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Motivation: Dimensional reduction of Yang-Mills

» Consider a SU(2) connection on C? bundle £ — R* of the form
A = ddxg+ Ay dxg + Ax dxo + Az dxs,

with ¢, A, Ay, A3 € F( End(E)) independent of xq.

» The anti self dual equation —F, = %4F, reduces to the Bogomolny
equation
dA¢' = *3FA (1)

on R3 with coordinates (x1, x2, x3), for the connection

A= A1 dx + Ay dxo + Az dxz and “Higgs field” ® € I'(End(E)).
» Magnetic monopoles are solutions of (1) up to gauge equivalence.
» They are local minimizers of the Yang-Mills-Higgs action/energy

YMH(®, A) / AR + | a2



Motivation: Higgs mechanism

» In quantum Yang-Mills, particles associated to A are massless. Mass
arises from terms like sz(A) in the action where Q is quadratic, but
such terms are not gauge invariant.

» The Higgs mechanism is the introduction of a scalar (Higgs) field ¢ with
action of the form
1

3 [ IR+ 10481 + V(@) ©)
R3+1

with V a potential, e.g., of the form V() = 1A(1 — [¢[*)2.
» Effective quadratic terms in A arise through coupling to ® near the

minima of the potential.

» The Bogomolny-Prasad-Sommerfield (BPS) limit A — 0, recovers the
action (in Euclidean case) for monopoles.

» Monopoles are static (time independent) solutions to the dynamical
(3 + 1 dimensional) Euler-Lagrange equations for (2) with minimal
energy.



Basic properties: mass and charge

>

>

Solutions on compact 3 manifolds are trivial: xF4 = da® = 0, consisting
of flat SU(2) connections (if ® = 0) or flat U(1) connections (if ® # 0).
Not conformally invariant, so solutions on R3 not obtained from
compactification to S3, and require attention to boundary conditions “at
infinity”, as r — +00. Also, there is no “bubbling” as in 4D Y-M.

Finite energy 1 [ IFall® + | da®||* < oo on R3 implies that
lim |®| =m
r—o0

exists; this is the mass, which we will typically normalize to 1.
Then
lim ®:S2 — S? C su(2) 2 R?

r— o0
has a homotopy class k € Z; this is the charge. Equivalently, the trivial
bundle E splits as L & L~ over S2, into (eigen) line bundles of ®, with
a(l) =k € H*(S%;7) = Z.
Integration by parts gives

: / IFall? + [[da® |2 = / [Fa — da® | = 4k

So for k > 0 minimizers (on finite energy components) are given by
*FA = qu)



Why “magnetic monopoles”

» In physics parlance, where ® = 0 (in particular at infinity), the SU(2)
symmetry is “broken” to U(1) (the centralizer of ®).

» Field components along ® approximate a U(1) monopole with charge k,
and field components along ® decay exponentially.

» The U(1) monpole equations xF4 = d¢ € Q'(IR?) describe a magnetic
field B = xF4 generated by a scalar potential ¢.

» Dirac found solutions on R®\ 0 with ¢ = k/r, with A a connection the
line bundle of degree k. The charge k is therefore quantized for
topological reasons, even in the classical theory.

» While U(1) monopoles have singularities and infinite energy, SU(2)
monopoles “look like" magnetic monopoles for r > 1 yet have finite
energy and smooth field configurations.



The BPS monopole

» Bogomolny, Prasad, and Sommerfield found an explicit solution of
charge 1 of the form

1
b= 2% o
Z (tanhr r)XJUJ
A= Z 1 €KX Ok dX
smhr r ) IR CKEA

where X; = x;/r and o; are Pauli matrices. Note |®| <1 and ¢ has a
unique zero at the origin.

» Translation in R? gives a family of solutions centered at any point.

» Gauge transformation by exp(t®) for t € R/27Z gives an additional
circle action, giving a family of solutions parameterized by R3 x S!

» Monopoles of charge k > 2 are intractible to write down explicitly,
though some special solutions (with various symmetries) can be
well-described numerically, or as other equivalent objects (to come).



Higher charge monopoles from gluing

» While U(1) monopoles (satisfying a linear equation) may be superposed
to obtain higher charge monopoles, the Bogomolny equation for SU(2)
is nonlinear so superposition doesn't work.

» However, if the constituent monopoles are “widely separated”, the
nonlinearities are small and a gluing theorem of Taubes [20] shows that
superpositions may be perturbed to solutions.

» This gives existence of charge kK monopoles for all kK > 0, as widely
separated charge 1 monopoles.

» Monopoles are “solitons”, field configurations behaving roughly as
particles, with the charge k as a particle number.

» The particle picture becomes invalid when the points become close to
each other.



» k=2 and k =3 "“scattering” processes from [2] and [33]

? 0 ® ©®
o
—o 42)* o )

¢ e 2 3



Pictures

» Monopoles with platonic symmetries from [33]
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» Charges 3, 4, 5, and 7, respectively.



Moduli space

» The moduli space, M, of monopoles of charge k is the set of charge k
solutions to the Bogomolny equations up to gauge equivalence.

> With A, = {(A,®): YMH(A,®) < o0, [®]s2. = k} the finite energy,
charge k, component of the configuration space, G = Q°(R3; Aut(E))
the gauge group and and

B: Ay — QYR?; End(E)), B(A,®) = xFa — da®,
the moduli space is the quotient
M, = B_I(O)/g

» Parameter counting, and later a (nontrival) index theorem proved by
Taubes shows that dim M, = 4k — 1.

» Deformations are unobstructed, so M is smooth.

» My is also non-compact, not because of bubbling as in 4D Yang-Mills,
but because of the region of the moduli space in which well-separated
1-monopoles may become arbitrarily far apart.



Framed moduli space

>

>

To get a natural metric, an enlarged moduli space of “framed”
monopoles is in order.

A framing of a k-monopole is a choice of isomorphism E = H* @ H—k
on S2. where H is the fundamental line bundle on S? with its standard
connection.

A framed monopole is a solution of the form (®g + ¢, Ag + a) where

w-( -3

and Ag is associated to the standard connection on H¥ with curvature
Fa, = k Volsz, and |(¢,a)| = O(r~2).

The framed moduli space Mk is the space of framed solutions modulo
the set Gy of gauge transformations which limit to the identity as

r — oo, preserving the framing.

/Wk — My is a circle bundle, with circle action given by the gauge
transformations of the form exp(t®) (which are not in Gg). Thus
dim(My) = 4k.



L2 metric on M

» Infinitesimal variations are square integrable, thus T(A,¢)/K/lvk identified
with (¢, a) in L? such that
*xdaa — dad+ [®,a] =0 linearization of Bogomolny
xdaxa+[P,¢] =0 Coulomb gauge

» The L2 metric given by

¢((6.2). (¢, /(w (a.b)

is Riemannian and complete by results of Taubes and Uhlenbeck.

> M =R3 x S! isometrically, and for k > 2, M, splits as a Riemannian
product (R3 x S') x MY, up to k-fold cover, where M? is the reduced
moduli space of centered monopoles. In the “widely separated
1-monopole” region, g is exponentially asymptotic to a model metric of
Gibbons and Manton [13] by a result of Bielawski [3].

> TMVk has a quaternionic action under the identification
o+ardxg+ardeo+azdxa < o+ ail +axd+ 3K

» Morever, the complex structures I/, J, K are integrable and /\7;( (and
MY) is a hyperKihler manifold.



HyperKahler basics

» Recall a hyperKahler manifold M*" has 3 integrable complex structures
(1, J, K) satisfying quaternionic relations and a Riemannian metric g
such that each two form we = g(+, ®-) is closed, for @ € {/,J, K}.

» In fact, there is a 2-sphere of integrable complex structures,
{al + bJ+ cK : 2> + b* + 2 =1}.

» Equivalently, M*" has holonomy group Sp(n), and in particular is Ricci
flat (Calabi-Yau).

> To see that M, is hyperKihler, follow Hitchin [17] to exhibit M as an
infinite dimensional hyperKahler quotient

My = Ac/))Go = B7(0)/Go

of the affine hyperKahler space Ay 3 (®, A) <> ® + Al + Ay J + AsK by
the gauge group, where

B(®, A) = xFa — da® € Lie(Go) ® ImH

is the hyperKahler moment map with (dxi, dxo, dx3) € ImH



Equivalent constructions of monopoles

» Instantons on R* have equivalent descriptions:
ADHM
Twistor construction
Instantons
» Analogously, there are equivalent descriptions for monopoles:

Nahm data

/

Twistor construction Rational maps

/

Monopoles



Twistors

>

>

Nahm data

Twistor constru& I Rational maps

Monopoles

The twistor space for monopoles is the complex surface TCP?, viewed
as the space of oriented lines in R3.

By a result of Hitchin [15] (based on a construction of Ward as extended
by Corrigan and Goddard), Monopoles are equivalent to certain complex
vector bundles with holomorphic sections on twistor space, or
equivalently certain spectral curves, the zero sets of the holomorphic
sections.

The spectral curve for a monopole (¢, A) consists of those lines in R3
along which the ODE (V4 — i®)s = 0 has L2 solutions (decay at both
ends).



Nahm data

Nahm data
Twistor construction Rational maps

Monopoles

» Nahm data is a set of three k x k matrix-valued analytic functions
T1, T», T3 on the interval (0, 2) satisfying Nahm's equations

ETi+3) enlTn T =0, Ti(s)=-Ti(s), Ti2—s)=Ti(s)"

with simple poles at s = 0,2 with residues forming an irreducible
representation of su(2).

» Like the Bogomolny equation, Nahm's equations are a dimensional
reduction of the instanton equations from R* to R!.

» The Nahm transform gives a bijection [16, 29] between O(k,C) gauge
equivalence classes of such solutions and charge k monopoles. It is the
seminal example of a more general Nahm transform [21], a “Fourier
transform” between Yang-Mills objects on R*/A and a dual (R*)*/A*.

» The moduli space of Nahm data obtains a hyperKahler metric from a
hyperKahler quotient construction, and the Nahm transform is an
isometry [29].



Rational maps

Nahm data
Twistor construction Rational maps

Monopoles

> A result of Donaldson [8] identifies Nahm data with the space Ry(CP?)
of degree k rational maps f : CP* — CP! such that f(00) =0, i.e. of
the form
oy P et ag

q(z)  ZF+b1zZF 1+ + by

where p(z) and g(z) are coprime.

» Hurtubise [19] described the direct connection between monopoles and
rational maps in terms of the scattering map for the linear operator
(Va— i®) along lines in R3.

» This leads to a detailed understanding of the topology of
M =2 R (CP?) [32], but the L2 metric is not directly apparent.

» Atiyah and Hitchin in [2] use this representation to get a remarkably
complete understanding of the reduced 2-monopole space M$.



Open problems and current research

» Sen conjecture
» Higher rank gauge groups
» Monopoles on non-R3

» Magnetic bag conjecture



Sen Conjecture

» S-duality in SUSY QFT leads to a physical prediction for the
L2-cohomology of the reduced moduli spaces M9 (or rather their

universal k-fold covers /\/12) known as Sen’s Conjecture:

H(MR) =

—~5 ClZl j=2k—2
0 otherwise

» Here 7' denotes the space of i forms which are L? integrable with
respect to the hyperKahler metric.

» By general results of Hitchin concerning L2 cohomology of hyperKihler
quotients, the vanishing outside of middle degree is known, and in [32]
Segal and Selby computed Im (Hg(M9) — H*(M?9)), which is
consistent with the conjecture.

» Outstanding issue is to show that L2 harmonic forms have appropriate
decay, the subject of my ongoing work with Singer and Rochon.



Toward Sen’s Conjecture

» Singer and | [26, 12] construct a compactification of M9 to a manifold
with corners, the boundary hypersurfaces of which encode limiting
configurations of widely separated monopole “clusters” of charges k;
where k = > k;.

» The metric has well-behaved asymptotics up to each hypersurface, and is
an example of a “quasi-fibered boundary” (QFB) metric, generalizing the
class of ALF metrics in the classification of 4d hyperKahler manifolds.

» Rochon and | developed tools [25] (a pseudodifferential operator
calculus) for analysis on QFB manifolds, with some initial results on L2
Hodge theory in this setting which include Sen for k = 3 [24].

P | expect similar considerations should apply to Hitchin systems, at least
in simple cases.



Higher

rank gauge groups

We can consider monopoles for compact gauge groups other than SU(2).

The general rational map description is in Jarvis [22], Nahm data
description by Hurtubise and Murray [18] and more recently
Charbonneau and Nagy [6].

Many questions about metrics on these moduli spaces are open.

The mass and charge are replaced by elements p, k € g with [u, k] = 0.
How the symmetry is broken at infinity becomes a complex question.
The best case is “maximal symmetry breaking”, where <I>|52 has distinct
eigenvalues. Non-maximal symmetry breaking is more subtle.

Here the moduli space is stratified, and while the metric on the total
space may not be hyperKahler, Murray and Singer have a conjecture

[28] that the metric on certain strata (with dimensions in multiples of 4)
is hyperKahler.



Monopoles on other 3-manifolds

> Reductions from R* include monopoles (with singularities) on:

> S x R?, which have been constructed by Foscolo [11], which following a
program Cherkis and Kapustin [7] include families of ALG type
hyperKahler manifolds

> T2 x R, so-called “monowalls” by Cherkis and Ward.

» T3, studied via Nahm transform by Charbonneau and Hurtubise [5].

» Certain moduli spaces of the above should be complete and hyperKahler.

» Monopoles on asymptotically hyperbolic manifolds were studied by
Braam [4] and earlier (on H3) by Atiyah [1].

» Monpoles with singularities on compact 3-manifolds have been
considered by Pauly [31] (virtual dimension)

» There has been some work on monopoles over asymptotically conic (AC)
3-manifolds other than R3 by myself [23], Oliveira, and Fadel [30, 10, 9]
including the (virtual) dimension, the construction of some smooth
families, and analysis of asymptotics.



Magnetic bag conjecture

» A magnetic bag consists of a magnetic (i.e., U(1)) field arising from
magnetic charge uniformly distributed over a closed surface (the “bag")
in R3, thought of as an infinitesimally thin shell. The field vanishes
inside the bag, and is Coulomb-like at large distances.

» Bolognesi conjectured that in the large charge limit, as k — oo, there
are sequences of SU(2) monopoles converging to given magnetic bags.

» More quantitatively, this involves the question of just how concentrated
large charge monopoles can be.

» Hueristically, maximally concentrated monopoles have a region of size
O(k) in which ® is “small", a thin shell region of width O(k'/?) where
the Yang-Mills-Higgs energy is concentrated, and outside of this the
fields are approximately abelian. This is bourne out by results of Taubes
[34]

» Harland [14] has work connecting the large k limit of Nahm data to
magnetic bags.

» A survey by Manton [27] discusses related objects, so-called monopole
“planets” and “galaxies”.
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