
Supersingular Loci of
Unitary Shimura Varieties

Maria Fox, Oklahoma State University



Objectives

1. Discuss structure of “low-dimensional” examples of
supersingular loci

2. Introduce main tool for studying supersingular loci

3. See how the general situation differs from the
“low-dimensional” examples



Motivation: Modular Curves over C
Seek to understand

Y(C) = {elliptic curves E over C}/ ≅

● Define
H → Y(C)

τ ↦ C/(Z + τZ)

● C/(Z + τ1Z) ≅ C/(Z + τ2Z) if and only if τ2 = ( a b
c d ) ⋅ τ1.

SL2(Z)/H ≅ Y(C)

● Easy to understand Y(C) as a complex manifold, since
elliptic curves over C are “linear algebraic.”



Motivation: Modular Curves over Fp

Seek to understand

Y(Fp) = {elliptic curves E over Fp}/ ≅

j-invariant (Dedekind or Klein, 1800’s)

There is a bijection:
Y(Fp) ↔ Fp

E ∶ y2 = x3 +Ax +B ↦ j(E) =
1728(4A)3

16(4A3+27B2)

Ej ∶ y2 = x3 − 1
4x2 − 36

j−1728x − 1
j−1728 ←[ j

Note: this construction is not “linear-algebraic”!



Motivation: Modular Curves over Fp

● An elliptic curve E/Fp can be ordinary or supersingular.

● The supersingular locus Y(Fp)
ss ⊆ Y(Fp) parametrizes

supersingular elliptic curves.

Cor. to Eichler-Deuring Mass Formula:

There are approx. p
12 supersingular elliptic curves over Fp.



GU(a,b) Shimura Variety
Fix a quad. im. field K and p ≠ 2 inert in K

The GU(a,b) Shimura varietyM(a,b)

parametrizes (A, ι, λ, η):

● A an A.V. of dim a+b ● ι an action of O ⊆ K
Meeting the signature (a,b) condition:

det(T − ι(k); Lie(A)) = (T − ϕ1(k))a(T − ϕ2(k))b.

Example: Let E ∶ y2 = x3 − x . Z[i] acts on E , where:

i ∶ E(C)→ E(C)

(x ,y)↦ (−x , iy)
Define Z[i]-action on A = E ×E ×E as:



GU(a,b) Shimura Variety

The GU(a,b) Shimura varietyM(a,b)

parametrizes (A, ι, λ, η):

● A an A.V. of dim a+b ● ι an action of O ⊆ K
Meeting the signature (a,b) condition:

det(T − ι(k); Lie(A)) = (T − ϕ1(k))a(T − ϕ2(k))b.

dim ab

Spec(OF ⊗Z Z(p))
(0)(p)

M(a,b)M(a,b)0M(a,b)p
dim ab

M(a,b)0(C) ≅ ⊔n
i=1 Γi/Ha,b, analogous to SL2(Z)/H.



GU(a,b) Shimura Variety
The GU(a,b) Shimura varietyM(a,b)

parametrizes (A, ι, λ, η):

● A an A.V. of dim a+b ● ι an action of O ⊆ K
Meeting the signature (a,b) condition:

det(T − ι(k); Lie(A)) = (T − ϕ1(k))a(T − ϕ2(k))b.

dim ab

Spec(OF ⊗Z Z(p))
(0)(p)

M(a,b)M(a,b)0M(a,b)p
dim ab

The supersingular locusM(a,b)ss
p parametrizes (A, ι, λ, η)

where A is supersingular.



Results on Geometry ofM(a,b)ss
p

● The geometry ofM(a,b)ss
p depends on the signature

(a,b). M(a,b) ≅M(b,a), so take b ≥ a ≥ 0.
● The supersingular lociM(a,b)ss

p have been described by...

(0,m) (1,1) (1,2) (1,m − 1),
m ≥ 4

(2,2) (2,3),
(2,4)

(2,m−2),
m ≥ 7

(a,m − a)
a ≥ 3
m ≥ 6

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.

Imai-F.
2021
(partial)

Incomplete

● For motivation, we’ll consider the (1,2) = (2,1) and (2,2)
cases.

● We’ll see how the (2,4) case both generalizes the (1,2)
and (2,2) cases, and contains new structure.



Ex: The Supersingular Locus ofM(1,2)
Theorem (Vollaard ’08)

Assume η is suff. small. Each irreducible component of
M(1,2)ss

p is isomorphic to the Fermat curve

C ∶ xp+1
0 + xp+1

1 + xp+1
2 ⊂ P2

Fp
.

There are p3 + 1 int. pts on each irr. comp., and each int. point
is the intersection of p + 1 irr. comps.

dim 2

Spec(OK ⊗Z Z(p))
(0)p

M(1,2)M(1,2)0M(1,2)p

M(1,2)ss
p

dim 2



Ex: The Supersingular Locus ofM(2,2)
Theorem (Howard-Pappas ’14)

Assume η is suff. small. Each irreducible component of
M(2,2)ss

p is isomorphic to the Fermat surface

S ∶ xp+1
0 + xp+1

1 + xp+1
2 + xp+1

3 ⊂ P3
Fp
.

Any two irr. components intersect trivially, in a projective line, or
in a point.

dim 4

Spec(Z(p))
(0)p

M(2,2)M(2,2)0M(2,2)p

M(2,2)ss
p

dim 4



Deligne-Lusztig Varieties
Moduli spaces of flags in char. p vector spaces, with “fixed
relative position” to Frobenius-twist:
Given G over Fp, B, and w ∈ NG(T )/T :

X(w) = {gB ∈ G/B ∣ g−1Fr(g) ∈ BwB}.

Example: G = SL2, B upper-tri, NG(T )/T = {1, ( 0 −1
1 0 )}.

● G/B ≅ { lines ` ⊆ F2
p}

● rel(`1, `2) = 1 if and only if `1 = `2

● If ` = ⟨coeo + c1e1⟩, Fr(`) = ⟨cp
oeo + cp

1e1⟩

● So,
X(1) = {` ⊆ F2

p ∣ rel(`,Fr(`)) = 1} = P1(Fp)

X( 0 −1
1 0 ) = {` ⊆ F2

p ∣ rel(`,Fr(`)) = ( 0 −1
1 0 )} = P1(Fp) ∖ P1(Fp).



General Situation
● The signature (1,2) and signature (2,2) supersingular loci

have similar structure: their irr. components are
Deligne-Lusztig varieties, intersection combinatorics come
from a Bruhat-Tits building, the supersingular locus is a
union of Ekedahl-Oort Strata.

● These are examples of Coxeter Type. Görtz, He, and Nie
have classified which supersingular loci have this structure,
after perfection. First paper (2013) lists all 21 possibilities.

● Most unitary Shimura varieties do not have this structure.

(0,m) (1,1) (1,2) (1,m − 1),
m ≥ 4

(2,2) (2,3),
(2,4)

(2,m−2),
m ≥ 7

(a,m − a)
a ≥ 3
m ≥ 6

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.

Imai-F.
2021
(partial)

Incomplete



Strategy: Rapoport-Zink Uniformization
● If A is an abelian variety of dim. m over C, study lattice

Λ ⊆ Cm such that:
A(C) ≅ Cm/Λ.

(Z-module of rank 2m)
● If A is an abelian variety of dim. m over L, and p ∤ char(L),

study:
Tp(A) = lim

←
A[pk ](L)

(Zp-module of rank 2m)
● If A is a supersingular abelian variety of dim. m over Fp,

Tp(A) = 0. Instead, study the p-divisible group:

A[p∞] = lim
→

A[pk ].

Equivalently, study the p-adic Dieudonné module Dp(A)

(Z̆p-module of rank 2m, with operator F )



Unitary Rapoport-Zink Spaces
Unitary Rapoport-Zink Space: N (a,b)(S) = {(G, ι, λ, ρ)}/ ≅,

● G a supersingular p-div.
gp over S of dim a + b

● ι ∶ O ⊗Z Zp → End(G) of
sign. (a,b)

● ρ ∶ GS0 → GS0 , quasi-isog

Rapoport-Zink Uniformization

M(a,b)ss
p ≅

m
⊔
j=1

Γj/N (a,b)

The Γj are discrete groups (depending on level structure) acting
on N (a,b).

Can study the (more “linear-algebraic”) Rapoport-Zink spaces
N (a,b) to understand the supersingular lociM(a,b)ss

p



Unitary Rapoport-Zink Spaces

Unitary Rapoport-Zink Space: N (a,b)(Fp) = {(G, ι, λ, ρ)}/ ≅,

N (a,b)(Fp) = {M ⊆ N ∣ pM ⊆ FM ⊆ M, O − stable, M = piM∨}

Rapoport-Zink Uniformization

M(a,b)ss
p ≅

m
⊔
j=1

Γj/N (a,b)

The Γj are discrete groups (depending on level structure) acting
on N (a,b).

Can study the (more “linear-algebraic”) Rapoport-Zink spaces
N (a,b) to understand the supersingular lociM(a,b)ss

p



The GU(1,2) Rapoport-Zink Space

Thm (Vollaard): Geometry of N (1,2)

● Each irr. comp. of N (1,2) is isom to:

C ∶ xp+1
0 + xp+1

1 + xp+1
2 = 0 ⊂ P2

Fp
.

(a Deligne-Lusztig variety). Any two irr. components
intersect trivially or in a single point.

● Each irr. comp. contains p3 + 1 int. pts, and each int pt is
the intersection of p + 1 irr. comp.

● N (1,2) has two Ekedahl-Oort strata: the intersection
points, and their complement.



Why Expect Deligne-Lusztig Varieties?
● Replace (G, ι, λ, ρ) with p-adic Dieudonné module M to

identify:

N (1,2)(Fp) = {M ⊆ N ∣ conditions wrt F}.

● (Convert from N to an alternative Hermitian space W : )

N (1,2)(Fp) = {L ⊆ W ∣ conditions wrt F}.

● Irreducible components NΛ ⊂ N (1,2) defined as:

NΛ(Fp) = {L ⊆ W ∣ pΛ ⊆ L ⊆ Λ & conditions wrt F}.

● Replace L with ` = L/pΛ

NΛ(Fp) = {` ⊆ (Λ/pΛ)Fp
∣ conditions wrt F},

a Deligne-Lusztig variety.



Bruhat-Tits Building
● From the relevant hermitian space W for N (1,2), can

construct a Bruhat Tits building B:
● B is an (infinite) tree, with two types of vertices:

“Type-1” (Λ ⊆ W s.t. pΛ∨ ⊆
1

Λ ⊆ Λ∨ )

“Type-3” (Λ ⊆ W s.t. pΛ∨ ⊆
3

Λ ⊆ Λ∨ )

Type-1 vertices have degree p + 1, Type-3 have p3 + 1.



Ekedahl-Oort Strata

● (G1, ι1, λ, ρ1) and (G2, ι2, λ, ρ2) are in the same
Ekedahl-Oort stratum of N (1,2) if and only if
(G1[p], ι1, λ1) ≅ (G2[p], ι2, λ2).

● N (1,2) has two Ekedahl-Oort strata: the intersection
points, and their complement.

● The intersection points are exactly those points where
G[p] ≅ E[p]3 for a supersingular elliptic curve E .



The GU(1,2) Rapoport-Zink Space Again

Thm (Vollaard): Geometry of N (1,2)

● Each irr. comp. of N (1,2) is isom to:

C ∶ xp+1
0 + xp+1

1 + xp+1
2 = 0 ⊂ P2

Fp
.

(a Deligne-Lusztig variety). Any two irr. components
intersect trivially or in a single point.

● Each irr. comp. contains p3 + 1 int. pts, and each int pt is
the intersection of p + 1 irr. comp.

● N (1,2) has two Ekedahl-Oort strata: the intersection
points, and their complement.



The GU(1,2) Rapoport-Zink Space Again

Thm (Vollaard): Geometry of N (1,2) (Rephrased)

● Each irr. comp. of N (1,2) is isom to a particular kind of
Deligne-Lusztig variety

● The intersection combinatorics come from a relevant
Bruhat-Tits building

● N (1,2) is a union of Ekedahl-Oort strata



The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):

● Each irr. comp. of N (2,2) is isom to:

S ∶ xp+1
0 + xp+1

1 + xp+1
2 + xp+1

3 = 0 ⊂ P3
Fp
.

Any two irr. comp. intersect trivially, intersect in a single
point, or have intersection isomorphic to P1

Fp
.

● For a fixed irreducible component X , there are
p(p3 + 1)(p2 + 1) irreducible components X ′ such that
X ∩X ′ is a single point and (p3 + 1)(p + 1) irreducible
components X ′′ such that X ∩X ′′ is isomorphic to P1

Fp
.



General Situation
● The signature (1,2) and signature (2,2) Rapoport-Zink

spaces have similar structure: their irr. components are
Deligne-Lusztig varieties, intersection combinatorics come
from a Bruhat-Tits building, are a union of Ekedahl-Oort
Strata.

● These are examples of Coxeter Type.

● Most unitary Rapoport-Zink spaces do not have this
structure.

(0,m) (1,1) (1,2) (1,m − 1),
m ≥ 4

(2,2) (2,3),
(2,4)

(2,m−2),
m ≥ 7

(a,m − a)
a ≥ 3
m ≥ 6

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.

Imai-F.
2021
(partial)

Incomplete



The GU(2,m − 2) Rapoport-Zink Space

Thm (Imai-F.):

Let m ≥ 5:
● N (2,m − 2)perf is (m − 2)-dimensional, and contains ⌊m

2 ⌋

isomorphism classes of irreducible components.
● One component X generalizes those of in N (1,2), and is a

Deligne-Lusztig variety
● If m is even, there is a component Y generalizing those of
N (2,2), and is a Deligne-Lusztig variety.

● The remaining irreducible components are not
Deligne-Lusztig varieties. We describe them via a map to a
Deligne-Lusztig variety.

● When m = 5,6, describe all intersections of irr. comps.



Comments

● This theorem crucially uses the results in “Cycles on
Shimura Varieties...” by Xiao and Zhu. This project arose
from discussions at the 2019 AIM workshop “Geometric
Realizations of Jacquet-Langlands Correspondences.”

● Joint with Naoki Imai and Ben Howard, currently studying
the structure of N (2,m − 2) (as opposed to N (2,m − 2)perf)

● Beginning at the 2022 Rethinking Number Theory
Workshop, currently studying properties of the
Ekedahl-Oort stratification (joint with D. Bhamidipati, H.
Goodson, S. Groen, S. Nair, E. Stacy).



The GU(2,4) Rapoport-Zink Space

Thm (Imai-F.):

● N (2,4)perf contains three isomorphism classes of
irreducible components: X , Y , and Z . We describe these
as closures in a certain flag scheme

● The component X generalizes those occurring in N (1,2).
The component Y generalizes those occurring in N (2,2).
Both X and Y are Deligne-Lusztig varieties.

● The final irreducible component Z is notable in that it is not
isomorphic to a Deligne-Lusztig variety.

● We describe all possible intersections of irr. components.



Notation

● Let Q̆p = Q̂nr
p , with ring of integers Z̆p.

● V is an m-dimensional vector space over Q̆p, with
Q̆p-valued Hermitian form.

● For any lattice L ⊆ V , L∨ denotes the dual lattice.

● Λ0 ⊆ V a fixed self-dual Z̆p-lattice.



Relative Position of Lattices

● Given lattices L1 and L2 in V , we say
InvL1(L2) = (n1,n2, . . . ,nm) if
L1 = SpanZ̆p

{ei}
m
i=1 and L2 = SpanZ̆p

{pni ei}
m
i=1.

● Example: L1 = Z̆p ⊕ Z̆p ⊕ Z̆p, L2 = p2Z̆p ⊕ Z̆p ⊕ Z̆p.
Then InvL1(L2) = (2,0,0).

● Example: L1 = Z̆p ⊕ Z̆p ⊕ Z̆p, L2 = pZ̆p ⊕ pZ̆p ⊕ Z̆p.
Then InvL1(L2) = (1,1,0).



A Component Generalizing Vollaard-Wedhorn

Define X ⊆ N (2,4)perf as:

X //

��

G̊r
0
(ν∗1 ,µ

∗)∣ν1

pr1×m
��

ν1 = (1,0,0,0,0,0)

ν∗1 = (0,0,0,0,0,−1)

G̊rν∗1
1×σ // G̊rν∗1 × G̊rν1 µ∗ = (0,0,0,0,−1,−1).

Meaning:

X(Fp) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lattices L ⊆ V

RRRRRRRRRRRRRR

InvΛ0(L) = ν
∗
1 ,

InvL(F(L∨)) = µ∗,
InvΛ0(F(L∨)) = ν1

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭



A Component Generalizing Vollaard-Wedhorn

● Rephrase as a single chain condition:

X(Fp) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lattices L ⊆ V

RRRRRRRRRRRRRR

InvΛ0(L) = (1,0,0,0,0,0),
InvL(F(L∨)) = (0,0,0,0,−1,−1),
InvΛ0(F(L∨)) = (0,0,0,0,0,−1)

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

= {Lattices L ⊆ V ∣ pΛ0 ⊆
1

pF(L∨) ⊆
1

L ⊆
1

Λ0 }

● Realized as a Deligne-Lusztig variety as:

{L ⊆ V ∣ pΛ0 ⊆
1

pF(L∨) ⊆
1

L ⊆
1

Λ0}
∼
Ð→ {` ⊆ Λ0/pΛ0 ∣ dim(`) = 1, ` ⊆ `⊥}

L↦ pF(L∨)/pΛ0

● If V were dim 3 instead, this recovers the Fermat curve
appearing in N (1,2).



A Component Generalizing Howard-Pappas

● Similarly, define Y ⊆ N (2,4)perf:

Y (Fp) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Lattices L ⊆ V

RRRRRRRRRRRRRRR

InvΛ0(L) = (0,0,0,0,−1,−1),
InvL(

1
p F(L∨)) = (0,0,0,0,−1,−1),

InvΛ0(
1
p F(L∨)) = (0,0,−1,−1,−1,−1)

⎫⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎭

● Y is isomorphic to a Deligne-Lusztig variety

● If V were dim 4 instead, this recovers the Fermat surface
appearing in N (2,2).



A New Component
● There is an open subset Z̊ of Z defined by:

Z̊(Fp) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

Lattices L ⊆ V

RRRRRRRRRRRRRR

InvΛ0(L) = ν
∗
2 ,

InvL(F(L∨)) = µ∗,
InvΛ0(F(L∨)) = ν2

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

a

ν2 = (1,0,0,0,−1,−1) ν∗2 = (1,1,0,0,0,−1)

µ∗ = (0,0,0,0,−1,−1).

● Z̊ is not a Deligne-Lusztig variety, but does map to one:

π ∶ Z̊ → Grν∗2,+ ×Grν∗2,−
L↦ (L ∩ Λ0,L + Λ0)

● Z ∖ Z̊ ≅ {[x0 ∶ x1 ∶ ⋯ ∶ x5] ∈ P5
Fp

∣ ∑5
i=0 xp+1

i = 0, ∑5
i=0 xp3+1

i }



The Supersingular Locus ofM(2,4)
Cor (Imai-F.):

Assume η is suff. small. (M(2,4)ss
p )perf contains three

isomorphism classes of irreducible components: X , Y , and Z ,
which we describe concretely. The component Y is notable in
that it is not isomorphic to a Deligne-Lusztig variety.
We describe all possible intersections of irr. components.

dim 8

Spec(OK ⊗Z Z(p))
(0)p

M(2,4)M(2,4)0M(2,4)p

(M(2,4)ss
p )perf

dim 8



Some Takeaways
1. The Rapoport-Zink spaces N (a,b) occur naturally in the

study ofM(a,b)ss
p , and are closely related to the

supersingular lociM(a,b)ss
p .

2. In some cases, the supersingular lociM(a,b)ss
p have

especially nice structure (can be written as a union of
Deligne-Lusztig varieties, intersection combinatorics
controlled by a B-T building, are a union of Ekedahl-Oort
strata.)

3. Warning! Not all Shimura varieties of PEL-type (or even all
unitary Shimura varieties) have this nice structure.

(0,m) (1,1) (1,2) (1,m − 1),
m ≥ 4

(2,2) (2,3),
(2,4)

(2,m−2),
m ≥ 7

(a,m − a)
a ≥ 3
m ≥ 6

0-dim’l 0-dim’l Vollaard
2008

Vollaard-
Wedhorn
2010

Howard-
Pappas
2014

Imai-F.
2021
after perf.

Imai-F.
2021
(partial)

Incomplete



Thank you!


