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Networks of matching markets

Many real-world matching markets are not two-sided. Rather
they are networks of matching markets.

Stability is an important equilibrium concept for analysis.

In a supply chain, all firms are partially ordered e.g. farmer →
supermarket → consumer.

▶ A downstream firm never sells upstream.

While this may be a good way to model an isolated industry, in
general, production networks are interdependent and have
contract cycles.

▶ E.g. Coal factory → power plant → mining equipment
manufacturer → coal factory.
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Model

Set of firms (nodes) F and contracts (directed edges) X .

Each contract x ∈ X is bilateral involving a buyer and a seller:
F (x) ≡ {b(x), s(x)}.
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F

Firms



€ 

X

Contracts



f

A firm



Xf

Firm f’s contracts



Downstream contracts



Upstream contracts



Choice functions

For any Y ⊆ X , the contracts that involve f ∈ F are denoted
Yf . F (Y ) is the set of firms associated with contract set
Y ⊆ X . Choice function is C f (Yf ) ⊆ Yf for any Yf ⊆ Xf .

Choice functions C f satisfy IRC if for any Y ⊆ X and
C f (Y ) ⊆ Z ⊆ Y we have that C f (Z ) = C f (Y )
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Offered contracts



Cf

Chosen contracts



Rf

Rejected contract



Reminder: substitutability

Definition
Preferences of f ∈ F over contracts in X are substitutable if for all
Y ′ ⊆ Y ⊆ X we have R f (Y ′) ⊆ R f (Y )
in other words, Y ′ \ C f (Y ′) ⊆ Y \ C f (Y )

That is, if choosing from a bigger set of contracts, the rejected set
expands.
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Key assumption: full substitutability

Definition
Preferences of f ∈ F over contracts in X are fully substitutable if for
all Y ′ ⊆ Y ⊆ X and Z ′ ⊆ Z ⊆ X they are:

1 Same-side substitutable (SSS):
1 R f

B(Y
′|Z ) ⊆ R f

B(Y |Z )
2 R f

S(Z
′|Y ) ⊆ R f

S(Z |Y )

2 Cross-side complementary (CSC):
1 R f

B(Y |Z ) ⊆ R f
B(Y |Z ′)

2 R f
S(Z |Y ) ⊆ R f

S(Z |Y ′)

That is, if choosing from a bigger set of contracts on one side, by
SSS the rejected set on the same side expands, and by CSC the
chosen set on the opposite side expands.
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Same-side substitutability



Same-side substitutability
Offered set



Same-side substitutability
Rejected set Rf



Same-side substitutability
More downstream contracts



Same-side substitutability
Continue rejecting from Rf



Cross-side complementarity



Cross-side complementarity
Offered set



Cross-side complementarity
Rejected set Rf



Cross-side complementarity
Fewer downstream contracts



Cross-side complementarity
Continue rejecting from Rf



Stability concepts
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What is a trail?

Definition
A non-empty set of contracts T = {x1, . . . , xM} is a trail if
b(xm) = s(xm+1) for all m = 1, . . . ,M − 1.

Trading networks 9 / 45



€ 

A

Allocation



T

Trail



Special case

Here, the preferences are defined by a strict ordering over upstream
and downstream contracts, and all firms except s and t satisfy
Kirchhoff’s law.
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Supply chain
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Chain-stability

Definition
An outcome A ⊆ X is chain-stable if

1 Individually rational : for all f ∈ F , C f (Af ) = Af .

2 There is no trail T ⊆ X , such that T ∩ A = ∅ and for all
f ∈ F (T ), Tf ⊆ C f (A ∪ T ).
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Acyclic supply chains

Theorem (Ostrovsky ’08)

In any acyclic network X if preferences of F satisfy full substitutability
and IRC then there exists a chain-stable outcome A ⊆ X.
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Set stability

Definition
An outcome A ⊆ X is stablea if it is:

1 Individually rational : for all f ∈ F , C f (Af ) = Af .

2 There is no non-empty set of contracts Z ⊆ X , such that
Z ∩ A = ∅ and for all f ∈ F (Z ), Zf ⊆ C f (A ∪ Z ).

aDefined in Hatfield-Kominers ’12
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Theorem (Hatfield-Kominers ’12)

Suppose that the set of contracts X is acyclic and that all firms’
preferences are fully substitutable. Then an allocation A is stable if
and only if it is chain stable.

Corollary
If the set of contracts X is acyclic and that all firms’ preferences are
fully substitutable, there exists a stable outcome A ⊆ X.

Theorem
(Hatfield-Kominers-Nichifor-Ostrovsky-Westkamp ’21)

In any trading network X if preferences of F satisfy full
substitutability and IRC then the stable and chain-stable outcomes
are the same.
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Set stability

Preferences are fully substitutable:
▶ ≺i : {x} ≻i ∅
▶ ≺j : {x , y} ≻j {z , y} ≻j ∅
▶ ≺k : {z , y} ≻k ∅.

No stable contract allocation exists.

Theorem [FJTS]: Determining
whether an outcome is stable is
NP-complete.
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Trail stability

Definition
An outcome A ⊆ X is trail-stable if it is:

1 Individually rational : for all f ∈ F , C f (Af ) = Af .

2 There is no locally blocking trail T ⊆ X , such that T ∩ A = ∅
and

1 For f1 = s(x1), x1 ∈ C f1(Af1 ∪ x1).
2 For fm = b(xm−1) = s(xm), {xm−1, xm} ⊆ C fm(A ∪ xm−1, xm)

for all 1 < m ≤ M.
3 For fM+1 = b(xM), xM ∈ C fM+1(AfM+1

∪ xM).

A short-term stability notion. Trail stable outcomes do not require
that the firm accept all its contracts along the trail. If production is
sequential, the firm may know that it will only need to fulfil contracts
further down the trail later. Divisions can make independent
input-output decisions without overall firm consent.
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Trail stability – Existence

Theorem (FJTT)

In any contract network X if preferences of F satisfy full
substitutability and IRC then there exists a trail-stable outcome
A ⊆ X.
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Side note: A partial order

Define a lattice L with the ground set X × X with an order ⊑ such
that (Y ,Z ) ⊑ (Y ′,Z ′) if Y ⊆ Y ′ and Z ⊇ Z ′.
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Existence – Sketch of Proof

Consider Y and Z , which are subsets of X ,
Furthermore, define a mapping Φ as follows:
ΦB(Y ,Z ) = X \ RS(Z |Y )
ΦS(Y ,Z ) = X \ RB(Y |Z )
Φ(Y ,Z ) = (ΦB(Y ,Z ),ΦS(Y ,Z ))
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Furthermore, define a mapping Φ as follows:
ΦB(Y ,Z ) = X \ RS(Z |Y )
ΦS(Y ,Z ) = X \ RB(Y |Z )
Φ(Y ,Z ) = (ΦB(Y ,Z ),ΦS(Y ,Z ))
Φ is isotone. We use Tarski’s fixed point theorem, the fixed points of
Φ from a lattice.
We claim that every fixed point (Y ,Z ) of Φ corresponds to an
outcome Y ∩ Z = A that is trail-stable.
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Alternative version with T

Define a pair of functions, TB(Z ,Y ) and TS(Z ,Y ), by
TB(Z ,Y ) := {x ∈ X : x ∈ CB(Y ∪ {x}|Z )} and
TS(Z ,Y ) := {x ∈ X : x ∈ CS(Z ∪ {x}|Y )}
Then consider a pair of equations Z = TB(Z ,Y ) and Y = TS(Z ,Y ).
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TB(Z ,Y ) := {x ∈ X : x ∈ CB(Y ∪ {x}|Z )} and
TS(Z ,Y ) := {x ∈ X : x ∈ CS(Z ∪ {x}|Y )}
Then consider a pair of equations Z = TB(Z ,Y ) and Y = TS(Z ,Y ).

T is isotone. We use Tarski’s fixed point theorem.

Theorem (Adachi)

(a) If (Z ,Y ) is a fixed point of T , then Z ∩ Y is a trail-stable
outcome and Z ∩ Y = CB(Y |Z ) = CS(Z |Y ).
(b) Suppose A is a trail-stable outcome. Then there is a pair of sets
(Z ,Y ) such that (Z ,Y ) is a fixed point of T and
A = Z ∩ Y = CB(Y |Z ) = CS(Z |Y ).

Trading networks 21 / 45



The (Z,Y) pair is not unique
Example

≻m : {w} ≻m ∅
≻i : {x} ≻i ∅
≻k : {z , y} ≻k ∅
≻j : {x , y , z ,w} ≻j {x ,w} ≻j {w , z} ≻j {y , x} ≻j {z , y} ≻j ∅.

and other outcomes are not acceptable. We use the T function.

(Z ,Y ) is a fixed point of T A
Z Y Y ∩ Z

{x , y , z ,w}, {x , y , z ,w} {x , y , z ,w}
{x ,w} {x , y , z ,w} {x ,w}

{x , y , z ,w} {x ,w} {x ,w}
{x ,w} {x ,w} {x ,w}
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The (Z,Y) pair is not unique

Why is this a problem?
Going back to two-sided markets, where the choice functions are
substitutable and IRC:

If (Z ,Y ) is a fixed point of Φ then A = Z ∩ Y is stable

If (Z ,Y ) is a fixed point of T then A = Z ∩ Y is stable

If A is stable, a corresponding (Z ,Y ) fixed point of Φ exists, but
it need not be unique

If A is stable, a corresponding (Z ,Y ) fixed point of T exists,
and it is unique
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Why is this a problem?
Going back to two-sided markets, where the choice functions are
substitutable and IRC:

If (Z ,Y ) is a fixed point of Φ then A = Z ∩ Y is stable

If (Z ,Y ) is a fixed point of T then A = Z ∩ Y is stable

If A is stable, a corresponding (Z ,Y ) fixed point of Φ exists, but
it need not be unique

If A is stable, a corresponding (Z ,Y ) fixed point of T exists,
and it is unique

So we had a nice structural result in two-sided markets which is lost
in trading networks :(
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Terminals

An agent is a terminal buyer or terminal seller if he can only
sign upstream or downstream contacts.

Contracts signed by terminal agents in some trail-stable outcome
are called terminal-trail-stable.

An outcome is buyer-optimal (seller-optimal) if all terminal
buyers (terminal sellers) unanimously prefer it to any other
outcome in the set.
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Buyer- and seller-optimal

Theorem (FJTT)

In any contract network X if preferences of F satisfy full
substitutability and IRC then the set of trail-stable outcomes contains
buyer-optimal and seller-optimal outcomes.
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Terminal superiority

Consider A,W ⊆ X which are individually rational for all terminal
agents.

Definition
A is seller-superior to W (denoted by A ⪰ W ) if
C f (Af ∪Wf ) = Af for each terminal seller f and C g(Ag ∪Wg) = Wg

for each terminal buyer g .
A is buyer-superior to W (denoted by A ⪰′

W ) if
C f (Af ∪Wf ) = Wf for each terminal seller f and C g(Ag ∪Wg) = Ag

for each terminal buyer g .

Of course, A ⪰ W if and only if W ⪰′ A holds. If either relation
holds, we call this partial order terminal superiority.
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Laws of Aggregate Demand and Supply

Definition
Preferences of f ∈ F satisfy the Law of Aggregate Demand and the
Law of Aggregate Supply, if for sets of contracts Y ′ ⊆ Y ⊆ XB

f , and
Z ⊆ Z ′ ⊆ X S

f

|C f
B(Y

′|Z ′)| − |C f
S (Z

′|Y ′)| ≤ |C f
B(Y |Z )| − |C f

S (Z |Y )|
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Lattice for trail stability

Theorem (FJTT, Sublattice Theorem)

Suppose that choice functions satisfy full substitutability and
LAD/LAS. Then the fixed points of
Φ(Y ,Z ) = (X \ RS(Z |Y ),X \ RB(Y |Z )) form a nonempty, complete
sublattice of (2X × 2X ,⊑).
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Lattice for trail stability

Conjecture
In any contract network X if preferences of F satisfy full
substitutability and LAD/LAS then the terminal-trail-stable contract
sets form a lattice under terminal-superiority.

Theorem (FJTT)

In any contract network X if preferences of F satisfy full
substitutability and LAD/LAS then the terminal-seller-trail-stable
outcomes form a lattice for terminal sellers. (Similarly for terminal
buyers)

Trading networks 29 / 45



Lattice for trail stability

Conjecture
In any contract network X if preferences of F satisfy full
substitutability and LAD/LAS then the terminal-trail-stable contract
sets form a lattice under terminal-superiority.

Theorem (FJTT)

In any contract network X if preferences of F satisfy full
substitutability and LAD/LAS then the terminal-seller-trail-stable
outcomes form a lattice for terminal sellers. (Similarly for terminal
buyers)

Trading networks 29 / 45



Initial and terminal segments

Define T≤m
f = {x1, ..., xm} ∩ Tf to be firm f ’s contracts out of first

m contracts in the trail and T≥m
f = {xm, ..., xM} ∩ Tf are firm f ’s

contracts out of the last M −m + 1 contracts.
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Weak trail stability

Definition
An outcome A ⊆ X is weak trail-stable if it is:

1 Individually rational : for all f ∈ F , C f (Af ) = Af .

2 Trail-unblocked : There is no trail T ⊆ X , such that T ∩ A = ∅
and

1 For f1 = s(x1): x1 ∈ C f1(Af1 ∪ x1), and
2 For fm = b(xm−1) = s(xm): either T≤m

fm
⊆ C fm(A ∪ T≤m

fm
) or

T≥m
fm

⊆ C fm(A ∪ T≥m
fm

) for all 1 < m ≤ M, and

3 For fM+1 = b(xM): xM ∈ C fM+1(AfM+1
∪ xM).

Intuitively, a contract allocation is weak trail-stable if no agent wants
to drop any of his contracts and there is no trail of contracts which
the agents would choose all contracts along the trail instead of or
with their allocation (weaker than HKNOW’15).
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Trail stability vs. Weak trail stability

Preferences are fully substitutable:
▶ ≺m: {w} ≻m ∅
▶ ≺i : {x} ≻i ∅
▶ ≺k : {z , y} ≻k ∅
▶ ≺j : {z , y} ≻j {w , z} ≻j

{y , x} ≻j ∅
Weakly trail-stable: ∅ and {z , y}
Trail-stable: {z , y}

x

z y

j
i

k

mw
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Trail stability vs. Weak trail stability

Lemma (FJTT)

In any contract network X where choice functions of F satisfy full
substitutability and IRC, if A is a trail-stable outcome then A is also
weakly trail-stable.

Corollary (FJTT)

In any contract network X if preferences of F satisfy full
substitutability and IRC then a weakly trail-stable outcome A ⊆ X
exists.
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A new agent comes

We start from trail-stable outcome A. A new terminal seller enters
the market. After a market readjustment process, they reach
outcome A′ which is trail-stable in the new scenario.
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A new agent comes

Proposition
Consider a contract network X in which choice functions of F are
fully substitutable and satisfy IRC. Suppose a new terminal seller f ′

whose choice function is fully substitutable and satisfies IRC enters
the market.
Then each terminal seller f ̸= f ′ is prefers A to A′ and each terminal
buyer f is prefers A′ to A.
The opposite holds when f ′ is terminal buyer.
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Stability vs. trail stability

Are trail-stable outcomes always stable?
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Stability vs. trail stability

Are trail-stable outcomes stable?
Of course not - they actually exist!
Consider a counterexample again...
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Stability vs. trail stability

Preferences are fully substitutable:
▶ ≺i : {x} ≻i ∅
▶ ≺m: {w} ≻m ∅
▶ ≺j : {x , y ,w} ≻j {z , y ,w} ≻j

{x , y} ≻j {z , y} ≻j {w} ≻j ∅
▶ ≺k : {z , y} ≻k ∅.

No stable contract allocation exists.

However, there is a trail-stable
allocation A = {w}.
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Path-or-cycle stability

Definition
An outcome A ⊆ X is path-or-cycle-stable if

1 A is individually rational.

2 There is no path or cycle B such that B ∩ A = ∅ and
Bf ⊆ C f (Bf ∪ Af ) for each f ∈ F (B). Such paths or cycles are
called blocking paths and blocking cycles.
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Stability in flow networks

An interesting property of flow-based choice functions is that given
an outcome A ⊆ X , any cycle C disjoint from A is a blocking cycle,
as any firm which is offered a pair of additional upstream and
downstream contracts will accept them.

Theorem (FJST)

Suppose that in a flow network choice functions are flow-based. Then
it is NP-complete to decide if the flow network admits a
path-or-cycle-stable outcome.
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Stability in flow networks

We next prove that in flow networks path-or-cycle-stable outcomes
coincide with stable outcomes.

Theorem (FJST)

In a flow network an outcome is path-or-cycle-stable if and only if it
is stable.

Corollary (FJST)

It is NP-complete to decide if a flow network admits a stable
outcome.
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Back to general trading networks

Corollary
Suppose that in a trading network choice functions satisfy full
substitutability and IRC. Then it is NP-hard to decide if the trading
network admits a stable outcome.

A decision problem: An instance of Instability is a trading network
and an outcome A. The answer for an instance of Instability is YES if
the particular outcome A is not stable.

Theorem
The Instability problem is NP-complete. Moreover, if choice functions
are represented by oracles, then finding the right answer for an
instance of Instability might require an exponential number of oracle
calls.
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Conclusion

How many stability definitions did we see today?

chain-stable

stable

trail-stable

weak trail-stable

path-or-cycle stable

In an acyclic supply chain, these are all the same.
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Conclusion

A stable outcome is always trail-stable, but not the other way
around.

Trail-stable: always exists, easy to find.

Stable: does not always exist, NP-hard to decide its existence,
and NP-complete to check if a given outcome is stable.
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Thank you for your attention!

Köszönöm a figyelmet!
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