APPROXIMATION THEORY IN TRANSCENDENTAL DYNAMICS

Vasiliki Evdoridou (The Open University and MSRI)

David Martí-Pete (University of Liverpool)

- 1. Introduction to approximation theory (David)
- 2. Early applications to transcendental dynamics (Vasiliki)
- 3. Constructing wandering domains with specific internal dynamics (Vasiliki)
- 4. Constructing wandering sets of entire functions (David)

Baker domain

 $f(z) = z + 1 + e^{-z}$

Wandering domain

$$f(z) = z + \sin z + 2\pi$$

1. Infinite products

$$f(z) = cz^2 \prod_{n=1}^{\infty} \left(1 + \frac{z}{a_n} \right)$$

- ▶ Baker (1976): transcendental entire function with a wandering domain
- ► Sixsmith (2012): transcendental entire function with a fast escaping simply connected wandering domain and no multiply connected wandering domains
- ► Bishop (2018): transcendental entire function with a Julia set of Hausdorff dimension 1

2. Approximation theory

- ▶ Eremenko and Lyubich (1987): transcendental entire functions with
 - (i) an oscillating wandering domain
 - (ii) a univalent Baker domain
- ► Rempe, Rippon and Stallard (2010): transcendental entire function with a Devaney hair that is not fast escaping
- ► Boc Thaler (2021): every bounded regular simply connected domain with a connected complement is a wandering domain of some transcendental entire function

3. Quasiconformal surgery

$$f = \phi \circ g \circ \phi^{-1}$$
 (dynamical) or $f = g \circ \phi^{-1}$ (non-dynamical)

- ► Fagella and Peter (2012): every configuration of Herman rings of a rational function occurs for a transcendental *meromorphic* function
- ▶ Bishop (2015): transcendental entire function with a bounded set of singular values and a wandering domain (using quasiconformal folding)
- ▶ Martí-Pete and Shishikura (2020): transcendental entire function of order 1/2 with a bounded set of singular values and a wandering domain

4. Cauchy integrals

$$h(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{g(\zeta)}{\zeta - z} \, d\zeta$$

- ► **Stallard** (1991): transcendental entire functions with a Julia set of Hausdorff dimension arbitrarily close to 1
- ▶ Rottenfußer, Rückert, Rempe and Schleicher (2011): transcendental entire function such that every path-connected component of the Julia set is a singleton (a counterexample to the strong Eremenko conjecture)
- ► Rempe (2014): a hyperbolic transcendental entire function of finite order such that its hyperbolic dimension equals 2