Weizhe Shen, Georgia Tech Connections Workshop: Floer Homotopy Theory, September 8-9, 2022

Satellites

<u>Satellites</u>

 $P \subset D^2 \times S^1$

pattern

 $K \subset S^3$ companion

 $\frac{P(K) \subset S^3}{\text{satellite}}$

Definition.

A satellite knot P(K) is called a (1,1)-satellite if P is a (1,1)-pattern.

Definition.

A satellite knot P(K) is called a (1,1)-satellite if P is a (1,1)-pattern.

Definition.

A satellite knot P(K) is called a (1,1)-satellite if P is a (1,1)-pattern.

We call $P \subset D^2 \times S^1$ a (1,1)-pattern if $(D^2 \times S^1, P)$ admits a genus one doubly pointed bordered Heegaard diagram.

Definition.

A satellite knot P(K) is called a (1,1)-satellite if P is a (1,1)-pattern.

Examples.

We call $P \subset D^2 \times S^1$ a (1,1)-pattern if $(D^2 \times S^1, P)$ admits a genus one doubly pointed bordered Heegaard diagram.

• torus knots

• the Mazur pattern

Knot Floer Homology (Ozsváth-Szabó, Rasmussen)

$K \subset S^3$

Knot Floer Homology (Ozsváth-Szabó, Rasmussen)

$K \subset S^3$

a finitely generated abelian group

Rank Inequalities

Theorem (Shen).

If P(K) is a (1,1)-satellite, then

Rank Inequalities

Theorem (Shen).

If P(K) is a (1,1)-satellite, then

• rank $\widehat{HFK}(P(K)) \ge \operatorname{rank} \widehat{HFK}(P(U))$

Rank Inequalities

Theorem (Shen).

If P(K) is a (1,1)-satellite, then

- rank $HFK(P(K)) \ge rank HFK(P(U))$
- rank $\widehat{HFK}(P(K)) \ge \operatorname{rank} \widehat{HFK}(K)$

Idea of Proof

Theorem (W. Chen)

Theorem by example: $(T_{2,3})_{3,1}$

<u>Theorem by example</u>: $(T_{2,3})_{3,1}$

a genus one doubly pointed bordered Heegaard diagram for $(D^2 \times S^1, P)$

a genus one doubly pointed bordered Heegaard diagram for $(D^2 \times S^1, P)$

immersed curves for *K* in the punctured torus

<u>Theorem by example</u>: $(T_{2,3})_{3,1}$

a genus one doubly pointed bordered Heegaard diagram for $(D^2 \times S^1, P)$

immersed curves for K in the punctured torus

Immersed Curves (Hanselman-Rasmussen-Watson)

Immersed Curves (Hanselman-Rasmussen-Watson)

 $X_K = \overline{S^3 - \nu(K)}$

Immersed Curves (Hanselman-Rasmussen-Watson)

 $X_K = \overline{S^3 - \nu(K)}$

a collection of immersed curves in $\partial X_K - \{pt\}$ (each decorated with a local system)

a genus one doubly pointed bordered Heegaard diagram for $(D^2 \times S^1, P)$

immersed curves for *K* in the punctured torus

 T^2

<u>Bigons</u>

Minimum Intersections

Theorem (W. Chen)

rank $\widehat{HFK}((T_{2,3})_{3,1}) = 13$

P(K)

P(K)

White /

K

Thank you!