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Bootstrapping to optimal exponential decay

Gaiotto-Moore-Neitzke’s Conjecture (Schematically)

Pick a point u ∈ B ' C and let |u| = r .

gL2 − gsf =
∑

γ∈H1(Σu ;Z)

Ω(γ, u)e−`(γ,u)
√
r .

The first correction is Ω(γ0, u) = 8 and `(γ0, u) = 2
√

2
Imτ .

Theorem [F-Mazzeo-Swoboda-Weiss]

Let M be a (strongly-parabolic) SU(2) Hitchin moduli space for the

four-punctured sphere. The rate of exponential decay for the Hitchin

moduli space is as Gaiotto-Moore-Neitzke conjecture:

gL2 − gsf = O(e−2
√

2
Imτ

√
r ).

(M, gL2 ) is an ALG metric asymptotic to the model metric gsf .
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Bootstrapping to optimal exponential decay

LeBrun gave a framework to describe all Ricci-flat Kähler metrics of

complex-dimension two with a holomorphic circle action in terms of two

functions u,w .

Generalized Gibbons-Hawking Ansatz specialized to our case:

Consider a hyperkähler metric on T 2
x,y × R+

r × S1
θ with holomorphic

circle action. The hyperkähler metric is

gL2 = euur (dx
2 + dy2) + urdr

2 + u−1
r dθ2

where u : T 2
x,y × R+

r → R solves

∆T 2u + ∂2
r e

u = 0.

The semiflat metric gsf corresponds to usf = log r .

Goal

Show that u − usf has conjectured rate of exponential decay.
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Bootstrapping to optimal exponential decay

Let v = u − usf . Then,

∆T v + r∂2
r v + 2∂rv︸ ︷︷ ︸

Lv

= −ev r(∂rv)2 − (ev − 1)
(
r∂2

r v + 2∂rv
)︸ ︷︷ ︸

Q(v ,∂r v ,∂rr v)

,

Observation #1: The first exponentially-decaying function in ker L

decays like e−2λT
√
r , where λ2

T is the first positive eigenvalue of −∆T 2 .

In the torus T 2
τ with its semiflat metric λ2

T = 2
Im τ .

Observation #2: If v ∼ e−ε
√
r , then Q(v , ∂rv , ∂rrv) ∼ e−2ε

√
r .

Solving the non-homogeneous problem Lv = f for f ∼ e−2ε
√
r , we find

v ∼ e−2 min(ε,λT )
√
r .

Conclusion: v ∼ e−2λT
√
r where λT =

√
2

Im τ
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Two hyperkähler metrics on the regular locus M′

• gL2 Hitchin’s L2 hyperkähler metric—uses h

• gsf semiflat metric—from integrable system structure

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

gL2 − gsf = Ωe−`t + faster decaying

Progress:
• Mazzeo-Swoboda-Weiss-Witt proved polynomial decay for

SU(2)-Hitchin moduli space. [’17]

• Dumas-Neitzke proved exponential∗ decay in SU(2)-Hitchin section

with its tangent space. [’18]

• F proved exponential∗ decay for SU(n)-Hitchin moduli space. [’18]

• F-Mazzeo-Swoboda-Weiss proved exponential∗ decay for SU(2)

parabolic Hitchin moduli space. (Higgs field has simple poles along

divisor D ⊂ C .) [’20]
∗: Rate of exponential decay is not optimal.
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Main Theorem

Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix (∂̄E , ϕ) ∈M′ and a Higgs bundle variation (η̇, ϕ̇) ∈ T(∂̄E ,ϕ)M.

Along the ray T(∂̄E ,tϕ,ht)
M′, as t →∞,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = O(e−εt)

As t →∞, FD(∂̄E ,ht)
concentrates along branch divisor Z ⊂ C .

The limiting metric h∞ is flat with singularities along Z .

The main difficulty is dealing with the contributions to the integral

‖·‖gL2
=
∫
C
· · · from infinitesimal neighborhoods around Z .
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Idea #1: Semiflat metric is an L2-metric

Hitchin’s hyperkähler metric gL2 on T(∂̄E ,tϕ)M is

‖(η̇, tϕ̇, ν̇t)‖2
gL2

= 2

∫
C

∣∣η̇ − ∂̄E ν̇t∣∣2ht + t2 |ϕ̇+ [ν̇t , ϕ]|2ht

where the metric variation ν̇t of ht is the unique solution of

∂htE ∂̄E ν̇t − ∂
h
E η̇ − t2 [ϕ∗ht , ϕ̇+ [ν̇t , ϕ]] = 0.

The semiflat metric, from the integrable system structure, on T(∂̄E ,tϕ)M
is an L2-metric defined using h∞.

‖(η̇, tϕ̇, ν̇∞)‖2
gsf = 2

∫
C

∣∣η̇ − ∂̄E ν̇∞∣∣2h∞ + t2 |ϕ̇+ [ν̇∞, ϕ]|2h∞ ,

where the metric variation ν̇∞ of h∞ is independent of t and solves

∂htE ∂̄E ν̇∞ − ∂
h
E η̇ = 0 [ϕ∗h∞ , ϕ̇+ [ν̇∞, ϕ]] = 0. 7



Idea #2: Approximate solutions

Desingularize h∞ (singular at Z ) by gluing in solutions hmodel
t of

Hitchin’s equations on neighborhoods of p ∈ Z .  happroxt .

∂̄E = ∂̄ tϕ = t

(
0 1

z 0

)
dz

h∞ =

(
|z | 12 0

0 |z |− 1
2

)
hmodel
t =

(
|z | 12 eu(t2/3|z|) 0

0 |z |− 1
2 e−u(t2/3|z|)

)

happroxt =

(
|z | 12 eχu(t2/3|z|) 0

0 |z |− 1
2 e−χu(t2/3|z|)

)
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Idea #2: Approximate solutions

Desingularize h∞ (singular at Z ) by gluing in solutions hmodel
t of

Hitchin’s equations on neighborhoods of p ∈ Z .  happroxt .

Perturb happroxt to an actual solution ht using a contracting mapping

argument.

(Difficulty: Showing the first eigenvalue of Lt : H2 → L2 is ≥ Ct−2 )

Theorem

ht(v ,w) = happt (eγtv , eγtw) for ‖γt‖H2 ≤ e−εt .
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Idea #2: Approximate solutions

Define an non-hyperkähler L2-metric gapp on M′ using variations of the

metric happt .

‖(η̇, tϕ̇, ν̇t)‖2
gL2

= 2

∫
C

∣∣η̇ − ∂̄E ν̇t∣∣2ht + t2 |ϕ̇+ [ν̇t , ϕ]|2ht

‖(η̇, tϕ̇, ν̇∞)‖2
gsf = 2

∫
C

∣∣η̇ − ∂̄E ν̇∞∣∣2h∞ + t2 |ϕ̇+ [ν̇∞, ϕ]|2h∞

‖(η̇, tϕ̇, ν̇appt )‖2
gapp

= 2

∫
C

∣∣η̇ − ∂̄E ν̇appt

∣∣2
happ
t

+ t2 |ϕ̇+ [ν̇appt , ϕ]|2happt
.

Then, break the gL2 − gsf into two pieces:(
‖(η̇, tϕ̇, ν̇t)‖2

gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp

)
+
(
‖(η̇, tϕ̇, ν̇appt )‖2

gapp−‖(η̇, tϕ̇, ν̇∞)‖2
gsf

)
Corollary

Since ht(v ,w) = happt (eγtv , eγtw) for ‖γt‖H2 ≤ e−εt , as t →∞ along

the ray T(∂̄E ,tϕ)M,

‖(η̇, tϕ̇, ν̇t)‖2
gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp
= O(e−εt).
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Idea #2: Approximate solutions

Our goal is to show that the following sum is O(e−εt):(
‖(η̇, tϕ̇, ν̇t)‖2

gL2
−‖(η̇, tϕ̇, ν̇appt )‖2

gapp

)
︸ ︷︷ ︸

O(e−εt)

+
(
‖(η̇, tϕ̇, ν̇appt )‖2

gapp−‖(η̇, tϕ̇, ν̇∞)‖2
gsf

)

It remains to show that ‖(η̇, tϕ̇, ν̇appt )‖2
gapp
− ‖(η̇, tϕ̇, ν̇∞)‖2

gsf = O(e−εt).

Since happt differs from h∞ only on disks around p ∈ Z , the difference

gapp − gsf localizes (up to exponentially-decaying errors) to disks around

p ∈ Z .
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Idea #3: Holomorphic variations

When Mazzeo-Swoboda-Weiss-Witt proved that gL2 − gsf was at least

polynomially-decaying in t, all of their possible polynomial terms came

from infinitesimal variations in which the branch points move.

Dumas-Neitzke used a family of biholomorphic maps on local disks

(originally defined by Hubbard-Masur) to match the changing location of

the branch points. This uses subtle geometry of Hitchin moduli space.

E.g. for SU(2), conformal invariance.

Remarkably, this can be generalized off of the Hitchin section and from

SU(2) to SU(n).

Theorem [F, F-Mazzeo-Swoboda-Weiss]

‖(η̇, tϕ̇, ν̇appt )‖2
gapp − ‖(η̇, tϕ̇, ν̇∞)‖2

gsf = O(e−εt)
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Main Theorem

Gaiotto-Moore-Neitzke’s Conjecture

Fix (∂̄E , ϕ) ∈M′. Along the ray T(∂̄E ,tϕ,ht)
M′,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = Ωe−`t + faster decaying.

Theorem [F, F-Mazzeo-Swoboda-Weiss]

Fix (∂̄E , ϕ) ∈M′ and a Higgs bundle variation (η̇, ϕ̇) ∈ T(∂̄E ,ϕ)M.

Along the ray T(∂̄E ,tϕ,ht)
M′, as t →∞,

‖(η̇, tϕ̇)‖2
gL2
− ‖(η̇, tϕ̇)‖2

gsf = O(e−εt).

Ideas:

#1 Semiflat metric is an L2-metric for h∞

#2 Build approximate solutions happroxt that are exponentially close to ht

#3 Use local biholomorphic flow to match the changing location of the

branch points.
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Thank you!
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