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c D?x S} KcS? c S’
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Examples.

e torus knots
e the Mazur pattern
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Knot Floer Homology
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KcS’



Knot Floer Homology
(Ozsvath-Szabo, Rasmussen)

KcC S’ HFK (K)

a finitely generated
abelian group
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X =S —(K)



Immersed Curves
(Hanselman-Rasmussen-Watson)

a collection of immersed

curves in 0Xp — {pt}

(each decorated with a
local system)
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Theorem (W, Chen)

ﬂi'! rank HFK (T, 3); ) = 13

' ‘—










Thank you!



