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Rational maps in one complex variable

Let Ĉ be the Riemann sphere. A rational map h : Ĉ→ Ĉ is a map
of Ĉ of the form

h(z) =
p(z)

q(z)

where p(z) and q(z) are polynomials in one complex variable.

The degree of a rational map h(z) = p(z)/q(z), where p(z) and
q(z) have no common factors, is the maximum of the degrees of
p(z) and q(z).

Degree 1 rational maps are Mobius transformations.

Therefore, we consider rational maps of degree at least 2.
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Let Ĉ be the Riemann sphere. A rational map h : Ĉ→ Ĉ is a map
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Hyperbolic rational maps

A rational map h : Ĉ→ Ĉ is hyperbolic if there exists a constant
C > 1 and a smooth conformal metric ρ on Ĉ such that

||h′(z)||ρ > C > 1

for any z ∈ J(h). Here J(h) denotes the Julia set of h.

The dynamical system h : J(h)→ J(h) is uniformly hyperbolic.
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Markov partitions and Thermodynamic Formalism

For any ε > 0, there is a Markov partition P1, ...,Pk for J = J(h)
where Pj are compact subsets of J of diameter at most ε such that
• J = ∪kj=1Pj ;

• Pj = intJPj for j = 1, ..., n;

• intJPj ∩ intJPi = ∅ if i 6= j ;

• for each j , f (Pj) is a union of Pi .
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Subshift of finite type

Let A be a k × k matrix with

Aij =

{
1 if Pj ⊂ f (Pi )

0 otherwise
.

Note that A is aperiodic (topologically mixing), i.e. there exists
n ∈ N such that (An)ij > 0 for all i , j = 1, .., k .

The matrix A defines a (one-sided) subshift of finite type (SFT)

ΣA = {(i0, i1, · · · ) | ij ∈ {1, · · · , k},Aij ,ij+1
= 1}.

Define the shift σ : ΣA → ΣA by σ(i0, i1, · · · ) = (i1, i2, · · · )

Metric on ΣA: d(i , j) = 2−N where N = min{n | in 6= jn}.
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Part 1: Pressure

Let φ : Σ→ R be a continuous function. The pressure P(φ) of φ
is defined by

P(φ) = sup
m∈Mσ

(
hm(σ) +

∫
Σ
φdm

)
where hm(σ) is the measure-theoretic entropy of σ with respect to
the measure m and Mσ be the set of σ-invariant probability
measures on Σ.

A measure m(φ) ∈Mσ is called an equilibrium state of φ if
P(φ) = hm(φ)(σ) +

∫
Σ φdm(φ).
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Pressure metric

We say that a function φ : Σ→ R is Hölder continuous if it is
α-Hölder continuous for some α ∈ (0, 1].
(There exists a constant C > 0 and α ∈ (0, 1] such that for all
i , j ∈ Σ, we have

|φ(i)− φ(j)| ≤ Cd(i , j)α.)

Let Z(Σ) be the space of pressure zero, Hölder continuous
functions on Σ up to coboundaries.
Recall that two continuous functions φ1 and φ2 are cohomologous
if there exists a continuous function h : Σ→ R such that
φ1 − φ2 = h ◦ σ − h. A continuous function φ : Σ→ R is a
coboundary if it is cohomologous to the zero function.
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Pressure metric cont’d

If [f ] ∈ Z(Σ) and f has an equilibrium state m, then the tangent
space at [f ] is given by

T[f ]Z(Σ) = {g |
∫

gdm = 0}/coboundaries.

The pressure metric || · ||P on T[f ]Z(Σ) is defined by

||[g ]||2P =
var(g ,m)

−
∫
fdm

.

where var(g ,m) = d2

dt2

∣∣∣∣
t=0

P(f + tg).
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Thermodynamic mapping
Let H be a hyperbolic component of the Mandelbrot set.

For each
H, there is a SFT Σ parametrizing the (topological) dynamics
fc : Jc → Jc .

Consider the thermodynamic mapping

E : H → Z(Σ)

c 7→ [−δ(c) log |f ′c |]

where δ : H → R is the Hausdorff dimension function, δ(c) =
Hausdorff dimension of the Julia set Jc .

We can pull-back the pressure metric on T[−δ(c) log |f ′c |]Z(Σ) by E
to TcH. Namely, if c(t) is a path in H with c(0) = c, then
v = d

dt |t=0c(t) ∈ TcH. Then

||v ||P ..= || d
dt
|t=0E(c(t))||P
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Theorem 1

Theorem (H.-Nie)

We construct a Riemannian metric on a hyperbolic component H
of the Mandelbrot set which is conformal equivalent to the
(pull-back of the) pressure metric on H.

Related work: Bridgeman-Taylor, McMullen, Pollicott-Sharp,
Bridgeman-Canary-Labourie-Sambarino.
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Part 2: Dynamical zeta functions

Consider τ(z) = log |h′(z)|. If z ∈ J is a periodic point of period n,
write τn(z) =

∑n−1
j=1 τ(hj(z)).

The Ruelle/dynamical zeta function is defined as

ζ(s) = exp

 ∞∑
n=1

1

n

∑
hn(z)=z

e−sτn(z)

 , s ∈ C.
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Multipliers

If z ∈ Ĉ satisfies the condition hn(z) = z for some n ∈ N, then the
set ẑ := {z , h(z), h2(z), ..., hn−1(z)} is a periodic orbit of period n.

A periodic orbit ẑ = {z , h(z), h2(z), ..., hn−1(z)} is called primitive
if f n(z) = z and f m(z) 6= z for any 1 ≤ m < n.

Let P be the set of primitive periodic orbit.

If ẑ ∈ P, then the quantity

λ(ẑ) := (hn)′(z)

is called the multiplier of ẑ .



Multipliers
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The Oh-Winter theorem: I

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree d ≥ 2 which is not
conjugate to a monomial z 7→ z±d . Then there exists η > 0 such
that

Nt := #{ẑ ∈ P : |λ(ẑ)| < t}
= Li(tδ) + O(tδ−η)

where δ is the Hausdorff dimension of the Julia set of h.

Here Li(x) =
∫ x

2
dt

log t ∼
x

log x as x →∞.
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The Oh-Winter theorem: II

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree at least 2 whose Julia
set is not contained in a circle in Ĉ. Then there exists η > 0 such
that for any ϕ ∈ C 4(S1),

∑
ẑ∈P:|λ(ẑ)|<t

ϕ(arg(λ(ẑ))) =

∫ 1

0
ϕ(e2πiθ)dθ · Li(tδ) + O(tδ−η)

where the implied constant depends only on the C 4-norm of ϕ.

In particular, if I ⊂ (−π, π], then

#{ẑ ∈ P : |λ(ẑ)| < t, arg(λ(ẑ)) ∈ I}
Nt

∼ |I |
2π

as t →∞, where |I | is the length of the interval I .
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Setup

Given K � 1, we divide the interval (−π, π] into K disjoint
intervals of equal length. Such intervals are of the form
[θ − π

K , θ + π
K ], θ ∈ (−π, π].

Study the existence of multiplier angles Arg(λ(ẑ)) falling into each
such interval subject to the constraint |λ(ẑ)| < t for some fixed
t � 1.
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Theorem 2

Theorem (H.-Nie)

Let h ∈ C(z) be a hyperbolic rational map of degree at least 2.
Suppose that J(h) is not contained in a circle in Ĉ. For any given
K � 1, nearly every interval

[
θ − π

K , θ + π
K

]
contains at least one

multiplier angle Arg(λ(ẑ)) with

|λ(ẑ)| ≤ K
7

2α ,

where α = min
{
δ
2 , 2η

}
, and δ and η are as in Oh-Winter’s

theorem.



Thank you!
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