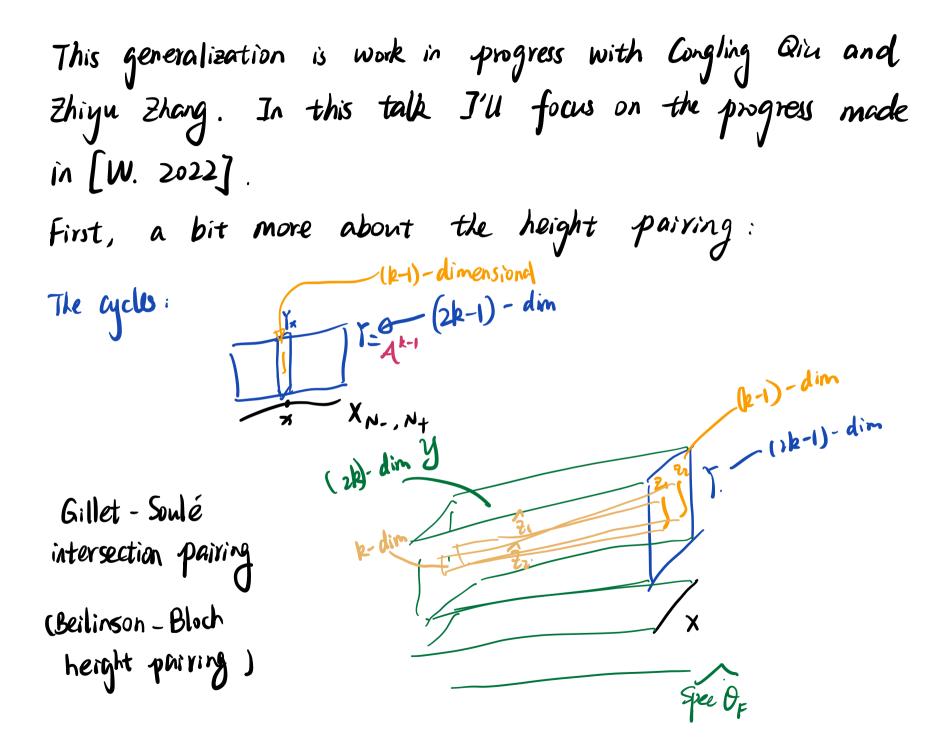
1. Number theoretic Context. 2. Constructions of Green's functions.

* The board talk differs from the Stides here, but this is a sketch of the talk.

Number theoretic Context.



First need to find switable arithmetic extensions

$$\hat{z}_1$$
, \hat{z}_2 .
In particular, for any finite place 8 and any
cycle Z of appropriate dimension supported on Z_{g} ,
 $(\hat{z}_1, Z)_g = 0$ (*)
Unfortunately, for the cycles we are interested in, \hat{z}_1 ,
does not satisfy this. Need to find adjustments z_g st.
 $\hat{z}_i = \bar{z}_1 - \sum (\bar{z}_g)$ sottifies *
Finding Z_p becomes solving $\Delta f = C S_w$
on local systems on graphs.
To solve such an equation, we need to construct
Given's functions for local systems over graphs

What kind of graphs?
By cerednik - Drinfeld, X_{N-.N+} at
$$p|_{N_-}$$

J duel graph
J duel graph
We are interested in such
graphs. Finite guotients of
the Bruhet - Tits tree
J quartient
He Bruhet - Tits tree
(homogeneous (p+1)-dog tree)

Constructions of Green's functions for local systems over graphs
E Also studied before.
Let
$$G = (V, E)$$
 be a finite graph.
Set of Set of
vertices edges
A local system L over G of rank r contains the data:
for each $V \in V$, $L(V)$ Hermitian spaces
for each $e \in E$, $L(e)$ J thermitian spaces
for each $e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, $L(e)$ J thermitian spaces
 $for each e \in E$, f

Define

$$\Delta: \Gamma(V, L) \rightarrow \Gamma(V, L) \quad by$$

$$\Delta f(v) = \sum_{\substack{e \text{ hs} \\ v,v' \text{ os} \\ ends}} f(v) - \psi_{ve}^{-1} \psi_{ve} f(v')$$

We have

$$\Gamma(v, 1) = \ker(\Delta) \oplus I_m(\Delta)$$

 \mathcal{P} orthogonal

So for any
$$\phi \in ber(\Delta)^{\perp} = Im(\Delta)$$
, there exists a unique
 $f \in Im(\Delta)$ s.t. $\Delta f = \phi$

Def. The vector-valued Green's for G associated with
$$\mathcal{L}$$
 on
a graph $G = (V, E)$ is defined to be the unique elt
 $G \in Im(\Delta) \otimes Im(\Delta)$ Sit.
 $\Delta_V G(V, W) = S_W(V)$ as distributions.

Therefore, given the Green's for
$$G = \sum_{i} a_i \otimes b_i$$
, for any
 $\varphi \in Im(\Delta)$, the unique solution in $Im(\Delta)$ to $\Delta f = \varphi$
is given by
 $f(w) = \sum_{v \in V} \langle \varphi(v) \rangle, G(v, w) \rangle$
 $= \sum_{v \in V} \sum_{i} \langle \varphi(w) \rangle, a_i(v) > b_i(w)$
We also define G_s , replacing " Δ " above by " $\Delta + s$ ".

<u>Thm (W.)</u> We construct G(V, W) explicitly for finite graphs that are guotients of the Brulet - Tits tree $G = \prod_{i=1}^{N}$

Method: • Construct $G_{1S}(v, w)$ for S > 0• $G(v, w) = \lim_{S \to 0^+} (G_{1S}(v, w) - \frac{\pi}{S})$ $\begin{array}{c} \varphi \\ \varphi \\ \Xi \\ \varphi_{S}(r\tilde{v}, \tilde{w}) \\ r \in \Gamma \\ \varphi \\ on \\ T \end{array}$