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Biases in Decision Making
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Investors tend to avoid selling stocks below the purchase price (odean’ss)
This behavior is related to two behavioral biases (kahneman and Tversky’79):

Reference point — gains and losses are computed with respect to some
reference point - the purchase price.

Loss aversion — losses are weighed higher than gains.




Biases in Decision Making

Is the reference point necessarily fixed?

Reference Point: Highest g

uality of bou

Subjects performing a sequential searc
searching too earIy (Schunk and Winter’09)

=! =

N task in an experiment stopped

==

Consistent with a changing reference point: minimal price observed.



Optimal Stopping Problems

FAOLE X

e Setup: n candidates. The distributions of candidates’ values are known.

« Process: The agent interviews the candidates by order to reveal their value.
After interviewing the agent decides whether to hire or not.

« Objective: maximize the quality of the candidate that is hired.

Prophet inequality: There exists a stopping rule selecting a candidate with expected value
at least % of the best candidate in hindsight (Krengel and Sucheston’78).

Behavioral Adaptation (Kleinberg, Kleinberg and Oren’21):
Consider a reference-dependent agent that has loss aversion.

 Let A > 0 be a parameter denoting the extent of the loss aversion.
e Let v denote the value of the best candidate so far (=the reference point).

e If the agent hires a candidate of value u < v its utility isu — A(v — u).
« The biased agent aims to maximize its expected utility.



An Example

Behavioral Adaptation: Consider a reference-dependent agent that has loss aversion.
 Let 4 > 0 be a parameter denoting the extent of the loss aversion.
e Let v denote the value of the best candidate so far (=the reference point).

* If the agent hires a candidate of value u < v its utility isu — A(v — u)
« The biased agent aims to maximize its expected utility.

; 1 , 4 w.p'
— U, =
b1 = 2) 2 0 w.p
3 1 .
Expected value of a prophet: R + 2 4 =1.375 2-biased agent:
Expected value of an agent : 1 1_3,2<l_0> :%S%
Expected value of a 2-biased agent : 0.5
Expected utility Utility
. prophet , _
Performance ratio: =2.75 2 for taking v, for taking v,

2—biased 2-biased



Results: “Prophet Inequality”

J/*- value of the best candidate in hindsight.
V, - value of the candidate chosen by an optimal A-biased stopping rule.

prophet  E[V™]
J—biased E[V)]

Proof Sketch (samuel-cahn’84) — show that the following stopping rule achieves the desired

A+1
bound: hire the first candidate with value greater than 6 where Plr(V>k > 6) = /1—+2 :

Theorem: < A+ 2 and this is tight.



ELVE] <2

Detour: Prophet Inequality for optimal agents - <
E[V]

‘ Accept the first candidate with value above a threshold @ such that Pr[V* > 0] = 1/2

E[V*] 1
Donate this stopping rule by 7. We will show <2 > —~0

0 7] [o's)
E[V(7)] = J Pr(V(z) > y)dy = J Pr(V(r) > y)dy |+ J Pr(V(z) > y)dy
0 0 0

> 1/2
Pr(V(®) > y) = Y Pr(V,>y,V_, <0) =| ) Pr(V,>y)- Pr(V_, < 0)

t=1 t=1 \
o0 > Pr(V* >y)

J Pr(V¥ > y)dy = J Pr(V* — 0 > 2)dz > E[(V* — )]
0 0

E[V(7)] > %9 + %E[V"< — 0] = %E[V*]




Results: “Prophet Inequality”

J/*- value of the best candidate in hindsight.
V, - value of the candidate chosen by an optimal A-biased stopping rule.

prophet  E[V™]
J—biased E[V)]

Proof Sketch (samuel-cahn’84) — show that the following stopping rule achieves the desired

Theorem: < A+ 2 and this is tight.

A+1
bound: hire the first candidate with value greater than 6 where Plr(V>k > 6) = /1—+2 :
, 1 /e W.pEe
01 U= 2 —
Tightness TR o v, { 0 w.pl—e
A-biased always selects candidate 1: Expected value of a prophet:

1 | A(1 =€) (1—e). 1 { 2—e+ M1l —-¢)

=1- +
1+(1-e)4  1+(1-9) 1+ (1 -¢)a I+ -¢)A




Results: Comparison to unbiased

Theorem:

: = < A+ 1 and this is tight.
A-biased  E[V]]

V"~ value of the best candidate in hindsight.

- optimal stopping rule for a A-biased agent.
%47 0P PPING © V, - value of the candidate chosen by 7.

- optimal stopping rule for an unbiased agent.
> PR < - value of the candidate chosen by

Proof Idea 1: Lower bound the expected utility of 7, by

Expected value of 7,;: = E[V;] Expected loss of 7, : < E[V*—V;| = E[V*| — E[V,]



Results: Comparison to unbiased

Theorem:

: = < A+ 1 and this is tight.
A-biased  E[V]]

1"~ value of the best candidate in hindsight.

- optimal stopping rule for a A-biased agent.
%47 0P PPING © V, - value of the candidate chosen by 7.

- optimal stopping rule for an unbiased agent.
> AR ¢ - value of the candidate chosen by

Proof Idea 1: Lower bound the expected utility of 7, by
Expected utility of 7, > E[Vy| — AE|[V*| — E[V,)) = A+ DE|V| — 2E|V*]
Proof Idea 2: Apply the bounds that we have: Let

E[V* E[V*
= [ ] , A = L Then, — ﬁ
ELV;] ElV,] A
E[V,] = EDV] > Expected utility of 7, > (4 + 1)E[V*] —AE[V*| =8<
/ ~ A= A T 1-AA-1)
1 A+2
We conclude: ﬁ < min : = <A+1
A 1—AA=-1) A E[V,]

Recall < A+ 2



Some Monotonicity Results

Reference value increases 2~ or ™\

A increases

Adding a candidate at the end

Adding a candidate at the beginning 2~ or ~ or
If » at most factor | If s at most factor
A+ 1 A+ 1




Ordering Problems

Candidates are ordered uniformly at random:

prophet E[V™]

° A-biased  E[V]
prophet  E[V7™] . .

. _ — < O(log 4) (essesntially tight).
A—biased E[V,]

< n (tight).

The order is chosen to maximize the expected value:

prophet  E[V™] . . : .
. ; = < n (tight) —distributions that have at least 3 values in their support.
A-biased  E[V}]

prophet  E[V™] . L . .
. : = < 2 (tight) —distributions that have 2 values in their support.
A-biased  E[V}]







Why did George Akerlof not make it
to the post office?

* An agent has to ship a package till day n.
* One-time effort cost ¢ to ship the package.

* Loss-of-use cost x each day it hasn’t been shipped.

Cost for shipping the package on day t: c+tx.
=> Package should be sent on the first day.

Instead of sending the package on the first day,
Akerlof procrastinated...




Present Bias/tfocus

A model of present bias (Akerlof’91, Strotz’55, Pollak’68):

Costs incurred today are more salient: raised by factor b > 1.

* The cost for sending the package today is bc
* The cost for sending 1t tomorrow 1s bx + c.

* Tomorrow is preferable if bc > bx + c.

General framework: quasi-hyperbolic discounting (Laibson’97)

Can model procrastination, task abandonment (O’Donoghue-Rabin’08)

and benefits of choice reduction (Ariely and Wertenbroch’02, Kaur-
Kremer-Mullainathan’10).



Graph Theoretic Framework for Planning

* Previous (theoretical) work mainly focused on the question of

when to complete a single task (e.g., Akerlof’91, O’Donoghue-

Rabin’99) or when to execute steps of a long term project
(O’Donoghue-Rabin’08).

* What happens if the task structure 1s more complicated?

* For example, a student should decide which elective
classes to take.




Graph Theoretic Framework for Present Bias
Kleinberg and Oren’ 14
* An agent has to achieve some goal (get from s to t).
* Nodes represent progress points towards the goal.
* Edges represent the tasks that the agent should complete to advance forward.
% The graph 1s a directed acyclic graph.




Graph Theoretic Framework for Present Bias
Kleinberg and Oren’ 14

* Agent has to achieve some goal (get from s to t).
* A naive agent plans to follow the shortest path from s to t.

* From a given node, immediately outgoing edges have costs
multiplied by b > 1.

A naive agent constantly changes its plan



Graph Theoretic Framework for Present Bias
Kleinberg, Oren and Raghavan’16

* Agent has to achieve some goal (get from s to t).
* From a given node, immediately outgoing edges have costs multiplied by b > 1.
* Sophisticated agent takes into account his bias when planning a path.

b=2

A sophisticated agent makes a plan and sticks to it



Cost Ratio

What is the ratio between the cost of a present biased
agent and an optimal agent?

. ” n
Answer: can be as high as b Answer: at most b

0

0 bc

o
>
All instances with exponential cost

ratio contain this graph as a subgraph Proof by an inductive argument.
(formally minor).

(Kleinberg, Oren and Raghavan’16)
(Kleinberg and Oren’ 14, Tang et al.”15)




Variation: Paths with Rewards

* An agent that reaches the target receives a reward r.
* A naive agent at node v continues to traverse the graph if

MiNyen(v) b c(v,u) +d(u,t) <r

r=11

* A sophisticated agent goes over the graph in reverse topological order and prunes
“dead ends”.

Distinction: A Naive agent might stop traversing the graph. A sophisticated agent will either
stay at s or reach t.




Choice Reduction

Choice reduction problem: given G, not traversable by an agent, 1s there a subgraph
of G that is traversable?

First attempt: if there is a traversable subgraph in G, then there 1s a traversable
subgraph that is a path.

Correct for sophisticated agents but wrong for naive agents.

A characterization of the structure of minimal traversable subgraphs for naive
agents.

--------------------
.........
----

-
.
.
. .
--------
------

For naive agents: NP-completeness [Tang et al ‘15], Hard to approximate by Vi
[Albers and Kraft ‘16].



Minimal Reward

Given a graph what 1s the minimal reward required for motivating the
agent to traverse the graph?

e ° 3 Answer: the maximal perceived cost of the path the

& m agent will take without a reward

_ ) Answer: Open
& . :
i ”’h Main Challenge: non-monotone in

/ the reward. The graph might be
traversable for a reward r but not
traversable for r’>r.

traversable for r=11 but

not for r=13.

[KOR’16] As r increases there can be an exponential number of switches
between traversable and non traversable.



Sunk Cost and Present Bias

Kleinberg, Oren and Raghavan 17

* Sunk cost - taking into account past costs even when these are irrelevant. (Arkes and
Blumer, 1985, Thaler, 1980, 1999)

* Under our framework an agent exhibiting sunk cost that already exhibited cost C will
continue to traverse the graph if AC is greater than the perceived cost for reaching the
target minus r.

b=2, A=1/2

r=19




Summary

« Optimal stopping with reference-dependent agents:
« Agents tend to stop searching prematurely.
« Random ordering or picking a specific order can help a lot.

e Planning:
e Graph theoretic framework for planning related biases. T‘iame
. . . eory
 Discussed sophisticated and naive agents.

 Different Phenomena captured by this framework.
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