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Some Areas of Successful Application:

e school choice
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A Peer Grading Story

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!
3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules
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Main Algorithms:
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e grading submissions from peer reviews
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Advantages of Peer Grading: (observations from Intro to Algs)

e learning by reviewing.
(learn material: 60% agree; learn to write better: 55% agree
(worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

e reduces teacher grading.
(TAs graded 1/5 of student work.)

e promptness of feedback.
(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...
(3.7% appeal rate; 1-6% strongly disagree with survey questions)
Main Challenge: incentivizing accurate peer reviews.

(i.e., “grading the grading”)
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Example Scenario:

e 100 students
e submit homeworks in pairs = 50 submissions.
e cach review three submissions = 300 peer reviews.

e need to grade: 50 submissions, 300 peer reviews.
Approach:

pick 10 submissions for TA to review.

assign each peer 1 of these 10 submissions at random to review.

assign each peer 2 of remaining 40 submissions at random to review.

> PP F

grade Step 2 peer reviews against TA review. (don't grade other reviews)

Remaining challenge: grading peer reviews from TA review.

Idea: use proper scoring rule!
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e algebra = can rewrite as:
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e report cannot affect x (so ignore it)

let supporting tangent at r be:

he(0) = u(r) + u'(r)(0 —r) p r -

e loss from report r at belief p: u(u) — he(p). O
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Standard Scoring Rules are Horrible

The Lazy Peer Strategy
e assume: TA grade ¢ € [0.6,1]
e strategy: always report r = 0.8

e S(r,0) >1—(0.2)>=0.96

Result
Very little incentive for effort!
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A Peer Grading Story

3. (Quick fix: Manually grade the peer reviews.)
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Review Grading By Hand

Submission 42

contents of submission

Peer 1 Peer 2 Peer 3 TA Score  TA Comment
Algorithm 8* 9* 10 9 et el
Correctness 5% ™ 10 6 missing base case
Clarity 8* 8* 10 8
Quantitative 9 10 5
Qualitative 8 8 0
Feedback see TA review  see TA review  TUSt Provide

detailed revie

12



A Peer Grading Story

4. Optimization of scoring rules.
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Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
e peers choose effort or no effort
e maximize: difference in score for effort vs no effort

e subject to: proper and bounded scoring rule.

14



Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
MaXscoring rule Estate, belief with effort [SCOre with effort — score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)

scoring rule is bounded

14



Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
MaXscoring rule Estate, belief with effort [SCOre with effort — score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)

scoring rule is bounded

1
Theorem
optimal single-dimensional scoring rule:
choose side of prior mean, score linear in state o
o
[0}
0 1
0 prior mean 1

state

14



Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
MaXscoring rule Estate, belief with effort [SCOre with effort — score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)

scoring rule is bounded

Theorem !
optimal single-dimensional scoring rule:
choose side of prior mean, score linear in state o
(standard scoring rules like quadratic not approx optimal) §
O 1
0 prior mean 1

state

14



Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
MaXscoring rule Estate, belief with effort [SCOre with effort — score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)

scoring rule is bounded

Theorem
optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

score

(standard scoring rules like quadratic not approx optimal)

Theorem
approximately optimal multi-dimensional scoring rule: 0 0

maximum over optimal separate scoring rules 0 prior mean 1
state

14



Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort
MaXscoring rule Estate, belief with effort [SCOre with effort — score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)

scoring rule is bounded

Theorem
optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

score

(standard scoring rules like quadratic not approx optimal)

Theorem
approximately optimal multi-dimensional scoring rule: 0 0

maximum over optimal separate scoring rules 0 prior mean 1

(average of separate scoring rules not approx optimal) state
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A Peer Grading Story

5. Fundamental Role of Scoring Rules

17



A Value of Data (via “Revelation Principle”)

analysis of dataset ——— decision optimization ———> payoff from decision

18



A Value of Data (via “Revelation Principle”)

analysis of dataset

b decision optimization ——— payoff from decision

proper scoring rule

18



A Value of Data (via “Revelation Principle”)

analysis of dataset

Interpretations

b decision optimization ——— payoff from decision

proper scoring rule

18



A Value of Data (via “Revelation Principle”)

analysis of dataset —— decision optimization ———> payoff from decision

proper scoring rule

Interpretations

e scoring rules are fundamental for understanding good data analyses

18



A Value of Data (via “Revelation Principle”)

analysis of dataset —— decision optimization ———> payoff from decision

proper scoring rule

Interpretations
e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

18



A Value of Data (via “Revelation Principle”)

analysis of dataset —— decision optimization ———> payoff from decision

proper scoring rule

Interpretations
e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

18



A Value of Data (via “Revelation Principle”)

analysis of dataset —— decision optimization ———> payoff from decision

proper scoring rule

Interpretations
e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

e researcher shows behavioral subjects different visual stimuli.

18



A Value of Data (via “Revelation Principle”)

analysis of dataset —— decision optimization ———> payoff from decision

proper scoring rule

Interpretations
e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)
e researcher shows behavioral subjects different visual stimuli.

e measure performance in decision problem (a.k.a., scoring rule).

18



A Value of Data (via “Revelation Principle”)

analysis of dataset —— decision optimization ———> payoff from decision

proper scoring rule

Interpretations
e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)
e researcher shows behavioral subjects different visual stimuli.
e measure performance in decision problem (a.k.a., scoring rule).

e benchmark against rational agent with and without stimuli.
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A Value of Data (via “Revelation Principle”)

analysis of dataset

Interpretations

b decision optimization ——— payoff from decision

proper scoring rule

e scoring rules are fundamental for understanding good data analyses

e optimal scoring rules for binary effort = setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

Rational agent Rational agent
Density 25¢4 1.8 mAﬂov\(im prior N :im posterior
. . g . . . Mean 24% 27% 42% v
e researcher shows behavioral subjects different visual stimuli.  onc 2 27 500 | A A=l
— ' ! -PoSreports
e measure performance in decision problem (a.k.a., scoring rule). e 1o 2o 3 0 A A Lo
Nomean 15% 27% 33% 1 [ VATV : N s
e benchmark against rational agent with and without stimuli. Intervals L N
Mean 32% 25% 44% i 1 Behavioral
Nomean 35% 26% 41% ' A AAk- + agent
' ! -action reports
QDPs. , ,
Mean 40% 33% 31% | A Md
Nomean 40% 33% 27% 1 A AL

Scores™® 3 g i 18



Mechanism Design for the Classroom

The classroom as a market:

e students: agents

e instructor: principal

e syllabus: rules that map actions to grades

e student incentives: minimize work, maximize grade

e goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:
e grading randomized exams: ex post fairness?
e grading with partial credit: incentivizing precise answers?
e group projects: incentivizing teamwork?
e peer grading: incentives for accurate peer reviews?
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