Supersingular Loci of Unitary Shimura Varieties

Maria Fox, Oklahoma State University

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1. Discuss structure of "low-dimensional" examples of supersingular loci

2. Introduce main tool for studying supersingular loci

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

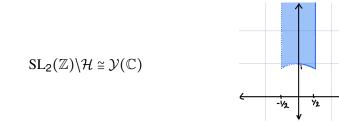
3. See how the general situation differs from the "low-dimensional" examples

$$\mathcal{Y}(\mathbb{C}) = \{ \text{elliptic curves } E \text{ over } \mathbb{C} \} / \cong$$

Define

$$\begin{aligned} \mathcal{H} &\to \mathcal{Y}(\mathbb{C}) \\ \tau &\mapsto \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z}) \end{aligned}$$

• $\mathbb{C}/(\mathbb{Z} + \tau_1\mathbb{Z}) \cong \mathbb{C}/(\mathbb{Z} + \tau_2\mathbb{Z})$ if and only if $\tau_2 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \tau_1$.

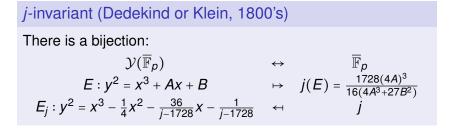


 Easy to understand 𝔅(𝔅) as a complex manifold, since elliptic curves over 𝔅 are "linear algebraic."

Motivation: Modular Curves over $\overline{\mathbb{F}}_p$

Seek to understand

 $\mathcal{Y}(\overline{\mathbb{F}}_{\rho}) = \{ \text{elliptic curves } E \text{ over } \overline{\mathbb{F}}_{\rho} \} / \cong$



Note: this construction is not "linear-algebraic"!

Motivation: Modular Curves over $\overline{\mathbb{F}}_{p}$

- An elliptic curve $E/\overline{\mathbb{F}}_{\rho}$ can be ordinary or supersingular.
- The supersingular locus 𝒴(𝔽_p)^{ss} ⊆ 𝒴(𝔽_p) parametrizes supersingular elliptic curves.

Cor. to Eichler-Deuring Mass Formula:

There are approx. $\frac{p}{12}$ supersingular elliptic curves over $\overline{\mathbb{F}}_{p}$.

GU(a, b) Shimura Variety Fix a quad. im. field K and $p \neq 2$ inert in K

The GU(a, b) Shimura variety $\mathcal{M}(a, b)$

parametrizes $(A, \iota, \lambda, \eta)$:

• *A* an A.V. of dim a+bMeeting the signature (a, b) condition:

$$\det(T - \iota(k); \operatorname{Lie}(A)) = (T - \varphi_1(k))^a (T - \varphi_2(k))^b.$$

Example: Let $E: y^2 = x^3 - x$. $\mathbb{Z}[i]$ acts on E, where: $i: E(\mathbb{C}) \rightarrow E(\mathbb{C})$ $(x, y) \mapsto (-x, iy)$ Define $\mathbb{Z}[i]$ -action on $A = E \times E \times E$ as:

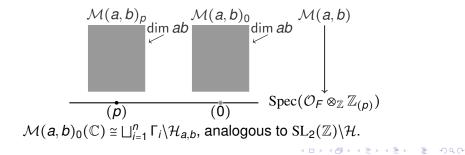
GU(a, b) Shimura Variety

The GU(a, b) Shimura variety $\mathcal{M}(a, b)$

parametrizes $(A, \iota, \lambda, \eta)$:

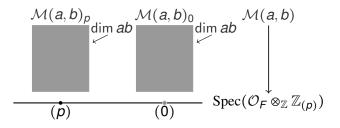
• *A* an A.V. of dim a+b • ι an action of $\mathcal{O} \subseteq K$ Meeting the signature (a, b) condition:

$$\det(T - \iota(k); \operatorname{Lie}(A)) = (T - \varphi_1(k))^a (T - \varphi_2(k))^b.$$



GU(a, b) Shimura VarietyThe GU(a, b) Shimura variety $\mathcal{M}(a, b)$ parametrizes $(A, \iota, \lambda, \eta)$: • A an A.V. of dim a+b Meeting the signature (a, b) condition:

 $\det(T - \iota(k); \operatorname{Lie}(A)) = (T - \varphi_1(k))^a (T - \varphi_2(k))^b.$



The supersingular locus $\mathcal{M}(a, b)_{p}^{ss}$ parametrizes $(A, \iota, \lambda, \eta)$ where A is supersingular.

Results on Geometry of $\mathcal{M}(a, b)_{p}^{ss}$

- The geometry of $\mathcal{M}(a,b)_{\rho}^{ss}$ depends on the signature (a,b). $\mathcal{M}(a,b) \cong \mathcal{M}(b,a)$, so take $b \ge a \ge 0$.
- The supersingular loci $\mathcal{M}(a, b)_{D}^{ss}$ have been described by...

(0, <i>m</i>)	(1,1)	(1,2)	(1, <i>m</i> −1),	(2,2)	(2,3),	(2, <i>m</i> -2),	(<i>a</i> , <i>m</i> – <i>a</i>)
			<i>m</i> ≥ 4		(2,4)	<i>m</i> ≥ 7	a≥3
							<i>m</i> ≥ 6
0-dim'l	0-dim'l	Vollaard	Vollaard-	Howard-	Imai-F.	Imai-F.	Incomplete
		2008	Wedhorn	Pappas	2021	2021	
			2010	2014	after perf.	(partial)	

- For motivation, we'll consider the (1,2) = (2,1) and (2,2) cases.
- We'll see how the (2,4) case both generalizes the (1,2) and (2,2) cases, and contains new structure.

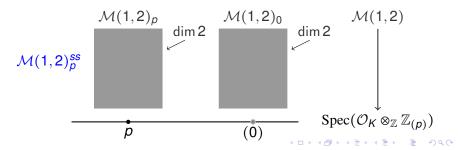
Ex: The Supersingular Locus of $\mathcal{M}(1,2)$

Theorem (Vollaard '08)

Assume η is suff. small. Each irreducible component of $\mathcal{M}(\mathbf{1},\mathbf{2})_p^{ss}$ is isomorphic to the Fermat curve

$$C: x_0^{p+1} + x_1^{p+1} + x_2^{p+1} \subset \mathbb{P}^2_{\overline{\mathbb{F}}_p}.$$

There are $p^3 + 1$ int. pts on each irr. comp., and each int. point is the intersection of p + 1 irr. comps.



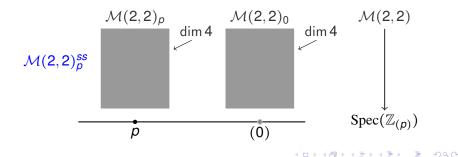
Ex: The Supersingular Locus of $\mathcal{M}(2,2)$

Theorem (Howard-Pappas '14)

Assume η is suff. small. Each irreducible component of $\mathcal{M}(\mathbf{2},\mathbf{2})_p^{ss}$ is isomorphic to the Fermat surface

$$S: x_0^{p+1} + x_1^{p+1} + x_2^{p+1} + x_3^{p+1} \subset \mathbb{P}^3_{\mathbb{F}_p}.$$

Any two irr. components intersect trivially, in a projective line, or in a point.



Deligne-Lusztig Varieties

Moduli spaces of flags in char. *p* vector spaces, with "fixed relative position" to Frobenius-twist: Given *G* over \mathbb{F}_p , *B*, and $w \in N_G(T)/T$:

$$X(w) = \{gB \in G/B \mid g^{-1}Fr(g) \in BwB\}.$$

Example: $G = SL_2$, *B* upper-tri, $N_G(T)/T = \{1, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}\}$.

•
$$G/B \cong \{ \text{ lines } \ell \subseteq \overline{\mathbb{F}}_p^2 \}$$

•
$$rel(\ell_1, \ell_2) = 1$$
 if and only if $\ell_1 = \ell_2$

• If
$$\ell = \langle c_o e_o + c_1 e_1 \rangle$$
, $\operatorname{Fr}(\ell) = \langle c_o^p e_o + c_1^p e_1 \rangle$

• So,

$$X(1) = \{ \ell \subseteq \overline{\mathbb{F}}_{\rho}^{2} \mid \operatorname{rel}(\ell, \operatorname{Fr}(\ell)) = 1 \} = \mathbb{P}^{1}(\mathbb{F}_{\rho})$$

$$X\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \{ \ell \subseteq \overline{\mathbb{F}}_{\rho}^{2} \mid \operatorname{rel}(\ell, \operatorname{Fr}(\ell)) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \} = \mathbb{P}^{1}(\overline{\mathbb{F}}_{\rho}) \smallsetminus \mathbb{P}^{1}(\mathbb{F}_{\rho}).$$

General Situation

- The signature (1,2) and signature (2,2) supersingular loci have similar structure: their irr. components are Deligne-Lusztig varieties, intersection combinatorics come from a Bruhat-Tits building, the supersingular locus is a union of Ekedahl-Oort Strata.
- These are examples of Coxeter Type. Görtz, He, and Nie have classified which supersingular loci have this structure, after perfection. First paper (2013) lists all 21 possibilities.
- Most unitary Shimura varieties do not have this structure.

(0, <i>m</i>)	(1,1)	(1,2)	(1, m - 1),	(2,2)	(2,3),	(2, <i>m</i> -2),	(a, m - a)
			<i>m</i> ≥ 4		(2,4)	<i>m</i> ≥ 7	<i>a</i> ≥ 3
							<i>m</i> ≥ 6
0-dim'l	0-dim'l	Vollaard 2008	Vollaard- Wedhorn 2010	Howard- Pappas 2014	Imai-F. 2021 after perf.	Imai-F. 2021 (partial)	Incomplete

Strategy: Rapoport-Zink Uniformization

• If *A* is an abelian variety of dim. *m* over \mathbb{C} , study lattice $\Lambda \subseteq \mathbb{C}^m$ such that:

$$A(\mathbb{C}) \cong \mathbb{C}^m / \Lambda.$$

 $(\mathbb{Z}$ -module of rank 2*m*)

• If A is an abelian variety of dim. *m* over L, and *p* + char(L), study:

$$T_{p}(A) = \lim_{\leftarrow} A[p^{k}](\overline{L})$$

 $(\mathbb{Z}_p$ -module of rank 2*m*)

• If *A* is a supersingular abelian variety of dim. *m* over $\overline{\mathbb{F}}_{p}$, $T_{p}(A) = 0$. Instead, study the p-divisible group:

$$A[p^{\infty}] = \lim_{\rightarrow} A[p^k].$$

Equivalently, study the p-adic Dieudonné module $D_p(A)$ (\mathbb{Z}_p -module of rank 2*m*, with operator *F*)

Unitary Rapoport-Zink Spaces

Unitary Rapoport-Zink Space: $\mathcal{N}(a,b)(S) = \{(G,\iota,\lambda,\rho)\}/\cong$,

• *G* a supersingular *p*-div. gp over *S* of dim *a* + *b*

- $\iota : \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_{\rho} \to \operatorname{End}(G)$ of sign. (a, b)
- $\rho: G_{S_0} \to \mathbb{G}_{S_0}$, quasi-isog

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Rapoport-Zink Uniformization

$$\mathcal{M}(a,b)_{p}^{ss} \cong \bigsqcup_{j=1}^{m} \Gamma_{j} \setminus \mathcal{N}(a,b)$$

The Γ_j are discrete groups (depending on level structure) acting on $\mathcal{N}(a, b)$.

Can study the (more "linear-algebraic") Rapoport-Zink spaces $\mathcal{N}(a, b)$ to understand the supersingular loci $\mathcal{M}(a, b)_p^{ss}$

Unitary Rapoport-Zink Spaces

Unitary Rapoport-Zink Space: $\mathcal{N}(a, b)(\overline{\mathbb{F}}_{p}) = \{(G, \iota, \lambda, \rho)\}/\cong$,

 $\mathcal{N}(a,b)(\overline{\mathbb{F}}_{p}) = \{ M \subseteq \mathbb{N} \mid pM \subseteq FM \subseteq M, \ \mathcal{O} - \text{stable}, \ M = p^{i}M^{\vee} \}$

Rapoport-Zink Uniformization

$$\mathcal{M}(a,b)_{p}^{ss} \cong \bigsqcup_{j=1}^{m} \Gamma_{j} \setminus \mathcal{N}(a,b)$$

The Γ_j are discrete groups (depending on level structure) acting on $\mathcal{N}(a, b)$.

Can study the (more "linear-algebraic") Rapoport-Zink spaces $\mathcal{N}(a, b)$ to understand the supersingular loci $\mathcal{M}(a, b)_{p}^{ss}$

The GU(1,2) Rapoport-Zink Space

Thm (Vollaard): Geometry of $\mathcal{N}(1,2)$

• Each irr. comp. of $\mathcal{N}(1,2)$ is isom to:

$$C : x_0^{p+1} + x_1^{p+1} + x_2^{p+1} = 0 \subset \mathbb{P}^2_{\overline{\mathbb{F}}_p}$$

(a Deligne-Lusztig variety). Any two irr. components intersect trivially or in a single point.

• Each irr. comp. contains $p^3 + 1$ int. pts, and each int pt is the intersection of p + 1 irr. comp.

(日) (日) (日) (日) (日) (日) (日)

• $\mathcal{N}(1,2)$ has two Ekedahl-Oort strata: the intersection points, and their complement.

Why Expect Deligne-Lusztig Varieties?

Replace (G, ι, λ, ρ) with p-adic Dieudonné module M to identify:

 $\mathcal{N}(1,2)(\overline{\mathbb{F}}_{\rho}) = \{ M \subseteq \mathbb{N} \mid \text{ conditions wrt } F \}.$

• (Convert from \mathbb{N} to an alternative Hermitian space W:)

 $\mathcal{N}(1,2)(\overline{\mathbb{F}}_p) = \{L \subseteq W \mid \text{ conditions wrt } F\}.$

• Irreducible components $\mathcal{N}_{\Lambda} \subset \mathcal{N}(1,2)$ defined as:

 $\mathcal{N}_{\Lambda}(\overline{\mathbb{F}}_{\rho}) = \{ L \subseteq W \mid \rho \Lambda \subseteq L \subseteq \Lambda \text{ & conditions wrt } F \}.$

• Replace *L* with $\ell = L/p\Lambda$

 $\mathcal{N}_{\Lambda}(\overline{\mathbb{F}}_{\rho}) = \{\ell \subseteq (\Lambda/\rho\Lambda)_{\overline{\mathbb{F}}_{\rho}} \mid \text{conditions wrt } F\},\$

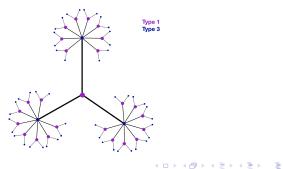
▲□▶▲□▶▲□▶▲□▶ □ のへで

a Deligne-Lusztig variety.

Bruhat-Tits Building

- From the relevant hermitian space W for N(1,2), can construct a Bruhat Tits building B:
- \mathcal{B} is an (infinite) tree, with two types of vertices: "Type-1" ($\Lambda \subseteq W$ s.t. $p\Lambda^{\vee} \subseteq \Lambda \subseteq \Lambda^{\vee}$) "Type-3" ($\Lambda \subseteq W$ s.t. $p\Lambda^{\vee} \subseteq \Lambda \subseteq \Lambda^{\vee}$) Type 1 vertices have degree $p \neq 1$. Type 2 have $p^3 \neq 1$

Type-1 vertices have degree p + 1, Type-3 have $p^3 + 1$.



Ekedahl-Oort Strata

- $(G_1, \iota_1, \lambda, \rho_1)$ and $(G_2, \iota_2, \lambda, \rho_2)$ are in the same Ekedahl-Oort stratum of $\mathcal{N}(1, 2)$ if and only if $(G_1[p], \iota_1, \lambda_1) \cong (G_2[p], \iota_2, \lambda_2).$
- N(1,2) has two Ekedahl-Oort strata: the intersection points, and their complement.

• The intersection points are exactly those points where $G[p] \cong E[p]^3$ for a supersingular elliptic curve *E*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The GU(1,2) Rapoport-Zink Space Again

Thm (Vollaard): Geometry of $\mathcal{N}(1,2)$

• Each irr. comp. of $\mathcal{N}(1,2)$ is isom to:

$$C : x_0^{p+1} + x_1^{p+1} + x_2^{p+1} = 0 \subset \mathbb{P}^2_{\overline{\mathbb{F}}_p}$$

(a Deligne-Lusztig variety). Any two irr. components intersect trivially or in a single point.

• Each irr. comp. contains $p^3 + 1$ int. pts, and each int pt is the intersection of p + 1 irr. comp.

(日) (日) (日) (日) (日) (日) (日)

• $\mathcal{N}(1,2)$ has two Ekedahl-Oort strata: the intersection points, and their complement.

The GU(1,2) Rapoport-Zink Space Again

Thm (Vollaard): Geometry of $\mathcal{N}(1,2)$ (Rephrased)

 Each irr. comp. of N(1,2) is isom to a particular kind of Deligne-Lusztig variety

(日) (日) (日) (日) (日) (日) (日)

- The intersection combinatorics come from a relevant Bruhat-Tits building
- $\mathcal{N}(1,2)$ is a union of Ekedahl-Oort strata

The GU(2,2) Rapoport-Zink Space

Thm (Howard-Pappas):

• Each irr. comp. of $\mathcal{N}(2,2)$ is isom to:

$$S : x_0^{p+1} + x_1^{p+1} + x_2^{p+1} + x_3^{p+1} = 0 \subset \mathbb{P}^3_{\mathbb{F}_p}$$

Any two irr. comp. intersect trivially, intersect in a single point, or have intersection isomorphic to $\mathbb{P}^1_{\mathbb{R}_p}$.

 For a fixed irreducible component X, there are *p*(*p*³ + 1)(*p*² + 1) irreducible components X' such that *X* ∩ X' is a single point and (*p*³ + 1)(*p* + 1) irreducible components X'' such that X ∩ X'' is isomorphic to P¹_ℝ.

General Situation

- The signature (1,2) and signature (2,2) Rapoport-Zink spaces have similar structure: their irr. components are Deligne-Lusztig varieties, intersection combinatorics come from a Bruhat-Tits building, are a union of Ekedahl-Oort Strata.
- These are examples of Coxeter Type.
- Most unitary Rapoport-Zink spaces do not have this structure.

(0, <i>m</i>)	(1,1)	(1,2)	(1, m - 1),	(2,2)	(2,3),	(2, m-2),	(a, m - a)
			<i>m</i> ≥ 4		(2,4)	<i>m</i> ≥ 7	<i>a</i> ≥ 3
							<i>m</i> ≥ 6
0-dim'l	0-dim'l	Vollaard 2008	Vollaard- Wedhorn 2010	Howard- Pappas 2014	Imai-F. 2021 after perf.	Imai-F. 2021 (partial)	Incomplete

The GU(2, m-2) Rapoport-Zink Space

Thm (Imai-F.):

Let $m \ge 5$:

- $\mathcal{N}(2, m-2)^{\text{perf}}$ is (m-2)-dimensional, and contains $\lfloor \frac{m}{2} \rfloor$ isomorphism classes of irreducible components.
- One component X generalizes those of in N(1,2), and is a Deligne-Lusztig variety
- If *m* is even, there is a component *Y* generalizing those of *N*(2,2), and is a Deligne-Lusztig variety.
- The remaining irreducible components are not Deligne-Lusztig varieties. We describe them via a map to a Deligne-Lusztig variety.
- When m = 5, 6, describe all intersections of irr. comps.

Comments

- This theorem crucially uses the results in "Cycles on Shimura Varieties..." by Xiao and Zhu. This project arose from discussions at the 2019 AIM workshop "Geometric Realizations of Jacquet-Langlands Correspondences."
- Joint with Naoki Imai and Ben Howard, currently studying the structure of N(2, m − 2) (as opposed to N(2, m − 2)^{perf})
- Beginning at the 2022 Rethinking Number Theory Workshop, currently studying properties of the Ekedahl-Oort stratification (joint with D. Bhamidipati, H. Goodson, S. Groen, S. Nair, E. Stacy).

The GU(2,4) Rapoport-Zink Space

Thm (Imai-F.):

- $\mathcal{N}(2,4)^{\text{perf}}$ contains three isomorphism classes of irreducible components: *X*, *Y*, and *Z*. We describe these as closures in a certain flag scheme
- The component X generalizes those occurring in $\mathcal{N}(1,2)$. The component Y generalizes those occurring in $\mathcal{N}(2,2)$. Both X and Y are Deligne-Lusztig varieties.
- The final irreducible component Z is notable in that it is not isomorphic to a Deligne-Lusztig variety.

• We describe all possible intersections of irr. components.

Notation

- Let $\check{\mathbb{Q}}_{\rho} = \widehat{\mathbb{Q}}_{\rho}^{nr}$, with ring of integers $\check{\mathbb{Z}}_{\rho}$.
- *V* is an *m*-dimensional vector space over $\check{\mathbb{Q}}_p$, with $\check{\mathbb{Q}}_p$ -valued Hermitian form.
- For any lattice $L \subseteq V$, L^{\vee} denotes the dual lattice.

• $\Lambda_0 \subseteq V$ a fixed self-dual $\check{\mathbb{Z}}_p$ -lattice.

Relative Position of Lattices

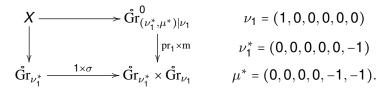
• Given lattices L_1 and L_2 in V, we say $\operatorname{Inv}_{L_1}(L_2) = (n_1, n_2, \dots, n_m)$ if $L_1 = \operatorname{Span}_{\mathbb{Z}_p} \{e_i\}_{i=1}^m$ and $L_2 = \operatorname{Span}_{\mathbb{Z}_p} \{p^{n_i}e_i\}_{i=1}^m$.

• Example: $L_1 = \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$, $L_2 = p^2 \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$. Then $Inv_{L_1}(L_2) = (2, 0, 0)$.

• Example: $L_1 = \mathbb{Z}_p \oplus \mathbb{Z}_p \oplus \mathbb{Z}_p$, $L_2 = p\mathbb{Z}_p \oplus p\mathbb{Z}_p \oplus \mathbb{Z}_p$. Then $Inv_{L_1}(L_2) = (1, 1, 0)$.

A Component Generalizing Vollaard-Wedhorn

Define $X \subseteq \mathcal{N}(2,4)^{\text{perf}}$ as:



Meaning:

$$X(\overline{\mathbb{F}}_{p}) = \begin{cases} \text{Lattices } L \subseteq V & | & \text{Inv}_{\Lambda_{0}}(L) = \nu_{1}^{*}, \\ & \text{Inv}_{L}(F(L^{\vee})) = \mu^{*}, \\ & \text{Inv}_{\Lambda_{0}}(F(L^{\vee})) = \nu_{1} \end{cases} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日)

A Component Generalizing Vollaard-Wedhorn

• Rephrase as a single chain condition:

$$X(\overline{\mathbb{F}}_{p}) = \left\{ \text{Lattices } L \subseteq V \middle| \begin{array}{c} \text{Inv}_{\Lambda_{0}}(L) = (1,0,0,0,0,0), \\ \text{Inv}_{L}(F(L^{\vee})) = (0,0,0,0,-1,-1), \\ \text{Inv}_{\Lambda_{0}}(F(L^{\vee})) = (0,0,0,0,0,-1) \end{array} \right\}$$
$$= \left\{ \text{Lattices } L \subseteq V \middle| \begin{array}{c} p\Lambda_{0} \subseteq pF(L^{\vee}) \subseteq L \subseteq \Lambda_{0} \\ p\Lambda_{0} \subseteq pF(L^{\vee}) \subseteq L \subseteq \Lambda_{0} \end{array} \right\}$$

• Realized as a Deligne-Lusztig variety as:

$$\left\{ L \subseteq V \mid p \Lambda_0 \subseteq pF(L^{\vee}) \subseteq L \subseteq \Lambda_0 \right\} \xrightarrow{\sim} \{ \ell \subseteq \Lambda_0 / p \Lambda_0 \mid \dim(\ell) = 1, \ \ell \subseteq \ell^{\perp} \}$$

$$L \mapsto pF(L^{\vee}) / p \Lambda_0$$

If V were dim 3 instead, this recovers the Fermat curve appearing in N(1,2).

(ロ) (同) (三) (三) (三) (○) (○)

A Component Generalizing Howard-Pappas

• Similarly, define $Y \subseteq \mathcal{N}(2,4)^{\text{perf}}$:

$$Y(\overline{\mathbb{F}}_{\rho}) = \begin{cases} \text{Lattices } L \subseteq V \\ \text{Inv}_{\Lambda_0}(L) = (0, 0, 0, 0, -1, -1), \\ \text{Inv}_{L}(\frac{1}{\rho}F(L^{\vee})) = (0, 0, 0, 0, -1, -1), \\ \text{Inv}_{\Lambda_0}(\frac{1}{\rho}F(L^{\vee})) = (0, 0, -1, -1, -1, -1) \end{cases}$$

- Y is isomorphic to a Deligne-Lusztig variety
- If V were dim 4 instead, this recovers the Fermat surface appearing in N(2,2).

(ロ) (同) (三) (三) (三) (○) (○)

A New Component

• There is an open subset \mathring{Z} of Z defined by:

$$\overset{\circ}{Z}(\overline{\mathbb{F}}_{p}) = \left\{ \text{Lattices } L \subseteq V \middle| \begin{array}{c} \operatorname{Inv}_{\Lambda_{0}}(L) = \nu_{2}^{*}, \\ \operatorname{Inv}_{L}(F(L^{\vee})) = \mu^{*}, \\ \operatorname{Inv}_{\Lambda_{0}}(F(L^{\vee})) = \nu_{2} \end{array} \right\}^{\mathbf{a}} \\
\nu_{2} = (1, 0, 0, 0, -1, -1) \quad \nu_{2}^{*} = (1, 1, 0, 0, 0, -1) \\
\mu^{*} = (0, 0, 0, 0, -1, -1).$$

• \mathring{Z} is not a Deligne-Lusztig variety, but does map to one:

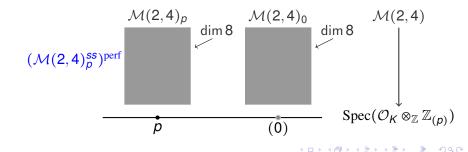
$$\pi : \mathring{Z} \to \operatorname{Gr}_{\nu_{2,+}^*} \times \operatorname{Gr}_{\nu_{2,-}^*}$$
$$L \mapsto (L \cap \Lambda_0, L + \Lambda_0)$$

• $Z \smallsetminus \mathring{Z} \cong \{ [x_0 : x_1 : \dots : x_5] \in \mathbb{P}^5_{\mathbb{F}_p} \mid \sum_{i=0}^5 x_i^{p+1} = 0, \sum_{i=0}^5 x_i^{p^3+1} \}$

The Supersingular Locus of $\mathcal{M}(2,4)$

Cor (Imai-F.):

Assume η is suff. small. $(\mathcal{M}(2,4)_{\rho}^{ss})^{perf}$ contains three isomorphism classes of irreducible components: *X*, *Y*, and *Z*, which we describe concretely. The component *Y* is notable in that it is not isomorphic to a Deligne-Lusztig variety. We describe all possible intersections of irr. components.



Some Takeaways

- 1. The Rapoport-Zink spaces $\mathcal{N}(a, b)$ occur naturally in the study of $\mathcal{M}(a, b)_{p}^{ss}$, and are closely related to the supersingular loci $\mathcal{M}(a, b)_{p}^{ss}$.
- 2. In some cases, the supersingular loci $\mathcal{M}(a, b)_p^{ss}$ have especially nice structure (can be written as a union of Deligne-Lusztig varieties, intersection combinatorics controlled by a B-T building, are a union of Ekedahl-Oort strata.)
- 3. Warning! Not all Shimura varieties of PEL-type (or even all unitary Shimura varieties) have this nice structure.

(0, <i>m</i>)	(1,1)	(1,2)	(1, m - 1),	(2,2)	(2,3),	(2, <i>m</i> -2),	(a, m - a)
			<i>m</i> ≥ 4		(2,4)	<i>m</i> ≥ 7	<i>a</i> ≥ 3
							<i>m</i> ≥ 6
0-dim'l	0-dim'l	Vollaard 2008	Vollaard- Wedhorn 2010	Howard- Pappas 2014	Imai-F. 2021 after perf.	Imai-F. 2021 (partial)	Incomplete

・ロト・日本・モト・モト ヨー めんぐ

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @