Mechanism Design for the Classroom (Optimization of Scoring Rules)

Jason Hartline SLMath – Sept. 12, 2023

Northwestern University (visiting Stanford 2023–2024) hartline@northwestern.edu

Yingkai Li

Liren Shan

Yifan Wu

•62 years of research on mechanism design

•62 years of research on mechanism design

Question: do novel mechanisms from the extensive literature work in practice?

• ... 62 years of research on mechanism design

Question: do novel mechanisms from the extensive literature work in practice?

Some Areas of Successful Application:

- school choice [Abdulkadiroğlu, Sönmez AER'03] [...]
- matching doctors to hospitals [Roth, Peranson AER'99] [...]
- kidney exchange [Roth, Sönmez, Ünver QJE'04] [...]
- online advertising [Varian IJOR'07] [Edelman, Ostrovsky, Schwarz AER'07] [Edelman, Ostrovsky EC'11]
- spectrum auctions [Leyton-Brown, Milgrom, Segal PNAS'17] [...]

• ... 62 years of research on mechanism design

Question: do novel mechanisms from the extensive literature work in practice?

Some Areas of Successful Application:

- school choice [Abdulkadiroğlu, Sönmez AER'03] [...]
- matching doctors to hospitals [Roth, Peranson AER'99] [...]
- kidney exchange [Roth, Sönmez, Ünver QJE'04] [...]
- online advertising [Varian IJOR'07] [Edelman, Ostrovsky, Schwarz AER'07] [Edelman, Ostrovsky EC'11]
- spectrum auctions [Leyton-Brown, Milgrom, Segal PNAS'17] [...]

Challenge: to test mechanism in practice, need strategic data for that mechanism!

• ... 62 years of research on mechanism design

Question: do novel mechanisms from the extensive literature work in practice?

Some Areas of Successful Application:

- school choice [Abdulkadiroğlu, Sönmez AER'03] [...]
- matching doctors to hospitals [Roth, Peranson AER'99] [...]
- kidney exchange [Roth, Sönmez, Ünver QJE'04] [...]
- online advertising [Varian IJOR'07] [Edelman, Ostrovsky, Schwarz AER'07] [Edelman, Ostrovsky EC'11]
- spectrum auctions [Leyton-Brown, Milgrom, Segal PNAS'17] [...]

Challenge: to test mechanism in practice, need strategic data for that mechanism! Very difficult!

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:

• grading randomized exams: ex post fairness?

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness?
- grading with partial credit: incentivizing precise answers?

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness?
- grading with partial credit: incentivizing precise answers?
- group projects: incentivizing teamwork?

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness?
- grading with partial credit: incentivizing precise answers?
- group projects: incentivizing teamwork?
- peer grading: incentives for accurate peer reviews?

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

- grading randomized exams: ex post fairness? [Chen, Hartline, Zoeter FORC'23]
- grading with partial credit: incentivizing precise answers? [Chen, Hartline, Zoeter]
- group projects: incentivizing teamwork?
- peer grading: incentives for accurate peer reviews? [Li, Hartline, Shan, Wu EC'22]

1. A peer grading platform (PeerPal).

- 2. Grading peer reviews with proper scoring rules is horrible!
- 3. (Quick fix: Manually grade the peer reviews.)
- 4. Optimization of scoring rules.
- 5. Fundamental Role of Scoring Rules

Peer grading system:

- Canvas plugin (https://www.peerpal.io/)
- used in "Intro to CS", "Intro to Algorithms", "Intro to Online Markets", "Mechanism Design", etc.

Peer grading system:

- Canvas plugin (https://www.peerpal.io/)
- used in "Intro to CS", "Intro to Algorithms", "Intro to Online Markets", "Mechanism Design", etc.

Main Algorithms:

- matching peers and TAs to submissions
- grading submissions from peer reviews
- grading peer reviews from TA reviews

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

- reduces teacher grading.
- promptness of feedback.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

- reduces teacher grading.
- promptness of feedback.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...

(3.7% appeal rate; 1-6% strongly disagree with survey questions)

Advantages of Peer Grading: (observations from Intro to Algs)

• learning by reviewing.

(learn material: 60% agree; learn to write better: 55% agree (worse students agree more: A: 52%; B: 54%; C: 75%; D: 80%)

• reduces teacher grading.

(TAs graded 1/5 of student work.)

• promptness of feedback.

(peer review feedback in 3 days, grades in 5 days; versus 2 weeks)

Potential Disadvantages: Inaccurate grades, student unrest, ...

(3.7% appeal rate; 1-6% strongly disagree with survey questions)

Main Challenge: incentivizing accurate peer reviews.

```
(i.e., "grading the grading")
```

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

Approach:

- 1. pick 10 submissions for TA to review.
- 2. assign each peer 1 of these 10 submissions at random to review.
- 3. assign each peer 2 of remaining 40 submissions at random to review.
- 4. grade Step 2 peer reviews against TA review. (don't grade other reviews)

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

Approach:

- 1. pick 10 submissions for TA to review.
- 2. assign each peer 1 of these 10 submissions at random to review.
- 3. assign each peer 2 of remaining 40 submissions at random to review.
- 4. grade Step 2 peer reviews against TA review. (don't grade other reviews)

Remaining challenge: grading peer reviews from TA review.

- 100 students
- submit homeworks in pairs \Rightarrow 50 submissions.
- each review three submissions \Rightarrow 300 peer reviews.
- need to grade: 50 submissions, 300 peer reviews.

Approach:

- 1. pick 10 submissions for TA to review.
- 2. assign each peer 1 of these 10 submissions at random to review.
- 3. assign each peer 2 of remaining 40 submissions at random to review.
- 4. grade Step 2 peer reviews against TA review. (don't grade other reviews)

Remaining challenge: grading peer reviews from TA review.

Idea: use proper scoring rule! [McCarthy PNAS'56] [Savage JASA'71] [Gneiting, Raftery JASA'07] [...].

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

Grading Review with Proper Scoring Rule

• TA score $\theta \in [0,1]$ (truth)

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Example

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Example

• peer report r = 0.8
Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0, 1]$; peer report $r \in [0, 1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

- peer report r = 0.8
- TA report $\theta = 0.3$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

• let $u(r) = 1 - r + r^2$

- peer report r = 0.8
- TA report $\theta = 0.3$
- score $S(r, \theta) = 1 0.5^2 = 0.75$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

 $S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

$$S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$$

• report cannot affect κ (so ignore it)

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0,1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

$$S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$$

- report cannot affect κ (so ignore it)
- let supporting tangent at r be:

$$h_r(\theta) = u(r) + u'(r)(\theta - r)$$

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$

Grading Review with Proper Scoring Rule

- TA score $\theta \in [0, 1]$ (truth)
- Peer belief $\mu \in [0,1]$; peer report $r \in [0,1]$
- quadratic scoring rule: $S(r, \theta) = 1 (\theta r)^2$
- (if multiple rubric elements, average across rubric)

Theorem

Reporting $r = \mu$ is optimal for peer.

Proof.

- let $u(r) = 1 r + r^2$
- algebra \Rightarrow can rewrite as:

$$S(r,\theta) = u(r) + u'(r)(\theta - r) + \kappa(\theta).$$

- report cannot affect κ (so ignore it)
- let supporting tangent at r be:

 $h_r(\theta) = u(r) + u'(r)(\theta - r)$

• loss from report r at belief μ : $u(\mu) - h_r(\mu)$. \Box

- peer report r = 0.8
- TA report $\theta = 0.3$

• score
$$S(r, \theta) = 1 - 0.5^2 = 0.75$$

• assume: TA grade $\theta \in [0.6, 1]$

- assume: TA grade $\theta \in [0.6, 1]$
- strategy: always report r = 0.8

- assume: TA grade $\theta \in [0.6, 1]$
- strategy: always report r = 0.8
- $S(r, \theta) \ge 1 (0.2)^2 = 0.96$

- assume: TA grade $\theta \in [0.6, 1]$
- strategy: always report r = 0.8
- $S(r, \theta) \ge 1 (0.2)^2 = 0.96$

Result

Very little incentive for effort!

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

Submission 42						
	:					
contents of submission						
	÷					

	Peer 1	Peer 2	Peer 3	TA Score	TA Comment
Algorithm	8*	9*	10	9	good solution
Correctness	5*	7*	10	6	missing base case
Clarity	8*	8*	10	8	easy to follow
Quantitative	9	10	5		
Qualitative	8	8	0		
Feedback	see TA review	see TA review	must provide detailed review		

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

Summary: Optimization of Scoring Rules

Optimal Scoring Rule for Incentivizing Binary Effort

- peers choose effort or no effort
- maximize: difference in score for effort vs no effort
- subject to: proper and bounded scoring rule.

max_{scoring rule} E_{state, belief with effort}[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

maxscoring rule Estate, belief with effort[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

maxscoring rule Estate, belief with effort[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule: choose side of prior mean, score linear in state (standard scoring rules like quadratic not approx optimal)

maxscoring rule Estate, belief with effort[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state (standard scoring rules like quadratic not approx optimal)

Theorem approximately optimal multi-dimensional scoring rule: maximum over optimal separate scoring rules

max_{scoring rule} E_{state, belief with effort}[score with effort - score without effort]
s.t. scoring rule is proper (optimal to truthfully report belief)
scoring rule is bounded

Theorem optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state (standard scoring rules like quadratic not approx optimal)

Theorem

approximately optimal multi-dimensional scoring rule:

maximum over optimal separate scoring rules (average of separate scoring rules not approx optimal)

Theorem optimal single-dimensional scoring rule: choose side of prior mean, score linear in state **Theorem** optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

Proof.

• consider ex post bounded scoring rule defined by convex *u*

optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}

optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:

optimal single-dimensional scoring rule: choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.

optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.

optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.
- score for extremal reports weakly less extreme

optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.
- score for extremal reports weakly less extreme
 - still ex post bounded.

optimal single-dimensional scoring rule:

choose side of prior mean, score linear in state

- consider ex post bounded scoring rule defined by convex *u*
- replace u(r) with V-shape at μ_{prior}
- objective E[u(µ_{posterior}) u(µ_{prior})] weakly increased:
 - $u(\mu_{\text{posterior}})$ weakly increased.
 - $u(\mu_{\text{prior}})$ is unchanged.
- score for extremal reports weakly less extreme
 - still ex post bounded.

Related Work

Related Work:

- characterizing scoring rules:
 - eliciting full distribution
 - eliciting the mean
 - set of elicitable properties (e.g., variance is not directly elicitable)

[McCarthy '56; Gneiting, Raftery '07] [Abernethy, Frongillo '12] e) [Lambert '11]

Related Work

Related Work:

- characterizing scoring rules:
 - eliciting full distribution
 - eliciting the mean
 - set of elicitable properties (e.g., variance is not directly elicitable)
- maximize effort with quadratic scoring rules

[McCarthy '56; Gneiting, Raftery '07] [Abernethy, Frongillo '12] .) [Lambert '11]

[Osband '89]

Related Work

Related Work:

- characterizing scoring rules:
 - eliciting full distribution
 - eliciting the mean
 - set of elicitable properties (e.g., variance is not directly elicitable)
- maximize effort with quadratic scoring rules
- maximize effort in a binary state model with costly samples

[McCarthy '56; Gneiting, Raftery '07] [Abernethy, Frongillo '12] a) [Lambert '11]

[Osband '89]

[Neyman, Noarov, Weinberg '21]
Related Work

Related Work:

٠	characterizing	scoring	rules:

Abernethy, Frongillo '12]					
[Lambert '11]					
[Osband '89]					
n, Noarov, Weinberg '21]					
 framework adopted by follow-up works: 					
[Chen and Yu '21]					
[Kong '21]					
reddygari, Waggoner '22]					
artline, Li, Shan, Wu '23]					
s, Hartline, Hullman '23]					

Related Work

Related Work:

• characterizing scoring rules:

	 eliciting full distribution 	[McCarthy '56; Gneiting, Raftery '07]			
	 eliciting the mean 	[Abernethy, Frongillo '12]			
	• set of elicitable properties (e.g., variance is not directly e	elicitable) [Lambert '11]			
•	maximize effort with quadratic scoring rules	[Osband '89]			
•	maximize effort in a binary state model with costly samp	les [Neyman, Noarov, Weinberg '21]			
framework adopted by follow-up works:					
	 optimizing max-min objective without knowledge about 	prior and signal [Chen and Yu '21]			
	 optimization of peer prediction mechanisms 	[Kong '21]			
	 bounded expected score 	[Papireddygari, Waggoner '22]			
	 maximizing effort under multi-dimensional effort model 	[Hartline, Li, Shan, Wu '23]			
	 benchmark for visualization experiments 	[Wu, Guo, Mamakos, Hartline, Hullman '23]			
•	ex post value of information	[Frankel, Kamenica '19]			

1. A peer grading platform (PeerPal).

2. Grading peer reviews with proper scoring rules is horrible!

3. (Quick fix: Manually grade the peer reviews.)

4. Optimization of scoring rules.

5. Fundamental Role of Scoring Rules

analysis of dataset \longrightarrow decision optimization \longrightarrow payoff from decision

Interpretations

Interpretations

• scoring rules are fundamental for understanding good data analyses

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

• researcher shows behavioral subjects different visual stimuli.

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

- researcher shows behavioral subjects different visual stimuli.
- measure performance in decision problem (a.k.a., scoring rule).

[Wu, Guo, Mamakos, Hartline, Hullman VIS'23]

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

- researcher shows behavioral subjects different visual stimuli.
- measure performance in decision problem (a.k.a., scoring rule).
- benchmark against rational agent with and without stimuli.

[Wu, Guo, Mamakos, Hartline, Hullman VIS'23]

Interpretations

- scoring rules are fundamental for understanding good data analyses
- optimal scoring rules for binary effort \Rightarrow setting-independent value of dataset

Example (Rational Agent Framework for Data Visualization)

- researcher shows behavioral subjects different visual stimuli.
- measure performance in decision problem (a.k.a., scoring rule).
- benchmark against rational agent with and without stimuli.

[Wu, Guo, Mamakos, Hartline, Hullman VIS'23]

The classroom as a market:

- students: agents
- instructor: principal
- syllabus: rules that map actions to grades
- student incentives: minimize work, maximize grade
- goal: minimize work, maximize learning, fairly assess

Basic Questions: What is best syllabus?

Examples:

- grading randomized exams: ex post fairness? [Chen, Hartline, Zoeter FORC'23]
- grading with partial credit: incentivizing precise answers? [Chen, Hartline, Zoeter]
- group projects: incentivizing teamwork?
- peer grading: incentives for accurate peer reviews? [Li, Hartline, Shan, Wu EC'22]