$HF^*(Y, v)$

Azam-Cannizzo-Lee Liu

Lagrangians Floer theory

Floer theory of a symplectic fibration: an example

Haniya Azam 1 Catherine Cannizzo*^2 Heather Lee 3 Chiu-Chu Melissa Liu 4

¹Lahore University of Management Sciences, ²University of California-Riverside, ³Pasadena, CA, ⁴Columbia University

Connections Workshop: Floer Homotopy Theory September 8-9, 2022

A non-exact symplectic fibration

 $HF^*(Y, v)$

Azam-Cannizzo-Lee Liu

ACLL example Lagrangians Floer theory Recall: a moment polyhedron Δ defines a toric symplectic manifold via symplectic reduction.

We obtain a family of complex 3-folds Y parametrized by Δ_{Ω} for symmetric $\Omega > 0 \in M_2(\mathbb{R})$.

Product of toric coordinates defines $v:Y\to \mathbb{C}$ symplectic fibration with

- base \mathbb{C} , generic fiber T^4
- singular fiber over 0 with $\operatorname{Crit}(v) = \cup 3 \mathbb{CP}^1$'s/ \sim

Figure: Critical locus of singular fiber

Lagrangians + connection 1 form

 $HF^{*}(Y, v)$

Azam-Cannizzo-Lee Liu

ACLL example Lagrangians Floer theory

$$\begin{array}{l} \Omega \text{ gives } \omega, \ B {\in} H^2(Y) \ \text{B-field} \rightsquigarrow B + i\omega = \omega_{\mathbb{C}}, \ \tau {=} B|_{v^{-1}({\text{-1}})} {+} i\Omega, \\ k \in \mathbb{Z} \text{ "slope", } b \in \mathbb{R}^2 \text{ "shift", } a \in \mathbb{R}^2 \text{ "connection", } z{=}a + \tau b \end{array}$$

$$\begin{split} \hat{\mathbf{L}}_{\mathbf{k},z} &= (\mathbf{L}_{\mathbf{k},b}, \mathcal{E}_a): \ v(\mathbf{L}_{\mathbf{k},b}) = \mathsf{U}\text{-shape around 0,} \\ \mathsf{Lagr} \ \mathbf{L}_{\mathbf{k},b}|_{v^{-1}(-1)} &= \{(r_1, r_2, \theta_1, \theta_2) \in T^4 | \theta = \mathsf{k}r\text{-}b\}, \\ \mathcal{E}_a &= (\underline{\mathbb{C}}, \nabla_a) \text{ s. t. } d\nabla_a = -2\pi i B|_{\mathbf{L}_{\mathbf{k},b}}, \\ \nabla_a|_{v^{-1}(-1)} &= d - 2\pi i a \cdot dr. \end{split}$$

Slope 2

Slope

Slope 0

 $CF(\hat{\mathbf{L}}_{\mathbf{k}_{1},z_{1}},\hat{\mathbf{L}}_{\mathbf{k}_{2},z_{2}}){\cong}CF(\hat{\ell}_{\mathbf{k}_{1}+1,z_{1}},\hat{\ell}_{\mathbf{k}_{2},z_{2}})[\!\!-\!1]{\oplus}CF(\hat{\ell}_{\mathbf{k}_{1},z_{1}},\hat{\ell}_{\mathbf{k}_{2},z_{2}})$

Figure: To compute ∂ (count bigons on LHS), introduce 3rd Lagrangian $\hat{\mathbf{L}}_{\infty,b}$ and use Leibniz rule (RHS - red region is ∂).

Floer theory of example

$HF^*(Y, v)$

Azam-Cannizzo-Lee-Liu

ACLL example Lagrangians Floer theory

Theorem (Azam-C-Lee-Liu)

 $\begin{array}{l} \partial = M^1 : CF(\hat{\mathbf{L}}_{\mathsf{k}_1,z_1},\hat{\mathbf{L}}_{\mathsf{k}_2,z_2}) \rightarrow CF(\hat{\mathbf{L}}_{\mathsf{k}_1,z_1},\hat{\mathbf{L}}_{\mathsf{k}_2,z_2}) \text{ computed} \\ \text{by simplifying } M^1M^2 = M^2(M^1(\cdot),\cdot) + M^2(\cdot,M^1(\cdot)): \end{array}$

$$HF(\hat{\mathbf{L}}_{k_1,z_1},\hat{\mathbf{L}}_{k_2,z_2}) \cong H^0(t^*_{z_2-z_1}\mathcal{L}^{\otimes(k_2-k_1)}_{\tau}|_{s_{\tau}^{-1}(0)})$$

where $s_{\tau} : (\mathbb{C}^*)^2 / \tau \mathbb{Z}^2 \to \mathcal{L}_{\tau}$ section of degree 1 holo ample line bundle \mathcal{L}_{τ} and $t_z : (\mathbb{C}^*)^2 / \tau \mathbb{Z}^2 \to (\mathbb{C}^*)^2 / \tau \mathbb{Z}^2$ translates by z.

Key ideas: we know how to count pseudo-holomorphic triangles in a fiber and disks bounded by $\ell_{\infty,b}$ over a circle around 0 (moment map preimage), and we can keep track of areas of disks when isotoping Lagrangians to these two cases.

References

Floer the

	Mohammed Abouzaid and Denis Auroux, Homological mirror symmetry for hypersurfaces in $(\mathbb{C}^*)^n$,
(m)	https://arxiv.org/abs/2111.06543.
, 0)	Mohammed Abouzaid, Denis Auroux, and Ludmil Katzarkov, Lagrangian fibrations on blowups of toric
	varieties and mirror symmetry for hypersurfaces, Publ. Math. Inst. Hautes Études Sci. 123 (2016), 199–282.
-	Haniya Azam, Catherine Cannizzo, and Heather Lee, Action-angle and complex coordinates on toric
-Lee-	manifolds, Research Directions in Symplectic and Contact Geometry and Topology, Association for Women
	in Mathematics Series, vol. 27, Springer International Publishing, 2021.
	H. Azam, C. Cannizzo, H. Lee, and C.C.M. Liu, Global homological mirror symmetry for genus two curves,
mple	in preparation.
	, Homological mirror symmetry for theta divisors, in preparation.
ins	Mohammed Abouzaid and Ivan Smith, Khovanov homology from Floer cohomology, J. Amer. Math. Soc.
	32 (2019), no. 1, 1–79.
Jiy	Kwokwai Chan, Siu-Cheong Lau, and Naichung Conan Leung, <i>SYZ mirror symmetry for toric Calabi-Yau</i>
	<i>manifolds</i> , J. Differential Geom. 90 (2012), no. 2, 177–250.
	Cheol-Hyun Cho and Yong-Geun Oh, Floer cohomology and disc instantons of Lagrangian torus fibers in
	<i>Fano toric manifolds</i> , Asian J. Math. 10 (2006), no. 4, 773–814.
	Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian intersection Floer theory:
	anomaly and obstruction. Part I, AMS/IP Studies in Advanced Mathematics, vol. 46, American
	Mathematical Society, Providence, RI; International Press, Somerville, MA, 2009.
	Kenji Fukaya, Mirror symmetry of abelian varieties and multi-theta functions, J. Algebraic Geom. 11
	(2002), no. 3, 393–512.
	Mark Gross, Ludmil Katzarkov, and Helge Ruddat, <i>Towards mirror symmetry for varieties of general type</i> ,
	Adv. Math. 308 (2017), 208–275.
	Kentaro Hori and Cumrun Vata, Mirror symmetry, https://arxiv.org/abs/hep-th/0002222, 2000.
	Atsushi Kanazawa and Siu-Cheong Lau, Local Calabi-Yau manifolds of type A via SYZ mirror symmetry,
	J. Geom. Phys. 139 (2019), 103–138.
	Dusa McDutra and Dietmar Salamon, <i>J-noiomorphic curves and symplectic topology</i> , vol. 52, American
	Malhematical Soc., 2012. Alexandre Polichechuk and Eric Zaclaw, Categorical mirror summetry, the elliptic survey Adv. Theor. Math
	Phys 2 (1098) no. 2 442 470
	Phys. 2 (1990), 10. 2, 445-410. Phyl Saidal Eukara categories and Picard Lefschetz theory. Twich Lectures in Advanced Mathematics
	European Mathematical Society (EMS) Zürich 2008
	European Mathematical Society (EMS), Zanch, 2000.