Introduction to Magnetic Monopoles

Chris Kottke

New College of Florida

MSRI Introductory Workshop: Analytic and Geometric Aspects of Gauge Theory, 2022

Motivation, basic properties, and examples

Motivation Basic properties Examples

Moduli space

Framing Metric on moduli space Moduli spaces as hyperKähler manifolds

Equivalent descriptions

Twistor theory Nahm data Rational maps

Open problems and current research

Sen Conjecture Higher rank gauge groups Monopoles on other 3-manifolds Magnetic bag conjecture

References

• Consider a SU(2) connection on \mathbb{C}^2 bundle $E \to \mathbb{R}^4$ of the form

$$\mathbb{A} = \Phi \, dx_0 + A_1 \, dx_1 + A_2 \, dx_2 + A_3 \, dx_3,$$

with Φ , A_1 , A_2 , $A_3 \in \Gamma(End(E))$ independent of x_0 .

▶ The anti self dual equation $-F_{\mathbb{A}} = \star_4 F_{\mathbb{A}}$ reduces to the *Bogomolny* equation

$$d_A \Phi = \star_3 F_A \tag{1}$$

on \mathbb{R}^3 with coordinates (x_1, x_2, x_3) , for the connection $A = A_1 dx_1 + A_2 dx_2 + A_3 dx_3$ and "Higgs field" $\Phi \in \Gamma(End(E))$.

- Magnetic monopoles are solutions of (1) up to gauge equivalence.
- They are local minimizers of the Yang-Mills-Higgs action/energy

$$YMH(\Phi, A) = \frac{1}{2} \int_{\mathbb{R}^3} \|F_A\|^2 + \|d_A\Phi\|^2$$

- ► In quantum Yang-Mills, particles associated to A are massless. Mass arises from terms like m²Q(A) in the action where Q is quadratic, but such terms are not gauge invariant.
- The Higgs mechanism is the introduction of a scalar (Higgs) field Φ with action of the form

$$\frac{1}{2} \int_{\mathbb{R}^{3+1}} \|F_A\|^2 + \|D_A \Phi\|^2 + V(\Phi)$$
 (2)

with V a potential, e.g., of the form $V(\Phi) = \frac{1}{4}\lambda(1 - |\Phi|^2)^2$.

- Effective quadratic terms in A arise through coupling to Φ near the minima of the potential.
- The Bogomolny-Prasad-Sommerfield (BPS) limit λ → 0, recovers the action (in Euclidean case) for monopoles.
- Monopoles are static (time independent) solutions to the dynamical (3+1 dimensional) Euler-Lagrange equations for (2) with minimal energy.

Basic properties: mass and charge

- Solutions on compact 3 manifolds are trivial: *F_A = d_AΦ = 0, consisting of flat SU(2) connections (if Φ ≡ 0) or flat U(1) connections (if Φ ≡ 0).
- Not conformally invariant, so solutions on ℝ³ not obtained from compactification to S³, and require attention to boundary conditions "at infinity", as r → +∞. Also, there is no "bubbling" as in 4D Y-M.
- Finite energy $\frac{1}{2} \int \|F_A\|^2 + \|d_A \Phi\|^2 < \infty$ on \mathbb{R}^3 implies that

$$\lim_{r\to\infty} |\Phi| = m$$

exists; this is the **mass**, which we will typically normalize to 1.

Then

$$\lim_{r\to\infty}\Phi:S^2_\infty\to S^2\subset\mathfrak{su}(2)\cong\mathbb{R}^3$$

has a homotopy class $k \in \mathbb{Z}$; this is the **charge**. Equivalently, the trivial bundle *E* splits as $L \oplus L^{-1}$ over S^2_{∞} into (eigen) line bundles of Φ , with $c_1(L) = k \in H^2(S^2_{\infty}; \mathbb{Z}) = \mathbb{Z}$.

Integration by parts gives

$$\frac{1}{2}\int \|F_{A}\|^{2} + \|d_{A}\Phi\|^{2} = \int \|\star F_{A} - d_{A}\Phi\|^{2} \pm 4\pi k$$

So for $k \ge 0$ minimizers (on finite energy components) are given by $*F_A = d_A \Phi$.

- In physics parlance, where Φ ≠ 0 (in particular at infinity), the SU(2) symmetry is "broken" to U(1) (the centralizer of Φ).
- Field components along Φ approximate a U(1) monopole with charge k, and field components along Φ[⊥] decay exponentially.
- The U(1) monpole equations ★F_A = dφ ∈ Ω¹(ℝ³) describe a magnetic field B = ★F_A generated by a scalar potential φ.
- Dirac found solutions on ℝ³ \ 0 with φ = k/r, with A a connection the line bundle of degree k. The charge k is therefore quantized for topological reasons, even in the classical theory.
- While U(1) monopoles have singularities and infinite energy, SU(2) monopoles "look like" magnetic monopoles for r ≫ 1 yet have finite energy and smooth field configurations.

 Bogomolny, Prasad, and Sommerfield found an explicit solution of charge 1 of the form

$$\Phi = \sum_{j} \frac{i}{2} \left(\frac{1}{\tanh r} - \frac{1}{r} \right) \widehat{x}_{j} \sigma_{j}$$
$$A = \sum_{j,k,l} \frac{i}{2} \left(\frac{1}{\sinh r} - \frac{1}{r} \right) \epsilon_{jkl} \widehat{x}_{j} \sigma_{k} dx_{l}$$

where $\hat{x}_j = x_j/r$ and σ_j are Pauli matrices. Note $|\Phi| \le 1$ and Φ has a unique zero at the origin.

- Translation in \mathbb{R}^3 gives a family of solutions centered at any point.
- Gauge transformation by exp(tΦ) for t ∈ ℝ/2πZ gives an additional circle action, giving a family of solutions parameterized by ℝ³ × S¹
- ► Monopoles of charge k ≥ 2 are intractible to write down explicitly, though some special solutions (with various symmetries) can be well-described numerically, or as other equivalent objects (to come).

- While U(1) monopoles (satisfying a linear equation) may be superposed to obtain higher charge monopoles, the Bogomolny equation for SU(2) is nonlinear so superposition doesn't work.
- However, if the constituent monopoles are "widely separated", the nonlinearities are small and a gluing theorem of Taubes [20] shows that superpositions may be perturbed to solutions.
- ► This gives existence of charge k monopoles for all k ≥ 0, as widely separated charge 1 monopoles.
- Monopoles are "solitons", field configurations behaving roughly as particles, with the charge k as a particle number.
- The particle picture becomes invalid when the points become close to each other.

Pictures

▶ k = 2 and k = 3 "scattering" processes from [2] and [33]

Pictures

▶ Monopoles with platonic symmetries from [33]

Charges 3, 4, 5, and 7, respectively.

Moduli space

- The moduli space, M_k, of monopoles of charge k is the set of charge k solutions to the Bogomolny equations up to gauge equivalence.
- With A_k = {(A, Φ) : YMH(A, Φ) < ∞, [Φ]_{S²_∞} = k} the finite energy, charge k, component of the configuration space, G = Ω⁰(ℝ³; Aut(E)) the gauge group and and

$$\mathcal{B}: \mathcal{A}_k \to \Omega^1(\mathbb{R}^3; End(E)), \qquad \mathcal{B}(A, \Phi) = \star F_A - d_A \Phi,$$

the moduli space is the quotient

$$\mathcal{M}_k = \mathcal{B}^{-1}(0)/\mathcal{G}$$

- ▶ Parameter counting, and later a (nontrival) index theorem proved by Taubes shows that dim $M_k = 4k 1$.
- Deformations are unobstructed, so \mathcal{M}_k is smooth.
- *M_k* is also non-compact, not because of bubbling as in 4D Yang-Mills, but because of the region of the moduli space in which well-separated 1-monopoles may become arbitrarily far apart.

- To get a natural metric, an enlarged moduli space of "framed" monopoles is in order.
- A framing of a k-monopole is a choice of isomorphism E ≅ H^k ⊕ H^{-k} on S²_∞ where H is the fundamental line bundle on S² with its standard connection.
- A framed monopole is a solution of the form $(\Phi_0 + \phi, A_0 + a)$ where

$$\Phi_0 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \left(1 - \frac{k}{2r} \right)$$

and A_0 is associated to the standard connection on H^k with curvature $F_{A_0} = k \ Vol_{S^2}$, and $|(\phi, a)| = O(r^{-2})$.

- The framed moduli space M_k is the space of framed solutions modulo the set G₀ of gauge transformations which limit to the identity as r → ∞, preserving the framing.
- *M*_k → *M*_k is a circle bundle, with circle action given by the gauge transformations of the form exp(tΦ) (which are not in *G*₀). Thus dim(*M*_k) = 4k.

 L^2 metric on $\widetilde{\mathcal{M}}_{\mu}$

Infinitesimal variations are square integrable, thus T_(A,Φ) M_k identified with (φ, a) in L² such that

$$\begin{split} \star d_A a - d_A \phi + [\Phi, a] &= 0 & \text{ linearization of Bogomolny} \\ \star d_A \star a + [\Phi, \phi] &= 0 & \text{ Coulomb gauge} \end{split}$$

• The L^2 metric given by

$$gig((\phi, \mathsf{a}), (\psi, \mathsf{b})ig) = \int_{\mathbb{R}^3} (\phi, \psi) + (\mathsf{a}, \mathsf{b})$$

is Riemannian and complete by results of Taubes and Uhlenbeck.

- M₁ = ℝ³ × S¹ isometrically, and for k ≥ 2, M_k splits as a Riemannian product (ℝ³ × S¹) × M_k⁰, up to k-fold cover, where M_k⁰ is the reduced moduli space of centered monopoles. In the "widely separated 1-monopole" region, g is exponentially asymptotic to a model metric of Gibbons and Manton [13] by a result of Bielawski [3].
- $T\widetilde{\mathcal{M}}_k$ has a quaternionic action under the identification

 $\phi + a_1 dx_1 + a_2 dx_2 + a_3 dx_3 \quad \leftrightarrow \quad \phi + a_1 I + a_2 J + a_3 K$

Morever, the complex structures I, J, K are integrable and M
_k (and M⁰_k) is a hyperKähler manifold.

HyperKähler basics

- Recall a hyperKähler manifold M⁴ⁿ has 3 integrable complex structures (I, J, K) satisfying quaternionic relations and a Riemannian metric g such that each two form ω_● = g(·, ●·) is closed, for ∈ {I, J, K}.
- ► In fact, there is a 2-sphere of integrable complex structures, $\{aI + bJ + cK : a^2 + b^2 + c^2 = 1\}$.
- Equivalently, M^{4n} has holonomy group Sp(n), and in particular is Ricci flat (Calabi-Yau).
- ► To see that *M*_k is hyperKähler, follow Hitchin [17] to exhibit *M*_k as an infinite dimensional hyperKähler quotient

$$\widetilde{\mathcal{M}}_k = \widetilde{\mathcal{A}}_k / / / \mathcal{G}_0 = \mathcal{B}^{-1}(0) / \mathcal{G}_0$$

of the affine hyperKähler space $\widetilde{\mathcal{A}}_k \ni (\Phi, A) \leftrightarrow \Phi + A_1I + A_2J + A_3K$ by the gauge group, where

$$\mathcal{B}(\Phi, A) = \star F_A - d_A \Phi \in Lie(\mathcal{G}_0) \otimes Im \mathbb{H}$$

is the hyperKähler moment map with $(dx_1, dx_2, dx_3) \in Im \mathbb{H}$

• Instantons on \mathbb{R}^4 have equivalent descriptions:

Analogously, there are equivalent descriptions for monopoles:

- ► The twistor space for monopoles is the complex surface TCP¹, viewed as the space of oriented lines in R³.
- By a result of Hitchin [15] (based on a construction of Ward as extended by Corrigan and Goddard), Monopoles are equivalent to certain complex vector bundles with holomorphic sections on twistor space, or equivalently certain *spectral curves*, the zero sets of the holomorphic sections.
- The spectral curve for a monopole (Φ, A) consists of those lines in ℝ³ along which the ODE (∇_A − iΦ)s = 0 has L² solutions (decay at both ends).

Nahm data

Nahm data is a set of three $k \times k$ matrix-valued analytic functions T_1, T_2, T_3 on the interval (0, 2) satisfying Nahm's equations

$$\frac{d}{ds}T_i + \frac{1}{2}\sum \epsilon_{ijk}[T_j, T_k] = 0, \quad T_i^*(s) = -T_i(s), \quad T_i(2-s) = T_i(s)^T$$

with simple poles at s = 0, 2 with residues forming an irreducible representation of $\mathfrak{su}(2)$.

- ► Like the Bogomolny equation, Nahm's equations are a dimensional reduction of the instanton equations from R⁴ to R¹.
- ► The Nahm transform gives a bijection [16, 29] between O(k, C) gauge equivalence classes of such solutions and charge k monopoles. It is the seminal example of a more general Nahm transform [21], a "Fourier transform" between Yang-Mills objects on ℝ⁴/Λ and a dual (ℝ⁴)*/Λ*.
- The moduli space of Nahm data obtains a hyperKähler metric from a hyperKähler quotient construction, and the Nahm transform is an isometry [29].

A result of Donaldson [8] identifies Nahm data with the space R_k(ℂP¹) of degree k rational maps f : ℂP¹ → ℂP¹ such that f(∞) = 0, i.e. of the form

$$f(z) = \frac{p(z)}{q(z)} = \frac{a_{k-1}z^{k-1} + \dots + a_0}{z^k + b_{k-1}z^{k-1} + \dots + b_0}$$

where p(z) and q(z) are coprime.

- Hurtubise [19] described the direct connection between monopoles and rational maps in terms of the scattering map for the linear operator (∇_A − iΦ) along lines in ℝ³.
- Atiyah and Hitchin in [2] use this representation to get a remarkably complete understanding of the reduced 2-monopole space M₂⁰.

- Sen conjecture
- Higher rank gauge groups
- ▶ Monopoles on non- \mathbb{R}^3
- Magnetic bag conjecture

S-duality in SUSY QFT leads to a physical prediction for the L²-cohomology of the reduced moduli spaces M⁰_k (or rather their universal k-fold covers M⁰_k), known as Sen's Conjecture:

$$\mathscr{H}^{i}(\widehat{\mathcal{M}}_{k}^{0}) = egin{cases} \mathbb{C}^{|\mathbb{Z}_{k}^{*}|} & i = 2k-2 \\ 0 & ext{otherwise} \end{cases}$$

- Here *H*ⁱ denotes the space of *i* forms which are L² integrable with respect to the hyperKähler metric.
- By general results of Hitchin concerning L² cohomology of hyperKähler quotients, the vanishing outside of middle degree is known, and in [32] Segal and Selby computed Im (H[•]_c(Â⁰_k) → H[•](Â⁰_k)), which is consistent with the conjecture.
- Outstanding issue is to show that L² harmonic forms have appropriate decay, the subject of my ongoing work with Singer and Rochon.

- Singer and I [26, 12] construct a compactification of M⁰_k to a manifold with corners, the boundary hypersurfaces of which encode limiting configurations of widely separated monopole "clusters" of charges k_i where k = ∑ k_i.
- The metric has well-behaved asymptotics up to each hypersurface, and is an example of a "quasi-fibered boundary" (QFB) metric, generalizing the class of ALF metrics in the classification of 4d hyperKähler manifolds.
- Rochon and I developed tools [25] (a pseudodifferential operator calculus) for analysis on QFB manifolds, with some initial results on L² Hodge theory in this setting which include Sen for k = 3 [24].
- I expect similar considerations should apply to Hitchin systems, at least in simple cases.

- We can consider monopoles for compact gauge groups other than SU(2).
- The general rational map description is in Jarvis [22], Nahm data description by Hurtubise and Murray [18] and more recently Charbonneau and Nagy [6].
- Many questions about metrics on these moduli spaces are open.
- The mass and charge are replaced by elements $\mu, \kappa \in \mathfrak{g}$ with $[\mu, \kappa] = 0$.
- How the symmetry is broken at infinity becomes a complex question. The best case is "maximal symmetry breaking", where Φ|_{S²</sup> has distinct eigenvalues. Non-maximal symmetry breaking is more subtle.}
- Here the moduli space is *stratified*, and while the metric on the total space may not be hyperKähler, Murray and Singer have a conjecture [28] that the metric on certain strata (with dimensions in multiples of 4) is hyperKähler.

Monopoles on other 3-manifolds

- Reductions from \mathbb{R}^4 include monopoles (with singularities) on:
 - ▶ S¹ × ℝ², which have been constructed by Foscolo [11], which following a program Cherkis and Kapustin [7] include families of ALG type hyperKähler manifolds
 - $\mathbb{T}^2 \times \mathbb{R}$, so-called "monowalls" by Cherkis and Ward.
 - \mathbb{T}^3 , studied via Nahm transform by Charbonneau and Hurtubise [5].
- Certain moduli spaces of the above should be complete and hyperKähler.
- Monopoles on asymptotically hyperbolic manifolds were studied by Braam [4] and earlier (on ℍ³) by Atiyah [1].
- Monpoles with singularities on compact 3-manifolds have been considered by Pauly [31] (virtual dimension)
- ► There has been some work on monopoles over asymptotically conic (AC) 3-manifolds other than R³ by myself [23], Oliveira, and Fadel [30, 10, 9] including the (virtual) dimension, the construction of some smooth families, and analysis of asymptotics.

Magnetic bag conjecture

- ► A magnetic bag consists of a magnetic (i.e., U(1)) field arising from magnetic charge uniformly distributed over a closed surface (the "bag") in R³, thought of as an infinitesimally thin shell. The field vanishes inside the bag, and is Coulomb-like at large distances.
- Bolognesi conjectured that in the large charge limit, as k → ∞, there are sequences of SU(2) monopoles converging to given magnetic bags.
- More quantitatively, this involves the question of just how concentrated large charge monopoles can be.
- Hueristically, maximally concentrated monopoles have a region of size O(k) in which Φ is "small", a thin shell region of width $O(k^{1/2})$ where the Yang-Mills-Higgs energy is concentrated, and outside of this the fields are approximately abelian. This is bourne out by results of Taubes [34]
- Harland [14] has work connecting the large k limit of Nahm data to magnetic bags.
- A survey by Manton [27] discusses related objects, so-called monopole "planets" and "galaxies".

References I

- M.F. Atiyah, Magnetic monopoles in hyperbolic spaces, Vector bundles on algebraic varieties, Tata Institute of Fundamental Research, Bombay, 1984.
- M.F. Atiyah and N.J. Hitchin, *The geometry and dynamics of magnetic monopoles*, Princeton University Press Princeton, NJ, 1988.
- [3] Roger Bielawski, Monopoles and the Gibbons-Manton metric, Comm. Math. Phys. 194 (1998), no. 2, 297–321. MR 1627653
- P.J. Braam, Magnetic monopoles on three-manifolds, Journal of Differential Geometry 30 (1989), 425–464.
- [5] B. Charbonneau and J. Hurtubise, Singular Hermitian-Einstein monopoles on the product of a circle and a Riemann surface, Int. Math. Res. Not. IMRN (2011), no. 1, 175–216. MR 2755487
- [6] Benoit Charbonneau and Ákos Nagy, On the construction of monopoles with arbitrary symmetry breaking, arXiv preprint arXiv:2205.15246 (2022).
- [7] Sergey A Cherkis and Anton Kapustin, Hyper-kähler metrics from periodic monopoles, Physical Review D 65 (2002), no. 8, 084015.
- [8] S.K. Donaldson, Nahm's equations and the classification of monopoles, Comm. Math. Phys. 96 (1984), no. 3, 387–407. MR 769355
- [9] D. Fadel, Asymptotics of finite energy monopoles on ac 3-manifolds, arXiv preprint arXiv:2112.00063 (2021).
- [10] D. Fadel and G. Oliveira, *The limit of large mass monopoles*, Proc. Lond. Math. Soc. (3) **119** (2019), no. 6, 1531–1559. MR 3977882

References II

- [11] L. Foscolo, Deformation theory of periodic monopoles (with singularities), Comm. Math. Phys. 341 (2016), no. 1, 351–390. MR 3439230
- [12] K. Fritzsch, C. Kottke, and M. Singer, Monopoles and the sen conjecture: Part i, arXiv preprint arXiv:1811.00601 (2018).
- [13] G. W. Gibbons and N. S. Manton, The moduli space metric for well-separated BPS monopoles, Phys. Lett. B 356 (1995), no. 1, 32–38. MR 1346718
- [14] D. Harland, The large N limit of the Nahm transform, Comm. Math. Phys. 311 (2012), no. 3, 689–712. MR 2909760
- [15] N. Hitchin, Monopoles and geodesics, Communications in Mathematical Physics 83 (1982), no. 4, 579–602.
- [16] _____, On the construction of monopoles, Comm. Math. Phys. 89 (1983), no. 2, 145–190. MR 709461
- [17] Nigel Hitchin, Hyper-Kähler manifolds, no. 206, 1992, Séminaire Bourbaki, Vol. 1991/92, pp. Exp. No. 748, 3, 137–166. MR 1206066
- [18] J. Hurtubise and M.K. Murray, On the construction of monopoles for the classical groups, Comm. Math. Phys. 122 (1989), no. 1, 35–89. MR 994495
- [19] Jacques Hurtubise, Monopoles and rational maps: a note on a theorem of Donaldson, Comm. Math. Phys. 100 (1985), no. 2, 191–196. MR 804459
- [20] A. Jaffe and C. Taubes, Vortices and monopoles, Progress in Physics, vol. 2, Birkhäuser, Boston, Mass., 1980, Structure of static gauge theories. MR 614447

References III

- [21] Marcos Jardim, A survey on Nahm transform, J. Geom. Phys. 52 (2004), no. 3, 313–327. MR 2099156
- [22] S. Jarvis, Euclidean monopoles and rational maps, Proc. London Math. Soc. (3) 77 (1998), no. 1, 170–192. MR 1625475
- [23] C. Kottke, Dimension of monopoles on asymptotically conic 3-manifolds, Bull. Lond. Math. Soc. 47 (2015), no. 5, 818–834. MR 3403964
- [24] C. Kottke and F. Rochon, l²-cohomology of quasi-fibered boundary metrics, arXiv preprint arXiv:2103.16655 (2021).
- [25] _____, Quasi-fibered boundary pseudodifferential operators, arXiv preprint arXiv:2103.16650 (2021).
- [26] C. Kottke and M. Singer, Partial compactification of monopoles and metric asymptotics, Memoirs of the AMS (2022), To appear.
- [27] NS Manton, Monopole planets and galaxies, Physical Review D 85 (2012), no. 4, 045022.
- [28] M. Murray and M. Singer, A note on monopole moduli spaces, vol. 44, 2003, Integrability, topological solitons and beyond, pp. 3517–3531. MR 2006763
- [29] H. Nakajima, Monopoles and Nahm's equations, Einstein metrics and Yang-Mills connections (Sanda, 1990), Lecture Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993, pp. 193–211. MR 1215288
- [30] G. Oliveira, Monopoles on AC 3-manifolds, J. Lond. Math. Soc. (2) 93 (2016), no. 3, 785–810. MR 3509964

- [31] M. Pauly, Monopole moduli spaces for compact 3-manifolds, Math. Ann. 311 (1998), no. 1, 125–146. MR 1624279
- [32] G. Segal and A. Selby, The cohomology of the space of magnetic monopoles, Comm. Math. Phys. 177 (1996), no. 3, 775–787. MR 1385085
- [33] Paul M. Sutcliffe, BPS monopoles, Internat. J. Modern Phys. A 12 (1997), no. 26, 4663–4705. MR 1474144
- [34] Clifford Henry Taubes, Magnetic bag like solutions to the SU(2) monopole equations on ℝ³, Comm. Math. Phys. 330 (2014), no. 2, 539–580. MR 3223481