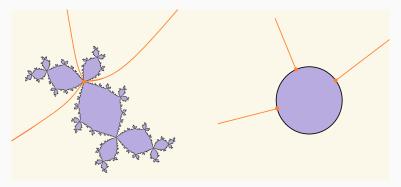
★ Hairs of transcendental maps as analogues of external rays of polynomials.



-**External rays** for p_d as preimages of straight lines under Bottcher's map.

CONNECTION WITH POLYNOMIAL DYNAMICS

★ Hairs of transcendental maps as analogues of external rays of polynomials.



-When $J(p_d)$ is connected and locally connected, the conjugacy extends to Julia sets and dynamic rays **land**.

CRINIFEROUS FUNCTIONS

Eremenko's conjecture (Strong version): For all transcendental entire f, every $z \in I(f)$ can be connected to infinity by a curve of escaping points.

Eremenko's conjecture (Strong version): For all transcendental entire f, every $z \in I(f)$ can be connected to infinity by a curve of escaping points.

Definition (Benini-Rempe '20)

An entire function f is **criniferous** if for every $z \in I(f)$ and for all sufficiently large n, there is an arc γ_n connecting $f^n(z)$ to ∞ , such that

• f maps γ_n injectively onto γ_{n+1} ;

•
$$\min_{z \in \gamma_n} |z| \to \infty$$
 as $n \to \infty$.

Eremenko's conjecture (Strong version): For all transcendental entire f, every $z \in I(f)$ can be connected to infinity by a curve of escaping points.

Definition (Benini-Rempe '20)

An entire function f is **criniferous** if for every $z \in I(f)$ and for all sufficiently large n, there is an arc γ_n connecting $f^n(z)$ to ∞ , such that

• f maps γ_n injectively onto γ_{n+1} ;

•
$$\min_{z \in \gamma_n} |z| \to \infty$$
 as $n \to \infty$.

Remark: If *f* is criniferous, then every $z \in I(f)$ can be connected to infinity by a curve of escaping points.

The set of **singular values** S(f) is the smallest closed subset of \mathbb{C} such that $f: \mathbb{C} \setminus f^{-1}(S(f)) \to \mathbb{C} \setminus S(f)$ is a **covering map**.

 $S(f) = \overline{\{ \text{ asymptotic and critical values of } f \}}.$

The set of **singular values** S(f) is the smallest closed subset of \mathbb{C} such that $f: \mathbb{C} \setminus f^{-1}(S(f)) \to \mathbb{C} \setminus S(f)$ is a **covering map**.

 $S(f) = \overline{\{ \text{ asymptotic and critical values of } f \}}.$

* Eremenko-Lyubich class:

 $\mathcal{B} := \{f \colon \mathbb{C} \to \mathbb{C} \text{ transcendental entire } : S(f) \text{ is bounded} \}.$

The set of **singular values** S(f) is the smallest closed subset of \mathbb{C} such that $f: \mathbb{C} \setminus f^{-1}(S(f)) \to \mathbb{C} \setminus S(f)$ is a **covering map**.

 $S(f) = \overline{\{ \text{ asymptotic and critical values of } f \}}.$

* Eremenko-Lyubich class:

 $\mathcal{B} := \{ f \colon \mathbb{C} \to \mathbb{C} \text{ transcendental entire } : S(f) \text{ is bounded} \}.$

Remark: If $f \in \mathcal{B}$, then $I(f) \subset J(f)$.

- Exponential family, [Schleicher-Zimmer '03],

$$f_{\lambda}(z) = \lambda e^{z}.$$

- Exponential family, [Schleicher-Zimmer '03],

$$f_{\lambda}(z) = \lambda e^{z}.$$

- Cosine family, [Rottenfußer-Schleicher '08],

$$f_{a,b}(z) = ae^z + be^{-z}.$$

- Exponential family, [Schleicher-Zimmer '03],

$$f_{\lambda}(z) = \lambda e^{z}.$$

- Cosine family, [Rottenfußer-Schleicher '08],

$$f_{a,b}(z) = ae^z + be^{-z}.$$

- Functions of finite order in class *B*.

[Barański '07], [Ruckert-Rottenfußer-Rempe-Schleicher '11].

- Exponential family, [Schleicher-Zimmer '03],

$$f_{\lambda}(z) = \lambda e^{z}.$$

- Cosine family, [Rottenfußer-Schleicher '08],

$$f_{a,b}(z) = ae^z + be^{-z}.$$

- Functions of finite order in class B.
 [Barański '07], [Ruckert-Rottenfußer-Rempe-Schleicher '11].
 - * f has finite order of growth if $\log \log |f(z)| = O(\log |z|)$.

- Exponential family, [Schleicher-Zimmer '03],

$$f_{\lambda}(z) = \lambda e^{z}.$$

- Cosine family, [Rottenfußer-Schleicher '08],

$$f_{a,b}(z) = ae^z + be^{-z}.$$

- Functions of finite order in class *B*. [Barański '07], [Ruckert-Rottenfußer-Rempe-Schleicher '11].
 - * f has finite order of growth if $\log \log |f(z)| = O(\log |z|)$.
- \mathcal{B}_{RRRS} : maps in \mathcal{B} that satisfy a (uniform) head-start condition. [RRRS]. UHSC

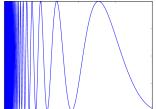
However, **not** all functions in \mathcal{B} are criniferous:

However, **not** all functions in \mathcal{B} are criniferous:

▶ There is $f \in B$ such that J(f), and hence I(f), contains no arc [RRRS].

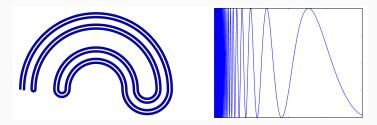
However, **not** all functions in \mathcal{B} are criniferous:

- ▶ There is $f \in B$ such that J(f), and hence I(f), contains no arc [RRRS].
- ▶ Different arc-like continua in $J(f) \cup \{\infty\}$ [Rempe '16].

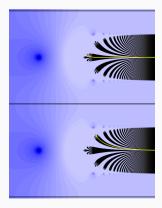


However, **not** all functions in \mathcal{B} are criniferous:

- ▶ There is $f \in B$ such that J(f), and hence I(f), contains no arc [RRRS].
- ▶ Different arc-like continua in $J(f) \cup \{\infty\}$ [Rempe '16].



► Alternative to rays: *dreadlocks* [Benini-Rempe '20].



An entire function f is of **disjoint type** if $f \in B$ and every point in S(f) tends to an attracting fixed point of f under iteration.

An entire function f is of **disjoint type** if $f \in B$ and every point in S(f) tends to an attracting fixed point of f under iteration.

Proposition

If $f \in \mathcal{B}$, then λf is of disjoint type for $|\lambda|$ sufficiently small.

An entire function f is of **disjoint type** if $f \in B$ and every point in S(f) tends to an attracting fixed point of f under iteration.

Proposition

If $f \in \mathcal{B}$, then λf is of disjoint type for $|\lambda|$ sufficiently small.

* λf is in the *parameter space* of *f*.

An entire function f is of **disjoint type** if $f \in B$ and every point in S(f) tends to an attracting fixed point of f under iteration.

Proposition

If $f \in \mathcal{B}$, then λf is of disjoint type for $|\lambda|$ sufficiently small.

- * λf is in the *parameter space* of *f*.
- The dynamics of λf and f are related near infinity by some analogue of Böttcher's Theorem. [Rempe '09]

★ Aarts and Oversteegen's result generalizes to *some* disjoint type functions:

★ Aarts and Oversteegen's result generalizes to *some* disjoint type functions:

Theorem (Barański-Jarque-Rempe '12)

If $f \in \mathcal{B}$ is of finite order and of disjoint type, then J(f) is a *Cantor* bouquet.

 \star If *f* is disjoint type, then

J(f) Cantor bouquet $\Longrightarrow f$ criniferous.

 \star If f is disjoint type, then

J(f) Cantor bouquet $\Longrightarrow f$ criniferous.

Question: f criniferous $\implies J(f)$ Cantor bouquet?

 \star If f is disjoint type, then

J(f) Cantor bouquet $\Longrightarrow f$ criniferous.

Question: f criniferous $\implies J(f)$ Cantor bouquet?

Theorem A (P.- Rempe)

There is $f \in B$ criniferous and of disjoint type such that J(f) is <u>not</u> a Cantor bouquet.

A set $X \subset \mathbb{C}$ is a *Cantor bouquet* if and only if the following conditions are satisfied:

1. X is closed.

- 1. X is closed.
- 2. Every **connected component** of *X* is an **arc** connecting a finite endpoint to infinity.

- 1. X is closed.
- 2. Every **connected component** of *X* is an **arc** connecting a finite endpoint to infinity.
- 3. For any sequence y_n converging to a point y, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric.

- 1. X is closed.
- 2. Every **connected component** of *X* is an **arc** connecting a finite endpoint to infinity.
- 3. For any sequence y_n converging to a point y, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric.
- 4. The **endpoints** of *X* are **dense** in *X*.

- 1. X is closed.
- 2. Every **connected component** of *X* is an **arc** connecting a finite endpoint to infinity.
- 3. For any sequence y_n converging to a point y, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric.
- 4. The **endpoints** of *X* are **dense** in *X*.
- If x ∈ X is accessible from C \ X, then x is an endpoint of X.
 (Equivalently, every hair of X is accumulated on by other hairs from both sides.)

1. *J*(*f*) **is closed**.

- 1. *J*(*f*) **is closed**.
- 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.

- 1. *J*(*f*) **is closed**.
- 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.

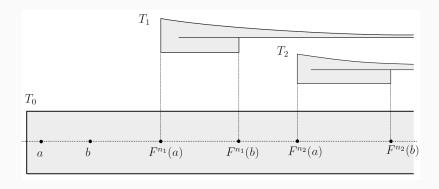
4. The endpoints of J(f) are dense in J(f).

- 1. *J*(*f*) **is closed**.
- 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.

- 4. The endpoints of J(f) are dense in J(f).
- 5. Every hair of *J*(*f*) is accumulated on by other hairs from both sides.

- 1. *J*(*f*) **is closed**.
- 2. Every connected component of J(f) is an arc connecting a finite endpoint to infinity.
- 3. For any sequence $y_n \to y$, the arcs $[y_n, \infty)$ converge to $[y, \infty)$ in the Hausdorff metric. ??
- 4. The endpoints of J(f) are dense in J(f).
- 5. Every hair of *J*(*f*) is accumulated on by other hairs from both sides.

We design hooked thin tracts.



FURTHER RESULTS

We say that a subset $A \subset J(f)$ is **absorbing** if it is forward-invariant, every escaping point eventually enters A; i.e.

$$I(f) \subset \bigcup_{n=0}^{\infty} f^{-n}(A),$$

and if $\gamma \subset A$ is an arc to infinity, so is $f(\gamma)$.

We say that a subset $A \subset J(f)$ is **absorbing** if it is forward-invariant, every escaping point eventually enters A; i.e.

$$I(f)\subset \bigcup_{n=0}^{\infty}f^{-n}(A),$$

and if $\gamma \subset A$ is an arc to infinity, so is $f(\gamma)$.

Theorem B (P.-Rempe)

Let $f \in \mathcal{B}$ be of disjoint type. The following are equivalent.

(a) J(f) is a Cantor bouquet.

(b) There is an absorbing Cantor bouquet $X \subset J(f)$.

AN APPLICATION

We say that $f \in \mathcal{B}$ belongs to the **class** \mathcal{CB} if $J(\lambda f)$ is a Cantor bouquet for $|\lambda|$ sufficiently small.

We say that $f \in \mathcal{B}$ belongs to the **class** \mathcal{CB} if $J(\lambda f)$ is a Cantor bouquet for $|\lambda|$ sufficiently small.

Remark: All finite order functions in \mathcal{B} belong to \mathcal{CB} .

We say that $f \in \mathcal{B}$ belongs to the **class** \mathcal{CB} if $J(\lambda f)$ is a Cantor bouquet for $|\lambda|$ sufficiently small.

Remark: All finite order functions in \mathcal{B} belong to \mathcal{CB} .

Theorem C (P. '19)

All functions in $\mathcal{C}\mathcal{B}$ are criniferous.

We say that $f \in \mathcal{B}$ belongs to the **class** \mathcal{CB} if $J(\lambda f)$ is a Cantor bouquet for $|\lambda|$ sufficiently small.

Remark: All finite order functions in \mathcal{B} belong to \mathcal{CB} .

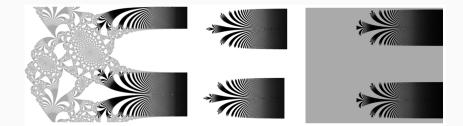
Theorem C (P. '19)

All functions in \mathcal{CB} are criniferous.

Theorem D (P.-Rempe)

Let $f \in \mathcal{B}$. Then $f \in C\mathcal{B}$ if and only if J(f) contains an absorbing Cantor bouquet.

AN APPLICATION



Theorem C (P. '19)

All functions in \mathcal{CB} are criniferous.

Theorem D (P.-Rempe)

Let $f \in \mathcal{B}$. Then $f \in C\mathcal{B}$ if and only if J(f) contains an absorbing Cantor bouquet.

THANKS FOR YOUR ATTENTION!

Theorem (Rempe '09)

Let $f \in \mathcal{B}$ and let $g := \lambda f$ be of disjoint type. Then there is R > 0 and a continuous map

 $\vartheta \colon \{z \in J(g) : |g^n(z)| \ge R \text{ for all } n \ge 1\} \to J(f)$

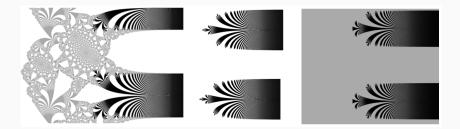
such that $\vartheta \circ g = f \circ \vartheta$ and is a homeomorphism onto its image.

Theorem (Rempe '09)

Let $f \in \mathcal{B}$ and let $g := \lambda f$ be of disjoint type. Then there is R > 0 and a continuous map

 $\vartheta \colon \{z \in J(g) : |g^n(z)| \ge R \text{ for all } n \ge 1\} \to J(f)$

such that $\vartheta \circ g = f \circ \vartheta$ and is a homeomorphism onto its image.

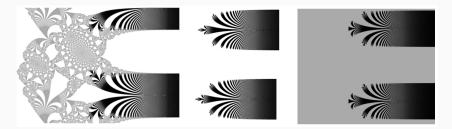


Theorem (Rempe '09)

Let $f \in \mathcal{B}$ and let $g := \lambda f$ be of disjoint type. Then there is R > 0 and a continuous map

 $\vartheta \colon \{z \in J(g) : |g^n(z)| \ge R \text{ for all } n \ge 1\} \to J(f)$

such that $\vartheta \circ g = f \circ \vartheta$ and is a homeomorphism onto its image.



Definition (Uniform head-start condition)

Let $f \in \mathcal{B}$. We say that f satisfies a **uniform head-start condition (with respect to** |z|**) on its Julia set** if there is an upper semicontinuous function $\varphi \colon [0, \infty) \to [0, \infty)$ with the following properties for all points z and w belonging to the same component of J(f).

- (i) If $|w| > \varphi(|z|)$, then $|f(w)| > \varphi(|f(z)|)$.
- (ii) If $z \neq w$, then there is $n \ge 0$ such that either $|f^n(w)| > \varphi(|f^n(z)|)$ or $|f^n(z)| > \varphi(|f^n(w)|)$.

Note that the conditions imply, in particular, that $\varphi(t) > t$ for all t.

