Ergodic methods in complex dynamics

Yan Mary He

University of Oklahoma Joint work with Hongming Nie

Connections Workshop Complex Dynamics Program, MSRI February 4, 2022

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Rational maps in one complex variable

Let $\hat{\mathbb{C}}$ be the Riemann sphere. A rational map $h : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a map of $\hat{\mathbb{C}}$ of the form

$$h(z)=\frac{p(z)}{q(z)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where p(z) and q(z) are polynomials in one complex variable.

Rational maps in one complex variable

Let $\hat{\mathbb{C}}$ be the Riemann sphere. A *rational map* $h : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is a map of $\hat{\mathbb{C}}$ of the form

$$h(z) = \frac{p(z)}{q(z)}$$

where p(z) and q(z) are polynomials in one complex variable.

The *degree* of a rational map h(z) = p(z)/q(z), where p(z) and q(z) have no common factors, is the maximum of the degrees of p(z) and q(z).

Degree 1 rational maps are Mobius transformations.

Therefore, we consider rational maps of degree at least 2.

Hyperbolic rational maps

A rational map $h: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is *hyperbolic* if there exists a constant C > 1 and a smooth conformal metric ρ on $\hat{\mathbb{C}}$ such that

 $||h'(z)||_{\rho} > C > 1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for any $z \in J(h)$. Here J(h) denotes the Julia set of h.

Hyperbolic rational maps

A rational map $h: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is *hyperbolic* if there exists a constant C > 1 and a smooth conformal metric ρ on $\hat{\mathbb{C}}$ such that

 $||h'(z)||_{\rho} > C > 1$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

for any $z \in J(h)$. Here J(h) denotes the Julia set of h.

The dynamical system $h: J(h) \rightarrow J(h)$ is uniformly hyperbolic.

For any $\varepsilon > 0$, there is a Markov partition $P_1, ..., P_k$ for J = J(h)where P_j are compact subsets of J of diameter at most ε such that • $J = \bigcup_{j=1}^k P_j$;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

For any $\varepsilon > 0$, there is a Markov partition $P_1, ..., P_k$ for J = J(h)where P_j are compact subsets of J of diameter at most ε such that • $J = \bigcup_{j=1}^k P_j$;

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

•
$$P_j = \overline{int_J P_j}$$
 for $j = 1, ..., n$;

For any $\varepsilon > 0$, there is a Markov partition $P_1, ..., P_k$ for J = J(h)where P_j are compact subsets of J of diameter at most ε such that • $J = \bigcup_{j=1}^k P_j$;

•
$$P_j = \overline{int_J P_j}$$
 for $j = 1, ..., n$;

•
$$int_J P_j \cap int_J P_i = \emptyset$$
 if $i \neq j$;

For any $\varepsilon > 0$, there is a Markov partition $P_1, ..., P_k$ for J = J(h)where P_j are compact subsets of J of diameter at most ε such that • $J = \bigcup_{j=1}^k P_j$;

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

•
$$P_j = \overline{int_J P_j}$$
 for $j = 1, ..., n_j$

•
$$int_J P_j \cap int_J P_i = \emptyset$$
 if $i \neq j$;

• for each j, $f(P_j)$ is a union of P_i .

Subshift of finite type

Let A be a $k \times k$ matrix with

$$egin{aligned} \mathsf{A}_{ij} = egin{cases} 1 & ext{if} \; \mathsf{P}_j \subset f(\mathsf{P}_i) \ 0 & ext{otherwise} \end{aligned}$$

٠

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Note that A is aperiodic (topologically mixing), i.e. there exists $n \in \mathbb{N}$ such that $(A^n)_{ij} > 0$ for all i, j = 1, .., k.

Subshift of finite type

Let A be a $k \times k$ matrix with

$$egin{aligned} \mathsf{A}_{ij} = egin{cases} 1 & ext{if} & \mathsf{P}_j \subset f(\mathsf{P}_i) \ 0 & ext{otherwise} \end{aligned}$$

Note that A is aperiodic (topologically mixing), i.e. there exists $n \in \mathbb{N}$ such that $(A^n)_{ij} > 0$ for all i, j = 1, ..., k.

The matrix A defines a (one-sided) subshift of finite type (SFT)

$$\Sigma_{\mathcal{A}} = \{(i_0, i_1, \cdots) \mid i_j \in \{1, \cdots, k\}, \mathcal{A}_{i_j, i_{j+1}} = 1\},$$

A D N A 目 N A E N A E N A B N A C N

Define the shift $\sigma: \Sigma_A \to \Sigma_A$ by $\sigma(i_0, i_1, \cdots) = (i_1, i_2, \cdots)$

Subshift of finite type

Let A be a $k \times k$ matrix with

$$egin{aligned} \mathsf{A}_{ij} = egin{cases} 1 & ext{if} & \mathsf{P}_j \subset f(\mathsf{P}_i) \ 0 & ext{otherwise} \end{aligned}$$

Note that A is aperiodic (topologically mixing), i.e. there exists $n \in \mathbb{N}$ such that $(A^n)_{ij} > 0$ for all i, j = 1, ..., k.

The matrix A defines a (one-sided) subshift of finite type (SFT)

$$\Sigma_A = \{(i_0, i_1, \cdots) \mid i_j \in \{1, \cdots, k\}, A_{i_j, i_{j+1}} = 1\}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Define the shift $\sigma: \Sigma_A \to \Sigma_A$ by $\sigma(i_0, i_1, \cdots) = (i_1, i_2, \cdots)$

Metric on Σ_A : $d(\underline{i}, \underline{j}) = 2^{-N}$ where $N = \min\{n \mid i_n \neq j_n\}$.

Part 1: Pressure

Let $\phi: \Sigma \to \mathbb{R}$ be a continuous function. The *pressure* $P(\phi)$ of ϕ is defined by

$$P(\phi) = \sup_{m \in \mathcal{M}_{\sigma}} \left(h_m(\sigma) + \int_{\Sigma} \phi dm \right)$$

where $h_m(\sigma)$ is the measure-theoretic entropy of σ with respect to the measure m and \mathcal{M}_{σ} be the set of σ -invariant probability measures on Σ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Part 1: Pressure

Let $\phi: \Sigma \to \mathbb{R}$ be a continuous function. The *pressure* $P(\phi)$ of ϕ is defined by

$$\mathcal{P}(\phi) = \sup_{m \in \mathcal{M}_{\sigma}} \left(h_m(\sigma) + \int_{\Sigma} \phi dm \right)$$

where $h_m(\sigma)$ is the measure-theoretic entropy of σ with respect to the measure m and \mathcal{M}_{σ} be the set of σ -invariant probability measures on Σ .

A measure $m(\phi) \in \mathcal{M}_{\sigma}$ is called an *equilibrium state* of ϕ if $P(\phi) = h_{m(\phi)}(\sigma) + \int_{\Sigma} \phi dm(\phi)$.

Pressure metric

We say that a function $\phi : \Sigma \to \mathbb{R}$ is *Hölder continuous* if it is α -Hölder continuous for some $\alpha \in (0, 1]$. (There exists a constant C > 0 and $\alpha \in (0, 1]$ such that for all $\underline{i}, \underline{j} \in \Sigma$, we have

 $|\phi(\underline{i}) - \phi(\underline{j})| \leq Cd(\underline{i},\underline{j})^{\alpha}.)$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Pressure metric

We say that a function $\phi : \Sigma \to \mathbb{R}$ is *Hölder continuous* if it is α -Hölder continuous for some $\alpha \in (0, 1]$. (There exists a constant C > 0 and $\alpha \in (0, 1]$ such that for all $\underline{i}, \underline{j} \in \Sigma$, we have

$$|\phi(\underline{i}) - \phi(\underline{j})| \leq Cd(\underline{i},\underline{j})^{\alpha}.)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $\mathcal{Z}(\Sigma)$ be the space of pressure zero, Hölder continuous functions on Σ up to coboundaries.

Pressure metric

We say that a function $\phi : \Sigma \to \mathbb{R}$ is *Hölder continuous* if it is α -Hölder continuous for some $\alpha \in (0, 1]$. (There exists a constant C > 0 and $\alpha \in (0, 1]$ such that for all $\underline{i}, \underline{j} \in \Sigma$, we have

$$|\phi(\underline{i}) - \phi(\underline{j})| \leq Cd(\underline{i},\underline{j})^{\alpha}.)$$

Let $\mathcal{Z}(\Sigma)$ be the space of pressure zero, Hölder continuous functions on Σ up to coboundaries. Recall that two continuous functions ϕ_1 and ϕ_2 are *cohomologous* if there exists a continuous function $h: \Sigma \to \mathbb{R}$ such that $\phi_1 - \phi_2 = h \circ \sigma - h$. A continuous function $\phi: \Sigma \to \mathbb{R}$ is a coboundary if it is cohomologous to the zero function.

Pressure metric cont'd

If $[f] \in \mathcal{Z}(\Sigma)$ and f has an equilibrium state m, then the tangent space at [f] is given by

$$\mathcal{T}_{[f]}\mathcal{Z}(\Sigma)=\{g\mid \int gdm=0\}/ ext{coboundaries}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Pressure metric cont'd

If $[f] \in \mathcal{Z}(\Sigma)$ and f has an equilibrium state m, then the tangent space at [f] is given by

$$\mathcal{T}_{[f]}\mathcal{Z}(\Sigma)=\{g\mid \int gdm=0\}/ ext{coboundaries}.$$

The *pressure metric* $|| \cdot ||_P$ on $T_{[f]}\mathcal{Z}(\Sigma)$ is defined by

$$||[g]||_P^2 = rac{\operatorname{var}(g,m)}{-\int fdm}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

where
$$var(g, m) = \frac{d^2}{dt^2}\Big|_{t=0} P(f + tg).$$

Т

Let ${\mathcal H}$ be a hyperbolic component of the Mandelbrot set.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let \mathcal{H} be a hyperbolic component of the Mandelbrot set. For each \mathcal{H} , there is a SFT Σ parametrizing the (topological) dynamics $f_c: J_c \to J_c$.

Let \mathcal{H} be a hyperbolic component of the Mandelbrot set. For each \mathcal{H} , there is a SFT Σ parametrizing the (topological) dynamics $f_c: J_c \to J_c$.

Consider the *thermodynamic mapping*

$$egin{array}{ll} \mathcal{E}: & \mathcal{H}
ightarrow \mathcal{Z}(\Sigma) \ & c \mapsto \left[-\delta(c) \log |f_c'|
ight] \end{array}$$

where $\delta : \mathcal{H} \to \mathbb{R}$ is the Hausdorff dimension function, $\delta(c) =$ Hausdorff dimension of the Julia set J_c .

Let \mathcal{H} be a hyperbolic component of the Mandelbrot set. For each \mathcal{H} , there is a SFT Σ parametrizing the (topological) dynamics $f_c: J_c \to J_c$.

Consider the *thermodynamic mapping*

$$egin{aligned} \mathcal{E}: & \mathcal{H} o \mathcal{Z}(\Sigma) \ & c \mapsto \left[-\delta(c) \log |f_c'|
ight] \end{aligned}$$

where $\delta : \mathcal{H} \to \mathbb{R}$ is the Hausdorff dimension function, $\delta(c) =$ Hausdorff dimension of the Julia set J_c .

We can pull-back the pressure metric on $T_{[-\delta(c)\log |f'_c|]}\mathcal{Z}(\Sigma)$ by \mathcal{E} to $T_c\mathcal{H}$. Namely, if c(t) is a path in \mathcal{H} with c(0) = c, then $v = \frac{d}{dt}|_{t=0}c(t) \in T_c\mathcal{H}$. Then

$$||\mathbf{v}||_{\mathcal{P}} := ||\frac{d}{dt}|_{t=0} \mathcal{E}(c(t))||_{\mathcal{P}}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 1

Theorem (H.-Nie)

We construct a Riemannian metric on a hyperbolic component \mathcal{H} of the Mandelbrot set which is conformal equivalent to the (pull-back of the) pressure metric on \mathcal{H} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem 1

Theorem (H.-Nie)

We construct a Riemannian metric on a hyperbolic component \mathcal{H} of the Mandelbrot set which is conformal equivalent to the (pull-back of the) pressure metric on \mathcal{H} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Related work: Bridgeman-Taylor, McMullen, Pollicott-Sharp, Bridgeman-Canary-Labourie-Sambarino.

Part 2: Dynamical zeta functions

Consider $\tau(z) = \log |h'(z)|$. If $z \in J$ is a periodic point of period *n*, write $\tau_n(z) = \sum_{j=1}^{n-1} \tau(h^j(z))$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Part 2: Dynamical zeta functions

Consider $\tau(z) = \log |h'(z)|$. If $z \in J$ is a periodic point of period *n*, write $\tau_n(z) = \sum_{j=1}^{n-1} \tau(h^j(z))$.

The Ruelle/dynamical zeta function is defined as

$$\zeta(s) = \exp\left(\sum_{n=1}^\infty rac{1}{n} \sum_{h^n(z)=z} e^{-s au_n(z)}
ight), s\in\mathbb{C}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

If $z \in \hat{\mathbb{C}}$ satisfies the condition $h^n(z) = z$ for some $n \in \mathbb{N}$, then the set $\hat{z} := \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is a *periodic orbit of period n*.

If $z \in \hat{\mathbb{C}}$ satisfies the condition $h^n(z) = z$ for some $n \in \mathbb{N}$, then the set $\hat{z} := \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is a *periodic orbit of period n*.

A periodic orbit $\hat{z} = \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is called *primitive* if $f^n(z) = z$ and $f^m(z) \neq z$ for any $1 \leq m < n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

If $z \in \hat{\mathbb{C}}$ satisfies the condition $h^n(z) = z$ for some $n \in \mathbb{N}$, then the set $\hat{z} := \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is a *periodic orbit of period n*.

A periodic orbit $\hat{z} = \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is called *primitive* if $f^n(z) = z$ and $f^m(z) \neq z$ for any $1 \leq m < n$.

Let \mathcal{P} be the set of primitive periodic orbit.

If $z \in \hat{\mathbb{C}}$ satisfies the condition $h^n(z) = z$ for some $n \in \mathbb{N}$, then the set $\hat{z} := \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is a *periodic orbit of period n*.

A periodic orbit $\hat{z} = \{z, h(z), h^2(z), ..., h^{n-1}(z)\}$ is called *primitive* if $f^n(z) = z$ and $f^m(z) \neq z$ for any $1 \leq m < n$.

Let \mathcal{P} be the set of primitive periodic orbit.

If $\hat{z} \in \mathcal{P}$, then the quantity

 $\lambda(\hat{z}) := (h^n)'(z)$

A D N A 目 N A E N A E N A B N A C N

is called the *multiplier* of \hat{z} .

The Oh-Winter theorem: I

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree $d \ge 2$ which is not conjugate to a monomial $z \mapsto z^{\pm d}$. Then there exists $\eta > 0$ such that

$$egin{aligned} &\mathcal{N}_t := \#\{\hat{z} \in \mathcal{P}: |\lambda(\hat{z})| < t\} \ &= Li(t^\delta) + O(t^{\delta - \eta}) \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where δ is the Hausdorff dimension of the Julia set of h.

The Oh-Winter theorem: I

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree $d \ge 2$ which is not conjugate to a monomial $z \mapsto z^{\pm d}$. Then there exists $\eta > 0$ such that

$$egin{aligned} &\mathcal{N}_t := \#\{\hat{z} \in \mathcal{P} : |\lambda(\hat{z})| < t\} \ &= Li(t^\delta) + O(t^{\delta - \eta}) \end{aligned}$$

where δ is the Hausdorff dimension of the Julia set of h.

Here $Li(x) = \int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x}$ as $x \to \infty$.

The Oh-Winter theorem: I

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree $d \ge 2$ which is not conjugate to a monomial $z \mapsto z^{\pm d}$. Then there exists $\eta > 0$ such that

$$egin{aligned} &\mathcal{N}_t := \#\{\hat{z} \in \mathcal{P} : |\lambda(\hat{z})| < t\} \ &= Li(t^\delta) + O(t^{\delta - \eta}) \end{aligned}$$

where δ is the Hausdorff dimension of the Julia set of h.

Here $Li(x) = \int_2^x \frac{dt}{\log t} \sim \frac{x}{\log x}$ as $x \to \infty$.

The Oh-Winter theorem: II

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree at least 2 whose Julia set is not contained in a circle in $\hat{\mathbb{C}}$. Then there exists $\eta > 0$ such that for any $\varphi \in C^4(\mathbb{S}^1)$,

$$\sum_{\hat{z}\in\mathcal{P}:|\lambda(\hat{z})|< t} \varphi(\arg(\lambda(\hat{z}))) = \int_0^1 \varphi(e^{2\pi i\theta}) d\theta \cdot Li(t^{\delta}) + O(t^{\delta-\eta})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where the implied constant depends only on the C^4 -norm of φ .

The Oh-Winter theorem: II

Theorem (Oh-Winter, 2017)

Let h be a hyperbolic rational map of degree at least 2 whose Julia set is not contained in a circle in $\hat{\mathbb{C}}$. Then there exists $\eta > 0$ such that for any $\varphi \in C^4(\mathbb{S}^1)$,

$$\sum_{\hat{z}\in\mathcal{P}:|\lambda(\hat{z})|< t} \varphi(\arg(\lambda(\hat{z}))) = \int_0^1 \varphi(e^{2\pi i\theta}) d\theta \cdot Li(t^{\delta}) + O(t^{\delta-\eta})$$

where the implied constant depends only on the C^4 -norm of φ .

In particular, if $I \subset (-\pi, \pi]$, then

$$\frac{\#\{\hat{z} \in \mathcal{P} : |\lambda(\hat{z})| < t, \arg(\lambda(\hat{z})) \in I\}}{N_t} \sim \frac{|I|}{2\pi}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

as $t \to \infty$, where |I| is the length of the interval I.

Setup

Given $K \gg 1$, we divide the interval $(-\pi, \pi]$ into K disjoint intervals of equal length. Such intervals are of the form $[\theta - \frac{\pi}{K}, \theta + \frac{\pi}{K}], \theta \in (-\pi, \pi].$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Setup

Given $K \gg 1$, we divide the interval $(-\pi, \pi]$ into K disjoint intervals of equal length. Such intervals are of the form $[\theta - \frac{\pi}{K}, \theta + \frac{\pi}{K}], \theta \in (-\pi, \pi].$

Study the existence of multiplier angles $\operatorname{Arg}(\lambda(\hat{z}))$ falling into each such interval subject to the constraint $|\lambda(\hat{z})| < t$ for some fixed $t \gg 1$.

Setup

Given $K \gg 1$, we divide the interval $(-\pi, \pi]$ into K disjoint intervals of equal length. Such intervals are of the form $[\theta - \frac{\pi}{K}, \theta + \frac{\pi}{K}], \theta \in (-\pi, \pi].$

Study the existence of multiplier angles $\operatorname{Arg}(\lambda(\hat{z}))$ falling into each such interval subject to the constraint $|\lambda(\hat{z})| < t$ for some fixed $t \gg 1$.

Theorem 2

Theorem (H.-Nie)

Let $h \in \mathbb{C}(z)$ be a hyperbolic rational map of degree at least 2. Suppose that J(h) is not contained in a circle in $\widehat{\mathbb{C}}$. For any given $K \gg 1$, nearly every interval $\left[\theta - \frac{\pi}{K}, \theta + \frac{\pi}{K}\right]$ contains at least one multiplier angle $\operatorname{Arg}(\lambda(\hat{z}))$ with

$$|\lambda(\hat{z})| \leq K^{\frac{7}{2\alpha}},$$

where $\alpha = \min \left\{ \frac{\delta}{2}, 2\eta \right\}$, and δ and η are as in Oh-Winter's theorem.

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで