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The allocation problem

• Problem: A designer seeks to allocate ρ ≤ 1 mass homogeneous objects to unit mass of

heterogeneous agents without transfers

• Examples: vaccines, ICU beds, public housing, food stamps, organs, public school seats

• agent characteristics: θ = (i , s, k)

• i ∈ I , I finite, publicly observable, unfalsifiable label (label can include age, gender, DOB, race);

µi > 0 mass of agents with label i

• s ∈ [s i , s i ] agent’s natural score; hard information can be falsified at a cost

• dimensions k soft information; agents can misrepresent freely; include:
• v ≥ 0: private willingness to pay

• parameters such as gaming ability affecting falsification cost



The allocation problem, continued

hybrid model with soft and hard info: θ = (i , s, k) can freely misrepresent soft dimensions and report

k ′ but falsifying to t is costly; C θ(s) = 0 (costless not to falsify)

Agents payoff = P(k ′, submitting score t|θ)︸ ︷︷ ︸
interim (exp.) prob. of obtaining an object

v − C θ(t)︸ ︷︷ ︸
cost of falsifying to score t for θ = (i, s, k)

Designer’s payoff =

w ∈ R from assigning an item to agent=agent’s social value: unknown

0 from not assigning an item

• (θ,w) IID draws across agents from a full support joint distribution (correlation possible across

dimensions; indep. info across agents)

• if θ sufficient statistic for w agents know w

• conditional group social value: wi (s) = E(w |i , s) is increasing in s → positive correlation between

score and social value; assume is bounded and integrable

• conditional score distribution: s ∼ Fi (s) conditional on i with support [s i , s i ]



Scores

Contexts

• school choice; public housing
• natural score= priority based on true characteristics
• falsified score= priority based on false characteristics: eg. fake address, false evidence of housing need

• organ transplant
• natural score= priority based on true health status
• falsified score= priority based on manipulated status based on escalated treatments

• admission to selective schools/ colleges
• natural score= based on true talents
• falsified score= based on cheating, fake evidence of athletic ability (cf. Varsity blues)

Broadly: in various contexts there exists an exogenous technology measuring and aggregating agent’s

characteristics into a one-dimensional score / metric / priority. An agent’s natural score–the one she obtains

when she does not interfere with the measuring technology–may differ from her measured score when she

engages in gaming / manipulations / falsification / cheating.
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Designer’s objective

Allocate goods to maximize social value via falsification-proof non-market mechanisms

• Nonmarket = monetary transfers are not available (human organs, public school seats)

• Falsification-proofness analogous to truth-telling; strategy-, manipulation-proofness

• however, with costly falsification, and more than two scores mechanisms maximizing social value

may have to induce fraud– Perez-Richet and Skreta (2022)

• → imposing falsification-proofness is costly for the principal.



Why impose falsification proofness?

1. Mechanisms (especially nonmarket) inducing fraud come under scrutiny; difficult to defend
(political / stability argument).

Authorities in Boston and Chicago abandoned the “Boston” school assignment mechanism citing

concerns about its vulnerability to manipulation.

“The Boston episode challenges a paradigm in traditional mechanism design that treats incentive

compatibility only as a constraint and not as a direct design objective, at least for the specific context

of school choice.”

Pathak and Sonmez AER 2013

2. Fraud creates negative social externalities: dishonest and corrupt behavior erodes public trust

Transplant providers in Germany were convicted for manipulating the liver allocation system by

significantly exaggerating their patients’ illness severity. Following this scandal, public confidence in

the system eroded resulting to a 20%-40% decline in the number of organ donations and in the

overall organ transplants performed (Bolton, 2018). (See also Galbiati and Zanella (2012); Ajzenman

(2018); Alm et al. (2017); Rincke and Traxler (2011)).



Why impose falsification proofness?

3. Fraud is costly to the agents, and may generate lack of fairness (because of heterogeneous gaming

abilities).

“A strategy-proof algorithm “levels the playing field” by diminishing the harm done to parents who do

not strategize or do not strategize well.”

BPS Strategic Planning Team

Bjerre-Nielsen et. al. (2023) find that applicants from more affluent households drive address

manipulations affecting non-manipulating applicants: more than 25% of honest agents would have

been offered a place in their first choice absent of address manipulation and worse peers.

Manipulations are also detrimental–and, in fact, seem to cost lives of non-manipulating agents–in

human transplant settings (Bolton, 2018).

4. Falsification proofness protects the integrity of scores

Goodhart’s law predicts “when a measure becomes a target, it ceases to be a good measure.”



Score-based allocation mechanisms

Falsification-proof non-market mechanisms

1. cannot condition on reports about “soft” dimensions of type; all agents with same i , s behave the

same way regardless of k

2. need not condition on a continuum of scores; because there is a continuum of agents interim

allocation probabilities satisfy suitable Border conditions

A non-market mechanism is therefore a score-based allocation rule α = (αi )i∈I where

αi : [s i , s i ]→ [0, 1]

A score-based allocation mechanism is falsification-proof iff

αi (s)v ≥ αi (t)v − C (i,s,k)(t) ∀i , s, t, k

→ constraint hardest to satisfy for high v -low cost agents; these agents shape the mechanism

lower bound on cost/value of manipulating to t for agents with natural score s in group i :

1

γi
ci (t|s) ≡ inf

k∈Ki,s

1

v
C (i,s,k)(t), for every t, s in group i



Properties of lower bound of falsification cost

We assume bound is tight and:

• ci (t|s) is measurable and increasing for upward falsifications: if t ≥ s, then ci (t|s) is (locally)

strictly increasing in t and −s
• regularity (REG): c(t|s) is regular if it is continuously differentiable in t on [s, s], and in s on

[s, t], and there exists Λ > 0 such that, for every s, t, c(t|s) ≤ Λ|t − s|.



Planner’s problem

max
α

∑
i

µi

∫
αi (s)wi (s)dFi (s)

s.t.
∑
i

µi

∫
αi (s)dFi (s) ≤ ρ resource constraint (RC)

µi

∫
αi (s)dFi (s) ≥ φiρ ∀i quota constraints (QC)

0 ≤ αi (s) ≤ 1 ∀i , s probability constraints (PROB)

αi (s) ≥ αi (t)− 1

γi
ci (t|s) ∀i , s, t falsification-proofness constraints (FPIC)



Within and across decompositions

within problem: how to optimally allocate mass ρi group i :

Wi (ρi ) = max
αi

∫
Si

αi (s)wi (s)dFi (s) (P)

s.t. (FPIC),(PROB)

µi

∫
Si

αi (s)dFi (s) = ρi , (RC)

across problem: optimally determine (ρi )i∈I subject to feasibility R =
{
ρ :

∑
i ρi ≤ ρ̄, ρi ≥ φi ρ̄ (∀i)

}
W (F ,γ) = max

ρ∈R

∑
i

µiWi (ρi ). (P)



Within problem: determining eligibility threshold

Lagrangian: ∫
αi (s)[wi (s)− ŵi ]dFi (s) + K(ŵi )

• Lagrange multiplier defines a planner outside options ŵi ; adjusts to satisfy the resource constraint

• ŵi determines endogenous prioritization: group i :

w i ≡
∫

wi (s)dFi (s)


> ŵi has high priority

< ŵi it has low priority

= ŵi it has neutral priority



The auxiliary within group problem

max
α

∫
α(s)

{
w(s)− ŵ

}
dF (s)

s.t. α(t)− α(s) ≤ 1

γ
c(t|s) ∀s, t (FPIC)

0 ≤ α(s) ≤ 1 ∀s (PROB)



First-best

max
α

∫
α(s)

{
w(s)− ŵ

}
dF (s) subject to 0 ≤ α(s) ≤ 1 ∀s

−1 1

1

ŝ

Eligibility threshold is ŝ such that w(ŝ) = ŵ

first best

F = U([−1, 1]), w(s) = s, ŵ = 1/4

Note: With transfers this is typical shape of optimal allocations. Sudden increase in payment makes

this allocation incentive compatible. Not possible without transfers!



Optimal FPIC rule?

−1 1

1

ŝ

F = U([−1, 1]), w(s) = s, ŵ = 1/4

growth interval?

Optimal allocation WLOG monotonic and Lipschitz continuous: Lipschitz continuity is implied by (FPIC) and

(REG); monotonicity: take a candidate α for s < ŝ use highest increasing function everywhere below α while for

s > ŝ use lowest increasing function everywhere above the candidate α

α(s) = α+

∫ s

s
α′(z)dz = α−

∫ s

s
α′(z)dz



Cumulative surplus and growth intervals
Low priority group: w < ŵ

max
α s.t PROB, FPIC

α(w − ŵ) +

∫
α′(s)W+(s)ds

F=U([−1,1]), w(s)=s, ŵ=1/4

−1 1
ŝ

W+

W+(s) =
∫ s
s
{
w(x) − ŵ

}
dF (x)

upward cumulative surplus

High priority group: w ≥ ŵ

max
α s.t PROB, FPIC

α(w − ŵ) +

∫
α′(s)W−(s)ds

F=U([−1,1]), w(s)=s, ŵ=−1/4

−1 1
ŝ

W−

W−(s) = −
∫ s
s
{
w(x) − ŵ

}
dF (x)

downward cumulative surplus

W+(s)= marginal gain of uniformly increasing allocation prob of all scores above s;W−(s)=marginal gain of uniformly decreasing allocation prob of all scores below s



common (all priorities) differential program

max
α′

∫
α′(s)W(s)ds

s.t. 0 ≤ α′(s), ∀s (MON)∫ t

s

α′(z)dz ≤ 1

γ
c(t|s), ∀s < t (FPIC)∫

α′(z)dz ≤ 1 (PROB)

where

W(s) =W+(s)1w<ŵ +W−(s)1w≥ŵ



common (all priorities) differential program

max
α′

∫
α′(s)W(s)ds

s.t. 0 ≤ α′(s), ∀s (MON)∫ t

s

α′(z)dz ≤ 1

γ
c(t|s), ∀s < t (FPIC)

[ν]

∫
α′(z)dz ≤ 1 (PROB)

where

W(s) =W+(s)1w<ŵ +W−(s)1w≥ŵ



common (all priorities) differential program

max
α′

∫
α′(s){W(s)− ν}ds + K(ν)

s.t. 0 ≤ α′(s), ∀s (MON)∫ t

s

α′(z)dz ≤ 1

γ
c(t|s), ∀s < t (FPIC)

⇒ So α′(s) = 0 on {s :W(s) < ν}. where

W(s) =W+(s)1w<ŵ +W−(s)1w≥ŵ



Cumulative surplus and growth intervals

Low priority group: w < ŵ

W+(s) =

∫ s

s

{w(x)− ŵ}dF (x)

−1 1
ŝ

W+

High priority group: w ≥ ŵ

W−(s) = −
∫ s

s

{w(x)− ŵ}dF (x)

−1 1
ŝ

W−



Cumulative surplus and growth intervals
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Cumulative surplus and growth intervals

Low priority group: w < ŵ

W+(s) =

∫ s

s

{w(x)− ŵ}dF (x)

−1 1
ŝ

W+

ν

s∗(ν)s∗(0) s∗(ν) s∗(0)

m(·)

High priority group: w ≥ ŵ

W−(s) = −
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Cumulative surplus and growth intervals
Low priority group: w < ŵ

W+(s) =

∫ s

s

{w(x)− ŵ}dF (x)

−1 1
ŝ

W+

ν

s∗(ν)s∗(0) s∗(ν) s∗(0)

m(·)

High priority group: w ≥ ŵ

W−(s) = −
∫ s

s

{w(x)− ŵ}dF (x)

−1 1
ŝ

W−
ν

s∗(ν) s∗(0)s∗(ν)s∗(0)

m(·)

matching function m : [s∗(0), ŝ]→ [ŝ, s∗(0)] s.t. W(s) =W
(
m(s)

)
=⇒

∫ m(s)

s
{w(x)− ŵ}dF (x) = 0



Reduced; relaxed program

max
α

∫ s∗

s∗

α′(s)W(s)dF (s)

s.t. α(t)− α(s) ≤ 1

γ
c(t|s) ∀ s∗ ≤ s < t ≤ s∗ (FPIC)

where s∗ ≤ ŝ ≤ s∗ and W(s∗) =W(s∗) ≥ 0.

Procedure:

1. Solve the reduced program for any (s∗, s
∗).

2. Select (s∗, s
∗) such that:

• α(s∗)− α(s∗) = 1 (PROB) binds, or
• [s∗, s∗] = [s∗(0), s∗(0)]; ν = 0 (PROB) does not bind.



Fraud technologies

Upward Increasing Differences

∀s < s ′ ≤ t < t′, c(t′|s)− c(t|s) ≤ c(t′|s ′)− c(t|s ′) (UID)

Example: Euclidean cost

c(t|s) = C(|t − s|), C concave: increasing returns to scale of fraud.

FPIC bind for far apart scores → new method based on optimal transport.

Upward Decreasing Differences

∀s < s ′ ≤ t < t′, c(t′|s)− c(t|s) ≥ c(t′|s ′)− c(t|s ′) (UDD)

Example: Euclidean cost

c(t|s) = C(|t − s|), C convex: decreasing returns to scale of fraud.

FPIC bind locally → first-order approach.
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Optimal transport approach: UID

max
α

∫ ŝ

s∗

α(s)
{
w(s)− ŵ

}
dF (s) +

∫ s∗

ŝ

α(t)
{
w(t)− ŵ

}
dF (t)
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γ
c(t|s), ∀s∗ ≤ s < t ≤ s∗ (FPIC)
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}
dF (s) +

∫ s∗

ŝ
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s∗ ŝ
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s

y

t
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Optimal transport approach: UID
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0 0

ŝ−s∗ s∗−ŝ

y

Negative social surplus scores

Y

P(y)=
W(ŝ)−W(ŝ−y)
W(ŝ)−W(s∗)

p(y)∝−{w(ŝ−y)−ŵ}f (ŝ−y)

φ(y)=α(ŝ−y)

z

Positive social surplus scores

Z

Q(z)=
W(ŝ)−W(ŝ+z)
W(ŝ)−W(s∗)

q(z)∝{w(ŝ+z)−ŵ}f (ŝ+z)

ψ(z)=α(ŝ+z)



Optimal transport approach: UID

max
φ,ψ

∫
Z
ψ(z)dQ(z)−

∫
Y
φ(y)dP(y)

s.t. ψ(z)− φ(y) ≤ 1

γ
c(ŝ + z |ŝ − y), ∀y , z (FPIC)

0 0

ŝ−s∗ s∗−ŝ

y

Negative social surplus scores

Y

P(y)=
W(ŝ)−W(ŝ−y)
W(ŝ)−W(s∗)

p(y)∝−{w(ŝ−y)−ŵ}f (ŝ−y)

φ(y)=α(ŝ−y)

z

Positive social surplus scores

Z

Q(z)=
W(ŝ)−W(ŝ+z)
W(ŝ)−W(s∗)

q(z)∝{w(ŝ+z)−ŵ}f (ŝ+z)

ψ(z)=α(ŝ+z)



Optimal transport approach: UID

Dual of the Monge-Kantorovich optimal transport problem:

min
G∈M(P,Q)

1

γ

∫
Y×Z

c(ŝ + z |ŝ − y)︸ ︷︷ ︸
submodular

dG(y , z)

0 0

ŝ−s∗ s∗−ŝ

y

Negative social surplus scores

Y

P(y)=
W(ŝ)−W(ŝ−y)
W(ŝ)−W(s∗)

p(y)∝−{w(ŝ−y)−ŵ}f (ŝ−y)

φ(y)=α(ŝ−y)

z

Positive social surplus scores

Z

Q(z)=
W(ŝ)−W(ŝ+z)
W(ŝ)−W(s∗)

q(z)∝{w(ŝ+z)−ŵ}f (ŝ+z)

ψ(z)=α(ŝ+z)

assortative

ŝ+z=m(ŝ−y)

P(y)=Q(z)



Solution of auxiliary problem for UID: α∗uid

Low priority group: w < ŵ

α
∗
uid (s, ŵ) =



0 if s < s∗

−
1

γ

∫
s

s∗
cs
(
m(x)|x

)
dx if s ∈ [s∗, ŝ]

1

γ
c(s∗|s∗)−

1

γ

∫
s∗

s

ct
(
x|m−1(x)

)
dx if s ∈ [ŝ, s∗]

1 if s > s∗

High priority group: w > ŵ

α
∗
uid (s, ŵ) =



0 if s < s∗

1−
1

γ
c(s∗|s∗)−

1

γ

∫
s

s∗
cs
(
m(x)|x

)
dx if s ∈ [s∗, ŝ]

1−
1

γ

∫
s∗

s

ct
(
x|m−1(x)

)
dx if s ∈ [ŝ, s∗]

1 if s > s∗

where:

s∗ = min

{
s ∈ [s∗(0), ŝ] :

1

γ
c(m(s∗)|s∗) ≤ 1

}
and s∗ = m(s∗)

Neutral priority group: w = ŵ in this case:

• W−(s) =W+(s)

• [s∗(0), s∗(0)] = [s, s]

• prob. constraint binds iff 1
γ
c(s|s) ≥ 1 ⇐⇒ γ ≤ c(s|s) ≡ γ̄uid

• any rationing of probability slack 1− 1
γ
c(s∗|s∗) optimal (unique solution at all other cases)



Optimal within group allocation

Theorem For any 0 ≤ ρ ≤ µ, there exists a unique outside option value ŵ(ρ) and, if ŵ(ρ) = w̄ and

γ > γ̄, a unique value r(ρ), such that µ
∫
α∗(s, ŵ , r)dF (s) = ρ. Furthermore, ŵ(ρ) is continuous,

nonincreasing in ρ if ŵ(ρ) 6= w̄ or γ ≤ γ̄, and constant at w̄ otherwise. The function r(ρ) is

continuous and decreasing. The allocation rule α∗(s, ŵ(ρ), r(ρ)) is then the unique solution to the

within problem (P). The value function of (P), W (ρ) is strictly concave at ρ if ŵ(ρ) 6= w̄ or γ ≤ γ̄.

Remarks

1. at a solution ŵ and α jointly adjust as a function of the mass of objects ρ the planner seeks to

allocate to i

2. the higher the ρ the lower the ŵ
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Figure 1: Cost γc(t|s) = γ|t − s|/(1 + |t − s|) if t ≥ s, and Fi = U(−1, 1)



Optimal across group allocation

Endogenize ρ = {ρi}i∈I
W (F ,γ) = max

ρ∈R

∑
i

µiWi (ρi ), (P)

Theorem The across problem (P) admits a solution ρ. Furthermore, ρ solves the across problem if

and only if there exist a scalar λR ≥ 0 and, for each i , a scalar λi ≥ 0, an outside option value ŵi (ρi ),

and a gap share ri (ρi ) such that:

(i) λi (φi ρ̄− ρi ) = 0 for all i

(ii) λR(
∑

i ρi − ρ̄) = 0

(iii) ŵi (ρi ) = λR − λi .

(iv) µi

∫
a∗i
(
si , ŵi (ρi ), ri (ρi )

)
dFi (si ) = ρi

The solution ρ is unique if, for each i , ŵ(ρi ) 6= w̄i or γi ≤ γ̄i .



Properties & comparative statics



Properties of optimal assignment rules

• optimal mechanism involves inefficiencies: rations eligible agents; assigns objects to ineligible ones

• random assignment not optimal; ration agents with score-dependent probability

• scores below s∗(0) never assigned objects

• (UDD): Prior distribution affects only growth interval: the matching function determines m(s∗(ν))

• (UID): Prior distribution affects the whole test curve through the matching function.

• a first-order stochastic dominance shift in F
• benefits the principal

• not necessarily the agent: it increases the allocation probability for all agents iff it decreases the
matching function.

• Sufficient condition: transform a mass of negative surplus scores into positive surplus scores
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Figure 2: Cost 1
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γ = 0.8, ŵ = 0.0, λR = 0.0

Figure 2: Cost 1
γ c(t|s) = 1

γ
|t−s|

(1+|t−s|) if t ≥ s, and Fi = U(−1, 1), ρ = 0.5



Effects of gaming ability γ and falsification cost function

• planner’s payoff is decreasing in γ

• agents (own-group) effects of γ: a threshold γ̃ exists such that a small increase in γ leads to:

• If γ < γ̃, there exists a type threshold s̃ such that optimal the allocation probability α∗(s) increases

for s ≤ s̃, and decreases for s ≥ s̃

• If γ > γ̃, and the group has high priority, then α∗(s) increases for all scores

• If γ > γ̃, and the group has low priority, then α∗(s) decreases for all scores

• Euclidean costs (c(t|s) = C(|t − s|)) and returns to scale
• If C is convex (UDD), the optimal allocation rule is linear with slope C′(0)

• If C is concave (UID), the optimal allocation rule is convex on [s∗, ŝ] and concave on [ŝ, s∗]

• Normalizing cost functions such that 1
γ
C(L) = 1 for all C. Then higher returns to scale (more

concave C) has the same effects as lower gaming ability γ (good for high scores bad for low scores)



Gaming ability across group effects

Conditioning on observables



Groups 1 gaming ability effects: scarce goods, group 2 20%
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γ1 = 0.8, ŵ1 = 0.4093, λR = 0.4093
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Groups 1 gaming ability effects: scarce goods, group 2 80% quota
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Figure 4: Cost γc(t|s) = γ|t − s|/(1 + |t − s|) if t ≥ s, and Fi = U(−1, 1)

Group 1 lower gaming ability leaves unaffected group 2
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