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A non-exact symplectic fibration

Recall: a moment polyhedron ∆ defines a toric symplectic
manifold via symplectic reduction.

We obtain a family of complex 3-folds Y parametrized by ∆Ω

for symmetric Ω > 0 ∈M2(R).

Product of toric coordinates defines v : Y → C symplectic
fibration with

base C, generic fiber T 4

singular fiber over 0 with Crit(v) = ∪ 3 CP1’s/ ∼

Figure: Critical locus of singular fiber
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Lagrangians + connection 1 form

Ω gives ω, B∈H2(Y ) B-field  B+ iω = ωC, τ=B|v-1(-1)+iΩ,
k ∈ Z “slope”, b ∈ R2 “shift”, a ∈ R2 “connection”, z=a+ τb

L̂k,z = (Lk,b, Ea): v(Lk,b) = U-shape around 0,
Lagr Lk,b|v-1(-1)={(r1, r2, θ1, θ2) ∈ T 4|θ=kr-b},
Ea = (C,∇a) s. t. d∇a = −2πiB|Lk,b

,
∇a|v-1(-1) = d− 2πia · dr.

CF (ˆ̀k1,z1
, ˆ̀k2,z2

) =
⊕

p∈`k1,b1
∩`k2,b2

C · p

L̂k1,z1

L̂k2,z2

Yτ

C

v

CF (ˆ̀k1+1,z1
, ˆ̀k2,z2

)[−1]

CF (L̂k1,z1
, L̂k2,z2

)∼=CF (ˆ̀k1+1,z1
, ˆ̀k2,z2

)[-1]⊕CF (ˆ̀k1,z1
, ˆ̀k2,z2

)

Figure: To compute ∂ (count bigons on LHS), introduce 3rd

Lagrangian L̂∞,b and use Leibniz rule (RHS - red region is ∂).
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Floer theory of example

Theorem (Azam-C-Lee-Liu)

∂ = M1 : CF (L̂k1,z1 , L̂k2,z2)→ CF (L̂k1,z1 , L̂k2,z2) computed
by simplifying M1M2 = M2(M1(·), ·) +M2(·,M1(·)):

HF (L̂k1,z1 , L̂k2,z2) ∼= H0(t∗z2−z1L
⊗(k2−k1)
τ |s−1

τ (0))

where sτ : (C∗)2/τZ2 → Lτ section of degree 1 holo ample line
bundle Lτ and tz: (C∗)2/τZ2 → (C∗)2/τZ2 translates by z.

Key ideas: we know how to count pseudo-holomorphic triangles
in a fiber and disks bounded by `∞,b over a circle around 0
(moment map preimage), and we can keep track of areas of
disks when isotoping Lagrangians to these two cases.
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