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Objectives

. Discuss structure of “low-dimensional” examples of
supersingular loci

. Introduce main tool for studying supersingular loci

. See how the general situation differs from the
“low-dimensional” examples



Motivation: Modular Curves over C
Seek to understand

Y(C) = {elliptic curves E over C}/ =

e Define H - Y(C)
T C/(Z+7TZ)

° C/(Z-‘:—T-]Z) EC/(Z+T2Z) if and onIy if 7o = (gg)ﬂ

F

SLo(Z)\H = Y(C)

Vo, 2

e Easy to understand Y (C) as a complex manifold, since
elliptic curves over C are “linear algebraic.”



Motivation: Modular Curves over F,,

Seek to understand
YV(Fp) = {elliptic curves E over Fp}/ =

j-invariant (Dedekind or Klein, 1800’s)

There is a bijection:

y(FP) ot IFp ,

E:y?=x°+Ax+B > J(E) = toimaeny
23 1,2 36 1 -
Ej:y®=X"—3X" = 375X ~ =78 J

Note: this construction is not “linear-algebraic”!



Motivation: Modular Curves over F,,

* An elliptic curve E/F, can be ordinary or supersingular.

* The supersingular locus Y(F,)% ¢ Y(Fp) parametrizes
supersingular elliptic curves.

Cor. to Eichler-Deuring Mass Formula:

There are approx. & supersingular elliptic curves over Fp.



GU(a, b) Shimura Variety
Fix a quad. im. field K and p # 2 inert in K
The GU(a, b) Shimura variety M(a, b)
parametrizes (A, ¢, \,n):

e Aan A.V. of dim a+b * canactionof O c K
Meeting the signature (a, b) condition:

det(T - u(k);Lie(A)) = (T = @1 (k)*(T - w2(k))".

Example: Let E : y? = x® — x. Z[i] acts on E, where:
i: E(C) - E(C)

(X7.y) g (_X7i.y)
Define Z[i]-actionon A= E x E x E as:



GU(a, b) Shimura Variety

The GU(a, b) Shimura variety M(a, b)
parametrizes (A, ¢, A\, n):

e Aan A.V. of dim a+b e ;anactionof O c K
Meeting the signature (a, b) condition:

det(T - u(k); Lie(A)) = (T = o1 (k)3 (T - p2(k))".

M(a, b)p Rc b)o

(p) (0)
M(a,b)o(C) = UL, T\ Hap, analogous to SL»(Z)\H.

M(a, b)

Spec(OF ®z Z(p))



GU(a, b) Shimura Variety
The GU(a, b) Shimura variety M(a, b)
parametrizes (A, ¢, \,n):

e Aan A.V. of dim a+b e ;anactionof O c K
Meeting the signature (a, b) condition:

det(T — u(k); Lie(A)) = (T = o1 (k) *(T ~p2(k))".

M(a, b)p M(a b)o (a,b)

. .dlma

Spec(OF ®7 Z(p))

The supersingular locus M(a, b)f,s parametrizes (A, ¢, \,n)
where A is supersingular.



Results on Geometry of M(a, b)3®

* The geometry of M(a, b)p° depends on the signature
(a,b). M(a,b) 2 M(b,a), sotake b>a>0.
* The supersingular loci M(a, b)y° have been described by...

0,m) | (1,1) (1,2) (1,m-1), | (2,2) (2,3), (2,m-2), | (a,m-a)
m>4 (2,4) m>7 a>3
m>6
0-dim’l | 0-dim’l | Vollaard | Vollaard- | Howard- | Imai-F. Imai-F. Incomplete
2008 Wedhorn | Pappas | 2021 2021
2010 2014 after perf. | (partial)

* For motivation, we’ll consider the (1,2) = (2,1) and (2,2)

cases.

e We'll see how the (2,4) case both generalizes the (1,2)
and (2,2) cases, and contains new structure.



Ex: The Supersingular Locus of M(1,2)
Theorem (Vollaard '08)

Assume 7 is suff. small. Each irreducible component of
M(1,2);° is isomorphic to the Fermat curve

. Jp+1 p+1 p+1 2
C:xyg +X  +X; cIP’Fp.

There are p° + 1 int. pts on each irr. comp., and each int. point
is the intersection of p + 1 irr. comps.

M(172)P M(172)0 M(172)

dim?2 dim?2
— «
M(‘I,z)zs . .
p (0)

Spec(OK ®z Z(p))



Ex: The Supersingular Locus of M(2,2)
Theorem (Howard-Pappas ’14)

Assume 7 is suff. small. Each irreducible component of
M(2,2)z° is isomorphic to the Fermat surface

. P+ p+1 p+1 p+1 3
S:Xy +X{ +Xy +Xg CIPF,,'

Any two irr. components intersect trivially, in a projective line, or
in a point.

M(2,2), M(2,2)q M(2,2)

dim4 dim4
« —
/\/1(2,2),"5)S
p (0)

Spec(Z(p))



Deligne-Lusztig Varieties

Moduli spaces of flags in char. p vector spaces, with “fixed
relative position” to Frobenius-twist:
Given G over Fp, B,and w e Ng(T)/T:

X(w) ={gBeG/B|g'Fr(g) e BwB}.
Example: G = SLo, B upper-tri, Ng(T)/T = {1,(9 3 )}
* G/B={lines ( c o)
e rel(¢1,¢2) =1 ifand only if ¢4 = ¢
° If £ =(Coeo + Cr641), Fr(¢) = (cheo + cler)

L]
)

X(1) = {£ T | rel(¢, Fr(€)) = 1} = P'(Fp)

X(§9)={t< F;za | rel(¢,Fr(0)) = (93 )} = P'(Fp) NP (Fp).



General Situation

e The signature (1,2) and signature (2,2) supersingular loci
have similar structure: their irr. components are
Deligne-Lusztig varieties, intersection combinatorics come
from a Bruhat-Tits building, the supersingular locus is a
union of Ekedahl-Oort Strata.

¢ These are examples of Coxeter Type. Gortz, He, and Nie
have classified which supersingular loci have this structure,
after perfection. First paper (2013) lists all 21 possibilities.

e Most unitary Shimura varieties do not have this structure.

o,m [ (1,1) | (1,2 1,m-1), ] (2,2) (2,3), (2,m-2), | (a,m-a)
m>4 (2,4) m>7 a3
m>6
Imai-F. Imai-F. | let
0-dim'l | O-dim’l | Vollaard | Vollaard- | Howard- | oo! 2021 neompiete
2008 Wedhorn | Pappas f ¢ ial
2010 2014 after perf. | (partial)




Strategy: Rapoport-Zink Uniformization

¢ |f Ais an abelian variety of dim. m over C, study lattice

A € C™ such that:

A(C) =C™/A.

(Z-module of rank 2m)
e If Ais an abelian variety of dim. mover L, and p + char(L),

study: 3

Tp(A) = lim A[p*](L)
(Zp-module of rank 2m)

e If Ais a supersingular abelian variety of dim. m over Fp,
Tp(A) = 0. Instead, study the p-divisible group:

Alp™] = lim A[p"].

Equivalently, study the p-adic Dieudonné module D, (A)
(Zp-module of rank 2m, with operator F)



Unitary Rapoport-Zink Spaces
Unitary Rapoport-Zink Space: N'(a,b)(S) = {(G,t, A\, p)}/ =,
e G a supersingular p-div. * 1:0®yZp— End(G) of

gp over Sofdim a+b sign. (a,b)
* p: Gg, » Gg,, quasi-isog

Rapoport-Zink Uniformization

M(a,b) = |f1| r\\(a,b)
L

The I'; are discrete groups (depending on level structure) acting
on N(a,b).

Can study the (more “linear-algebraic”) Rapoport-Zink spaces
N (a, b) to understand the supersingular loci M(a, b)3°



Unitary Rapoport-Zink Spaces

Unitary Rapoport-Zink Space: N'(a, b)(Fp) = {(G,1, A\, p)}/ =,
N(a,b)(Fp)={McN|pMc FMc M, O -stable, M=p'M"}
Rapoport-Zink Uniformization

M(a,b) = |f1| r\W(a,b)
=

The I'; are discrete groups (depending on level structure) acting
on N(a,b).

Can study the (more “linear-algebraic”) Rapoport-Zink spaces
N (a, b) to understand the supersingular loci M(a, b)3°®



The GU(1,2) Rapoport-Zink Space

Thm (Vollaard): Geometry of N'(1,2)

e Each irr. comp. of N'(1,2) is isom to:
C : X(;))+1 +X1p+1 +X£)+1 =0c ]P)%p'
(a Deligne-Lusztig variety). Any two irr. components
intersect trivially or in a single point.
e Each irr. comp. contains p° + 1 int. pts, and each int pt is
the intersection of p + 1 irr. comp.

e N(1,2) has two Ekedahl-Oort strata: the intersection
points, and their complement.



Why Expect Deligne-Lusztig Varieties?

Replace (G, , A, p) with p-adic Dieudonné module M to
identify:

N(1,2)(Fp) = {M c N| conditions wrt F}.
(Convert from N to an alternative Hermitian space W:)
N(1,2)(Fp) = {Lc W conditions wrt F}.
Irreducible components N c N (1,2) defined as:
Na(Fp) ={Lc W |pAcLcA &conditions wrt F}.
Replace L with ¢ = L/pA
Na(Fp) = {fc (A/pN)g, | conditions wrt F},

a Deligne-Lusztig variety.



Bruhat-Tits Building

* From the relevant hermitian space W for A/(1,2), can
construct a Bruhat Tits building B:

* Bis an (infinite) tree, with two types of vertices:
“Type-1” (A c W s.t. pAY % ANcAY)

“Type-3” (A c W s.t. pAY % AcAY)
Type-1 vertices have degree p + 1, Type-3 have p° + 1.




Ekedahl-Oort Strata

* (G1,11,\,p1) and (G, 12, \, p2) are in the same
Ekedahl-Oort stratum of A'(1,2) if and only if
(Gilp]; 1, M) 2 (Ga[p], L2, A2)-

e N(1,2) has two Ekedahl-Oort strata: the intersection
points, and their complement.

¢ The intersection points are exactly those points where
G[p] = E[p]* for a supersingular elliptic curve E.



The GU(1,2) Rapoport-Zink Space Again

Thm (Vollaard): Geometry of N'(1,2)

e Each irr. comp. of N'(1,2) is isom to:
C : X(;))+1 +X1p+1 +X£)+1 =0c ]P)%p'
(a Deligne-Lusztig variety). Any two irr. components
intersect trivially or in a single point.
e Each irr. comp. contains p° + 1 int. pts, and each int pt is
the intersection of p + 1 irr. comp.

e N(1,2) has two Ekedahl-Oort strata: the intersection
points, and their complement.



The GU(1,2) Rapoport-Zink Space Again

Thm (Vollaard): Geometry of N'(1,2) (Rephrased)

e Each irr. comp. of N'(1,2) is isom to a particular kind of
Deligne-Lusztig variety

¢ The intersection combinatorics come from a relevant
Bruhat-Tits building

e N(1,2) is a union of Ekedahl-Oort strata



The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):

e Eachirr. comp. of A/(2,2) is isom to:

. Pt p+1 p+1 p+1 3
S Xy +X{ +Xy, +Xg ‘OCPFP‘
Any two irr. comp. intersect trivially, intersect in a single

point, or have intersection isomorphic to P% .
P

¢ For a fixed irreducible component X, there are
p(p® +1)(p? + 1) irreducible components X’ such that
X n X"is a single point and (p% + 1)(p + 1) irreducible
components X" such that X n X"’ is isomorphic to P]Fp.



General Situation

* The signature (1,2) and signature (2,2) Rapoport-Zink
spaces have similar structure: their irr. components are
Deligne-Lusztig varieties, intersection combinatorics come
from a Bruhat-Tits building, are a union of Ekedahl-Oort
Strata.

* These are examples of Coxeter Type.

¢ Most unitary Rapoport-Zink spaces do not have this
structure.

o,m | (1,1) | (1,2 1,m-1), | (2,2) (2,3), (2,m-2), | (a,m-a)
m>4 (2,4) m>7 a3
m>6

Imai-F. Imai-F. Incomplete

0-dim’l | 0-dim’l | Vollaard | Vollaard- | Howard-
2008 Wedhorn | Pappas
2010 2014

2021 2021
after perf. | (partial)




The GU(2, m-2) Rapoport-Zink Space

Thm (Imai-F.):
Let m> 5:
* N(2,m-2)*"is (m-2)-dimensional, and contains | 7 |
isomorphism classes of irreducible components.

¢ One component X generalizes those of in A/(1,2), and is a
Deligne-Lusztig variety

e If mis even, there is a component Y generalizing those of
N(2,2), and is a Deligne-Lusztig variety.

* The remaining irreducible components are not
Deligne-Lusztig varieties. We describe them via a map to a
Deligne-Lusztig variety.

* When m =5, 6, describe all intersections of irr. comps.



Comments

e This theorem crucially uses the results in “Cycles on
Shimura Varieties...” by Xiao and Zhu. This project arose
from discussions at the 2019 AIM workshop “Geometric
Realizations of Jacquet-Langlands Correspondences.”

* Joint with Naoki Imai and Ben Howard, currently studying
the structure of A'(2, m - 2) (as opposed to N/ (2, m — 2)P™)

¢ Beginning at the 2022 Rethinking Number Theory
Workshop, currently studying properties of the
Ekedahl-Oort stratification (joint with D. Bhamidipati, H.
Goodson, S. Groen, S. Nair, E. Stacy).



The GU(2,4) Rapoport-Zink Space

Thm (Imai-F.):

o N(2,4)™" contains three isomorphism classes of
irreducible components: X, Y, and Z. We describe these
as closures in a certain flag scheme

e The component X generalizes those occurring in A/(1,2).
The component Y generalizes those occurring in N'(2,2).
Both X and Y are Deligne-Lusztig varieties.

¢ The final irreducible component Z is notable in that it is not
isomorphic to a Deligne-Lusztig variety.

* We describe all possible intersections of irr. components.



Notation
o Let Qp = QF, with ring of integers Z,.

e Vis an m-dimensional vector space over Qp, with
Qp-valued Hermitian form.

e For any lattice L ¢ V, LY denotes the dual lattice.

* Ao ¢ V afixed self-dual Z,-lattice.



Relative Position of Lattices

e Given lattices Ly and L, in V, we say
Invy, (L2) = (M, M2, ..., Np) if
L1 = Spanzp{e,-}7:’1 and L2 = Spanzp{pnfe,- 7:71.

o Example: Ly =Zp @ Zp® Zp, Lp = pPPLp @ Zp & Zp.
Then II'lVL1 (I_2) = (2, 0, 0)

o Example: Ly =Zp® Zp ® Zp, Lo = pllp ® pZp ® Zp.
Then IIlVL1 (Lg) = (1 R 1,0)



A Component Generalizing Vollaard-Wedhorn

Define X c V'(2,4)*" as:

< 0
X G700l

e

3 1xo 3 3
Gr,,; Gr,,i« x Gry,

Meaning:

X(Fp) = {Lattices LcV

v =(1,0,0,0,0,0)
Vi =(0,0,0,0,0,-1)
u* =(0,0,0,0,-1,-1).

Inv (F(LY)) = p*,

Invp, (L) = vf, }
IIlV/\O(F(LV)) =11



A Component Generalizing Vollaard-Wedhorn

¢ Rephrase as a single chain condition:

Inva, (L) = (1,0,0,0,0,0),
InVL(F(LV)) = (0’030707_17_1 )a
Invpa, (F(LY)) = (0,0,0,0,0,-1)

= {Lattices Lc V‘ PAo %pF(LV) < L < Ao }

X(Fp) = {Lattices LcVv

¢ Realized as a Deligne-Lusztig variety as:
{Lg V| pho %pF(LV) = L%/\o} S {0 No/pNo | dim(£) =1, £c*}
L= pF(L")/pho

e |f V were dim 3 instead, this recovers the Fermat curve
appearing in A'(1,2).



A Component Generalizing Howard-Pappas

* Similarly, define Y c A/(2,4)P":

InV/\o(L) = (07070707_17_1)5
Y (Fp) = { Lattices Lc V | Invi(3F(L)) =(0,0,0,0,-1,-1),
InV/\O(%F(LV)) = (0707_17_17_1’_1)

® Y is isomorphic to a Deligne-Lusztig variety

e |f V were dim 4 instead, this recovers the Fermat surface
appearing in A'(2,2).



A New Component

e There is an open subset Z of Z defined by:

Inv, (F(LY)) = p*,

. Invp, (L) = v5, a
Z(Fp) = { Lattices Lc V
IIIV/\O(F(LV)) =V

»=(1,0,0,0,-1,-1) v, =(1,1,0,0,0,-1)
©* =(0,0,0,0,-1,-1).
e Zis not a Deligne-Lusztig variety, but does map to one:
7> Gr,,z*& x Gr,,;ﬁ

Ll—>(Lﬂ/\0,L+/\0)

2 1 S +1
© ZnZx{[xo:ixiixg) € | BEoxT =0, Blox )



The Supersingular Locus of M(2,4)
Cor (Imai-F.):

Assume 7 is suff. small. (M (2, 4);35)perf contains three
isomorphism classes of irreducible components: X, Y, and Z,
which we describe concretely. The component Y is notable in
that it is not isomorphic to a Deligne-Lusztig variety.

We describe all possible intersections of irr. components.

M(2,4)p M(2,4)0 M(2,4)

dim8 dim8
— —
p (0)

Spec(Ok ®z Zp))



Some Takeaways

1. The Rapoport-Zink spaces N (a, b) occur naturally in the
study of M(a, b);°, and are closely related to the
supersingular loci M(a, b)z°.

2. In some cases, the supersingular loci M(a, b)y® have
especially nice structure (can be written as a union of
Deligne-Lusztig varieties, intersection combinatorics
controlled by a B-T building, are a union of Ekedahl-Oort
strata.)

3. Warning! Not all Shimura varieties of PEL-type (or even all
unitary Shimura varieties) have this nice structure.

o,m | (1,1) | (1,2 | (A,m-1),|(22) (2:3), (2,m-2), | (a,m-a)
m>4 (2,4) m>7 a>3
m>6
Imai-F. Imai-F. [ let
0-dim'l | 0-dim’l | Vollaard | Vollaard- | Howard- | 500" 2091 neomplete
2008 Wedhorn | Pappas ;
2010 2014 after perf. | (partial)




Thank you!



