High Dimensional Calibration For Rational Decision Making

Aaron Roth enn

Joint work with

George Noarov, Ramya Ramalingam, Stephan Xie

Prediction for Action

 \bullet Consider a decision maker with action space A and utility function: $u: A \times S \rightarrow [0,1]$

for some state space $S \subset \mathbb{R}^d$. $u(a, \cdot)$ is linear, Lipschitz in s for all a.

· Models, e.g.

 \bullet \ddotsc

- A decision maker with *arbitrary* utilities $u(a, o)$ for d distinct outcomes;
	- s is a distribution over outcomes.
- Routing games (and other congestion games);
	- s is a vector of road/edge congestions
- Extensive form games
	- s is a vector of probabilities that each terminal node is made reachable by opponents

Prediction for Action

- If s were known, action would be easy. Could just best respond. $BR(u, s) = \arg \max_{a \in A} u(a, s)$
- Difficulty: Must act before s is known.
- Suppose we have a *prediction* \hat{s} .
- Is it a good idea to play $BR(u, \hat{s})$?

Calibration

• Forecasts \hat{s} are calibrated if they are unbiased conditional on their own predictions:

$$
\mathbb{E}[s \mid \hat{s}] = \hat{s}
$$

• It is a good idea to follow calibrated forecasts.

Theorem: If forecasts \hat{s} are calibrated, then for every u , the best response policy $f^*(\hat{s}) = BR(u, \hat{s})$ is a dominant strategy amongst all policies $f: S \to A$ mapping forecasts to actions.

Calibration

Theorem: If forecasts \hat{s} are calibrated, then for every u , the best \bullet response policy $f^*(\hat{s}) = BR(u, \hat{s})$ is a dominant strategy amongst all policies $f: S \rightarrow A$ mapping forecasts to actions.

Proof:

$$
\mathbb{E}_{s,\hat{s}}[u(f^*(\hat{s}),s)] = \mathbb{E}_{\hat{s}}[\mathbb{E}_s[u(BR(u,\hat{s}),s)|\hat{s}]]
$$

\n
$$
= \mathbb{E}_{\hat{s}}[u(BR(u,\hat{s}), \mathbb{E}[s|\hat{s}])]
$$

\n
$$
= \mathbb{E}_{\hat{s}}[u(BR(u,\hat{s}),\hat{s})]
$$

\n
$$
\geq \mathbb{E}_{\hat{s}}[u(f(\hat{s}),\hat{s})]
$$

Calibration

• Good news:

- Calibrated predictions incentivize agents to treat them as correct.
- It is possible to produce calibrated predictions even for an adversarially chosen sequence of states [Foster Vohra]
- Unfortunately...
	- One way to achieve calibration is to be uninformative:
		- The constant prediction $\hat{s} = \mathbb{E}[s]$ is calibrated --- but not useful.
	- The number of possible predictions \hat{s} grows exponentially in d
		- The computational and statistical complexity of achieving calibration against adversarial sequences also grows exponentially with d ...

This Talk

- •In high dimensional settings, what can we ask for short of calibration that still makes it a good idea for agents to treat forecasts as correct?
- Can we obtain it *efficiently* (computationally and statistically) in adversarial settings, and
- •Does this lead us to new learning algorithms for large action spaces?
- •Does this lead us to new/robust approaches to online mechanism design problems?

The Online Prediction Setting

- \bullet A context space X
	- Features relevant to the prediction task
- A convex prediction/outcome space $C \subset \mathbb{R}^d$
	- E.g. the probability simplex, the set of all feasible road congestions, ...
- In rounds $t = 1, ..., T$:
	- The learner observes some context $x_t \in X$.
	- The learner produces a prediction $\hat{s}_t \in \mathcal{C}$
	- The learner observes outcome $s_t \in C$

Making Unbiased Predictions

- An event $E(x_t, \hat{s}_t)$ is a function $E: X \times C \rightarrow \{0,1\}$. It selects a subsequence of rounds as a function of the context and prediction.
	- Can also depend on history, map to the reals, but unimportant for this talk.
- Goal: Given a collection of events $\mathcal E$, make $\mathcal E$ -unbiased predictions: for each $E \in \mathcal{E}$:

$$
\left\| \sum_{t=1}^{T} E(x_t, \hat{s}_t) \cdot (\hat{s}_t - s_t) \right\|_{\infty} \le \alpha
$$

- Calibration is the special case of $\{E(\hat{s}_t) = 1 | \hat{s}_t = s\}$
	- Exponentially in d many events

Questions

Calibration is useful but hard to obtain.. So:

- 1. Are predictions that are unbiased subject to only a modest (polynomial) number of conditioning events useful for decision making, and
- 2. Can we efficiently make $\mathcal E$ -unbiased predictions for modestly sized collections E ?

Warmup: (Internal) Regret

- Consider a repeated interaction with action/state sequence: $\pi^T = \{(a_1, s_1), (a_2, s_2), ..., (a_T, s_T)\}\$
- The agent has (external) Regret α if:

$$
\sum_{t=1}^l u(a_t, s_t) \ge \min_{a \in A} \sum_{t=1}^l u(a, s_t) - \alpha
$$

• The agent has internal regret α if for every $\alpha \in A$:

$$
\sum_{t=1}^{I} 1[a_t = a] \cdot u(a_t, s_t) \ge \min_{a' \in A} \sum_{t=1}^{I} 1[a_t = a] \cdot u(a', s_t) - a
$$

"On the subsequence on which the agent played a , a was a best response"

• If all agents in an interaction have α internal regret, play is a $k\alpha$ -approximate correlated equilibrium.

Warmup: Internal Regret

- Best responding to calibrated forecasts yields no internal regret, but not necessary.
- Let $E_{u,a}(\hat{s}) = 1[a = BR(u, \hat{s})]$, $\mathcal{E}_u = \{E_{u,a}\}_{a \in A}$

• The events that each action a is a best response to \hat{s} for u .

Claim: If predictions $\hat{s}_1, \dots, \hat{s}_T$ have \mathcal{E}_u -bias α , then if an agent uses best response policy $f^*_{\nu}(\hat{s}) = BR(u, \hat{s})$, they have internal regret 2α .

- Only $k = |A|$ conditioning events, rather than 2^d
- If there are many agents with utility functions $u \in U$, can give unbiased predictions wrt $E_U = \bigcup_{u \in U} \mathcal{E}_u$ and obtain guarantees for all agents.

Warmup: Internal Regret

Claim: If predictions \hat{s}_1 , ..., \hat{s}_T have \mathcal{E}_u -bias α , then if an agent uses best response policy $f^*_{\nu}(\hat{s}) = BR(u, \hat{s})$, they have internal regret 2α .

Proof: Fix a pair of actions $a, a' \in A$. $\sum_{t} 1[a_t = a]u(a, s_t) = \sum_{t} 1[BR(u, \hat{s}) = a]u(a, s_t)$ $= u\left(a, \sum_{t} 1[BR(u, \hat{s}) = a]s_t\right)$ $\geq u\left(a, \sum_{t} 1[BR(u, \hat{s}) = a]\hat{s}_{t}\right) - \alpha$
 $\geq u\left(a', \sum_{t} 1[BR(u, \hat{s}) = a]\hat{s}_{t}\right) - \alpha$
 $\geq \sum_{t} 1[a_t = a]u(a', s_t) - 2\alpha$

Generalizing: Online Combinatorial Optimization

- \bullet A set B of d base actions.
	- E.g. roads in a network
- A feasible set of actions $A \subseteq 2^B$
	- E.g. $s \rightarrow t$ paths in a network
- State s encodes gain $g_{u,e}(s)$ for each $s \in B$
- Utility for an action $a \in A$: $u(a,s) = \sum_{e \in a} g_{u,e}(s)$
- Up to 2^d actions, but d-dimensional linear structure.
- Expert learning the special case of $A = B$.

Generalizing: Subsequence Regret

• Given a collection $\mathcal E$ of subsequence indicator functions $E(x_t, a_t)$, an agent has α -subsequence regret if for every $E \in \mathcal{E}$:

$$
\sum_{t=1} E(x_t, a_t) u(a_t, s_t) \ge \min_{a' \in A} \sum_{t=1} E(x_t, a_t) \cdot u(a', s_t) - a
$$

• Internal regret is the special case of events $E_a(a_t) = 1[a_t = a]$

- Let $E_{u,b}(\hat{s}_t) = 1[b \in BR(u, \hat{s}_t)], \mathcal{E}_u = \{E_{u,b}\}_{b \in R}$
- Let $\mathcal{E} \times \mathcal{E}_u = \{ E(x_t, BR(u, \hat{s}_t)) \cdot E_{u,b}(\hat{s}_t) : E \in \mathcal{E}, E_{u,b} \in \mathcal{E}_u \}$

Online Combinatorial Optimization

Theorem: For any collection of events \mathcal{E} , if forecasts \hat{s}_1 , ..., \hat{s}_T have $(\mathcal{E} \times \mathcal{E}_{\nu})$ -bias at most α , then the best response policy has subsequence regret over $\mathcal E$ at most $2\alpha d$.

- Requires unbiasedness on only $d \cdot |\mathcal{E}|$ events.
- Can ask for this simultaniously for m agents with different u 's and action sets, with $m \cdot d \cdot |\mathcal{E}|$ events...

Online Combinatorial Optimization

e.g. can publish traffic reports that are a good idea to follow (no regret) simultaniously for *every* agent who might have different source/destination pairs. Not just overall but also:

- On Rainy Days
- On Mondays
- On National Holidays
- On days when the best route involves I-76
- On days when the best route takes surface roads right after a Phillies game
- …

Action space exponentially large in the game tree.

A strategy makes a subset of the leaves *reachable*. Payoff corresponds to the leaf also made reachable by opponents.

- Let $\mathcal L$ be the set of leaves in an extensive form game.
- Fix a player i. For $\ell \in \mathcal{L}$, let $r_i(\ell)$ be the reward for i at ℓ .
- Given a strategy a_i for player i, let $R(a_i) \in \{0,1\}^{|{\cal L}|}$ be the indicator vector for the set of leaves a_i makes reachable.
- The reward for agent i for playing a_i can be written as: $u(a_i, a_{-i}) = \langle R(a_i), q(a_{-i}) \rangle$

Where $g(a_{-i}) \in \mathbb{R}^{|\mathcal{L}|}$ is $g_{\ell}(a_{-i}) = r_i(\ell) \cdot \Pr$ [opponents make ℓ reachable]

• An instance of online combinatorial optimization...

- So can efficiently obtain subsequence regret in extensive form games for any polynomial number of subsequences.
- By choosing the right collection of subsequences, we recover and generalize existing notions of extensive form regret:
	- Counterfactual regret
	- Regret to Causal deviations
	- \bullet …
- Converge to notions of extensive-form correlated equilibrium.

Efficiently Making \mathcal{E} -Unbiased Predictions (Applying a Multiobjective Optimization Strategy from [LNPR22])

• A multiobjective optimization problem:

• For each $E \in \mathcal{E}$, $i \in [d]$, $\sigma \in \{-1,1\}$ we want:

$$
\sigma \cdot \sum_{t=1}^{I} E(x_t, \hat{s}_t) \cdot (\hat{s}_t - s_t)_i \le \alpha
$$

Run a no regret algorithm (like Exponential Weights) over $2|\mathcal{E}|d$ experts (E, i, σ) with per- \bullet round gains defined as:

$$
g_{E,i,\sigma}^t = \sigma E(x_t, \hat{s}_t)(\hat{s}_t - s_t)_i
$$

- No-regret guarantee is: $\sum_{t=1}^{T} \sum_{E,i,\sigma} w_{E,i,\sigma}^{t} \sigma E(x_t, \hat{s}_t)(\hat{s}_t - s_t)_i \geq \max_{E,i,\sigma} \sigma \cdot \sum_{t=1}^{T} E(x_t, \hat{s}_t) \cdot (\hat{s}_t - s_t)_i - O\left(\sqrt{T \cdot \log(|\mathcal{E}|d)}\right)$
• So if we can make predictions \hat{s}_t such that $\mathbb{E}_{\hat{s}_t}[\sum_{E,i,\sigma} w_{E,i,\sigma}^t \sigma E(x_t, \hat{s}_t)(\hat{s}_t S_t...$
- We'll guarantee $\max_{F_i} \left| \sum_{t=1}^T E(x_t, \hat{s}_t) \cdot (\hat{s}_t s_t)_i \right| \leq O\left(\sqrt{T \cdot \log(|\mathcal{E}| d)}\right)$

Efficiently Making \mathcal{E} -Unbiased Predictions (Applying a Multiobjective Optimization Strategy from [LNPR22])

• Goal: Find a distribution over predictions s.t. for all s_t :

$$
\mathbb{E}_{\hat{s}_t} \left[\sum_{E, i, \sigma} w_{E, i, \sigma}^t \sigma E(x_t, \hat{s}_t) (\hat{s}_t - s_t)_i \right] \le 0
$$

- If the adversary first committed to a distribution over s_t , we could just play $\hat{s}_t = \mathbb{E}[s_t]$.
- By the minimax theorem, a solution exists --- we just need to find it!
- A minimax equilibrium computation...
- Difficulty: Exponentially large action spaces.

Efficiently Making \mathcal{E} -Unbiased Predictions

- We can compute a minimax strategy using learning dynamics. Repeated play in which:
	- The adversary uses a no-regret learning algorithm, and...
	- The learner best responds.
- The objective $\mathbb{E}_{\hat{S}_t}[\sum_{E,i,\sigma} w_{E,i,\sigma}^t \sigma E(x_t, \hat{s}_t)(\hat{s}_t s_t)_i]$ is linear in the adversary's action s_t
	- So the adversary can efficiently play "Follow the Perturbed Leader"
- The objective is a complicated function of the learner's action \hat{s}_t ... But to play so as to obtain value ≤ 0 , it suffices to play $\hat{s}_t = \mathbb{E}[s_t]$.
	- i.e. can just "copy" the adversary's strategy.

Efficiently Making $\mathcal E$ -Unbiased Predictions

Theorem: For any set of events $\mathcal E$ and any $\alpha > 0$, there is an online prediction algorithm that can make d -dimensional adversarial predictions over T rounds such that their worst-case $\mathcal E$ -bias is at most α $for:$

$$
\alpha \le \sqrt{\log(d|\mathcal{E}|T) + T}
$$

The per-round running time is polynomial in d and T.

- For disjoint events, running time decreases to polylog (T) .
- More refined bounds (less bias for shorter subsequences)

Upshot

- Calibration incentivizes downstream agents to treat predictions as correct, but has exponentially growing complexity…
	- The complexity does not stem from the exponentially large action space, but the exponentially large number of conditioning events.
	- Can efficiently make predictions that are unbiased subject to polynomially many events.

Upshot

- For particular utility functions, polynomially many events are enough.
	- A useful algorithm design paradigm --- you only have one utility function!
- Can design "coordination mechanisms" for whole classes of utility functions
	- E.g. for all source-destination pairs in a routing game.
	- Predictions agents are incentivized to follow, and lead to no internal regret/correlated equilibrium.
	- Requires much less agent sophistication than running their own no-internal-regret algorithm.
- Concrete Mechanism Design Application
	- Sequential principal agent problems without a prior, a la Camara, Hartline, and Johnson with an exponentially improved dependence on the state space. (joint work with Natalie Collina and Han Shao)

Upshot

- •Other applications…
	- Uncertainty Quantification:
		- In multiclass classification problems can produce class scores that can be treated as probabilities for producing prediction sets of different coverage probabilities.
		- In regression problems can produce functions that can be treated as label CDFs to produce prediction intervals of different coverage probabilities.

Thanks!