Algorithmic Contract Theory and Ambiguous Contracts

Michal Feldman

Tel Aviv University

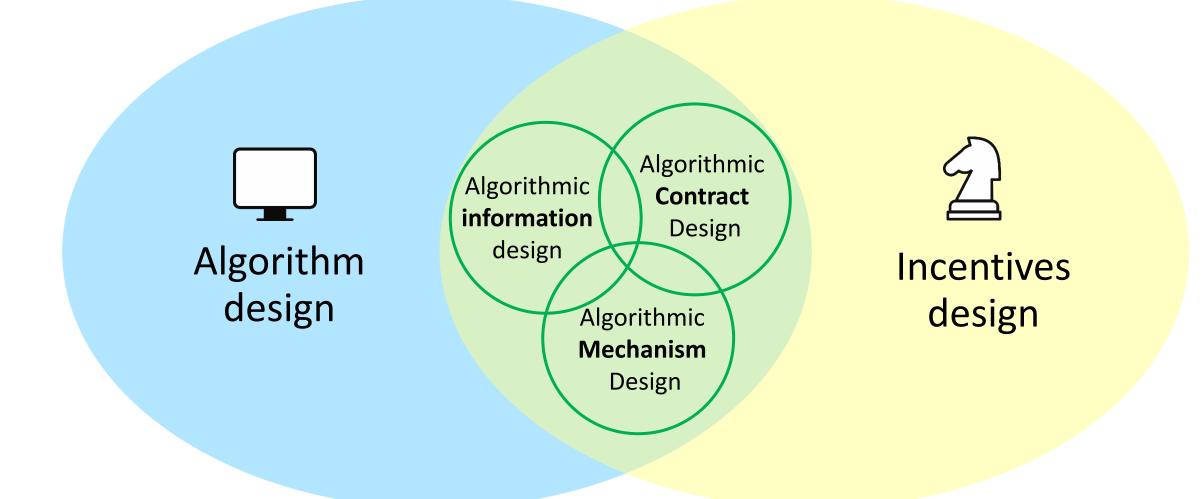
Introductory Workshop: Mathematics and Computer Science of Market and Mechanism Design

SLMath, September 2023

Joint work with: Paul Duetting and Daniel Peretz

Algorithms Shape Economics and Society

The Algorithms X Incentives Landscape



Contracts

- A payment scheme (monetary or otherwise) that incentivizes strategic agents to put in effort, when their actions are hidden
- Examples:
 - Outsourcing a task to a freelancer
 - Getting students to learn

"Modern economies are held together by innumerable contracts" [Nobel prize, 2016]

Example: Internet Marketing

A simple contract setting:

- Marketing agent hired by website owner (principal) to promote a website
- Agent takes action (e.g., SEO, promotion campaign, influencers, bloggers, social media), principal pays

Defining features:

- (1) Action not directly observable
- (2) Limited liability (principal pays the agents)

Agent

Modern Applications

Growing in scale & complexity / moving online / data-driven

- Outsourcing a task to a freelancer \rightarrow freelancing platforms
- Getting students to learn \rightarrow massive online courses

An algorithmic approach is relevant and timely

Algorithmic contract design plays the role for markets for services as algorithmic mechanism design plays for markets for goods

- can potentially inform better design in practice

Emerging Frontier

- Simple vs optimal contracts: [Dutting Roughgarden & Talgam-Cohen EC'19], [Alon Dutting Li Talgam-Cohen EC'23]
- Combinatorial contracts: [Lavi & Shamash EC'19], [Dutting Roughgarden & Talgam-Cohen SODA'20], [Dutting Ezra F. & Kesselheim FOCS'21], [Alon Lavi Shamash & Talgam-Cohen EC'21], [Dutting Ezra F. & Kesselheim STOC'23], [Babaioff F. Nisan EC'06], [Castiglioni et al. EC'23], [Dutting F. & Gal-Tzur, working paper]
- Contract design for social goods: [Li Immorlica & Lucier WINE'11], [Ashlagi Li & Lo Management Science'23+]
- Typed agents: [Guruganesh Schneider & Wang EC'21], [Alon Dutting & Talgam-Cohen EC'21], [Castiglioni et al. EC '21], [Castiglioni et al. EC '22], [Guruganesh Schneider & Wang EC'23]
- Learning contracts: [Ho Slivkins & Vaughn EC'14], [Cohen Deligkas & Koren SAGT'22], [Zhu et al. EC'23], [Dutting Guruganesh Schneider & Wang ICML'23]

Today's talk: Ambiguous Contracts

- In many contractual relations, contracts are "ambiguous". E.g.,
 - "We'll grade one question in each problem set" (professors)
 - "we'll compensate good drivers" (insurance companies)
 - "you'll get promoted if you perform well" (companies)
- Motivating question: Why are ambiguous contracts so common?
- We study the power of ambiguity in contract design
 - Lots of work in economic and algorithmic design on ambiguity as a constraint
 - We study ambiguity as a tool (inspired by [Di Tillio et al. REStud 2017] who study ambiguity in auction design)

Classic Contract Design

• Agent has *n* actions (effort levels) with costs *c*₁, ..., *c*_n

$c_1 = 0$			
$c_2 = 1$			
<i>c</i> ₃ = 2			
$c_4 = 2.2$			

- Agent has *n* actions (effort levels) with costs *c*₁, ..., *c*_n
- Principal has m rewards r_1, \ldots, r_m

	$r_1 = 1$	$r_2 = 1.1$	$r_3 = 4.9$	$r_4 = 5$	$r_{5} = 5.1$	$r_6 = 5.2$
$c_{1} = 0$						
$c_2 = 1$						
$c_3 = 2$						
$c_4 = 2.2$						

- Agent has *n* actions (effort levels) with costs *c*₁, ..., *c*_n
- Principal has m rewards r_1, \ldots, r_m
- Action a_i induces distribution p_i over \vec{r} :
 - $p_{i,j}$ = probability that action a_i yields reward r_j

	$r_1 = 1$	$r_2 = 1.1$	$r_3 = 4.9$	$r_4 = 5$	$r_{5} = 5.1$	$r_6 = 5.2$
$c_{1} = 0$	3/8	3/8	2/8	0	0	0
$c_2 = 1$						
$c_3 = 2$						
$c_4 = 2.2$						

- Agent has *n* actions (effort levels) with costs *c*₁, ..., *c*_n
- Principal has *m* rewards *r*₁, ..., *r*_m
- Action a_i induces distribution p_i over \vec{r} :
 - $p_{i,j}$ = probability that action a_i yields reward r_j

	$r_1 = 1$	$r_2 = 1.1$	$r_3 = 4.9$	$r_4 = 5$	$r_{5} = 5.1$	$r_6 = 5.2$
$c_{1} = 0$	3/8	3/8	2/8	0	0	0
$c_2 = 1$	0	3/8	3/8	2/8	0	0
$c_3 = 2$	0	0	3/8	3/8	2/8	0
$c_4 = 2.2$	0	0	0	3/8	3/8	2/8

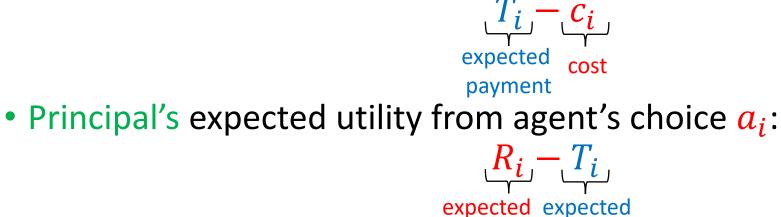
Setting: (*c*, *r*, *p*)

Contract \vec{t}

• Specifies a payment $t_j \ge 0$ per reward r_j (notice defining features!)

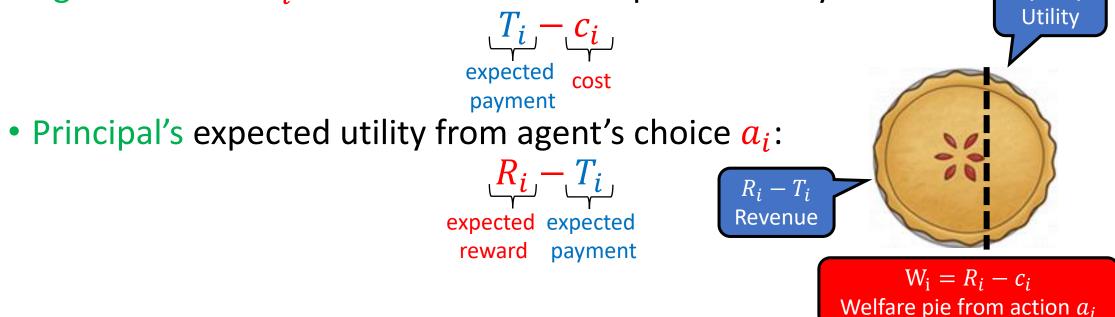
reward payment

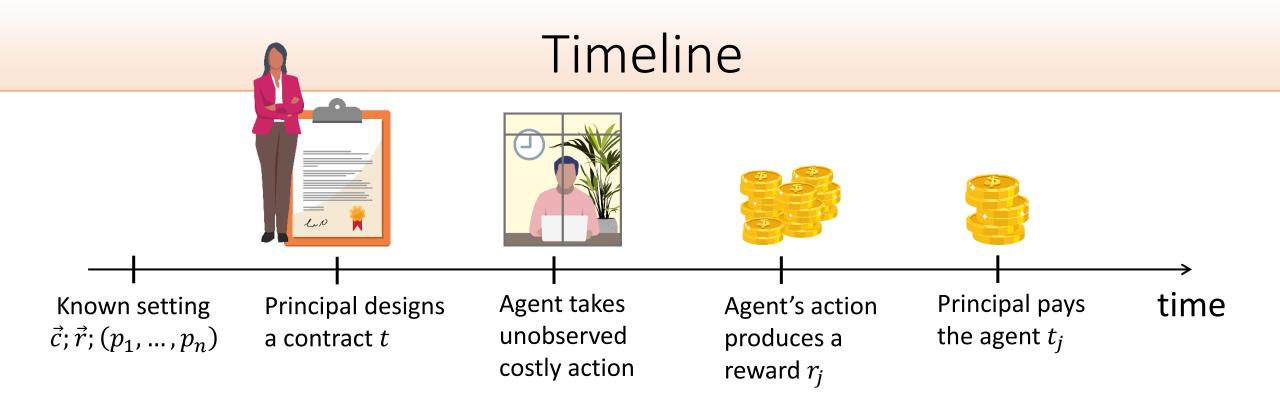
- $T_i = \sum_j p_{i,j} t_j$ = expected payment for action a_i
- $R_i = \sum_j p_{i,j} r_j$ = expected reward from action a_i
- Agent chooses a_i that maximizes her expected utility

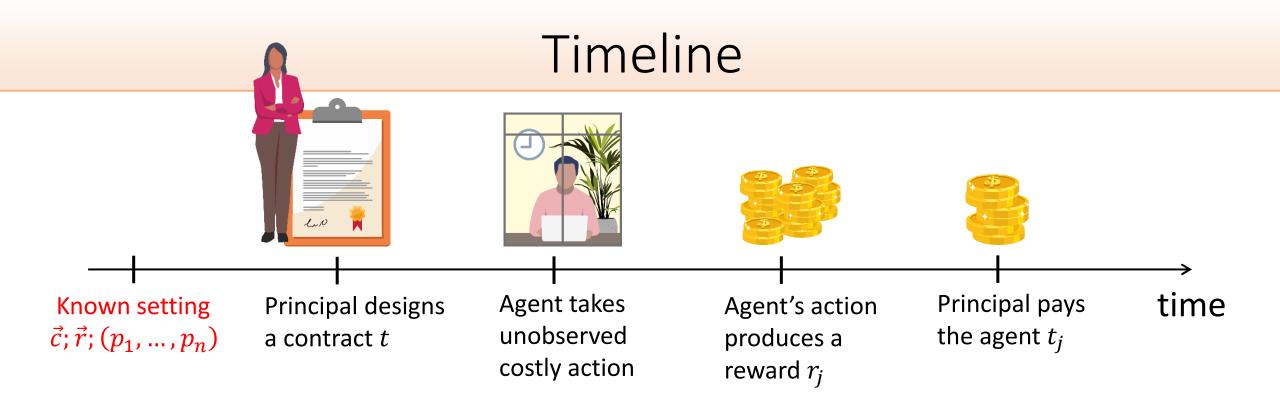


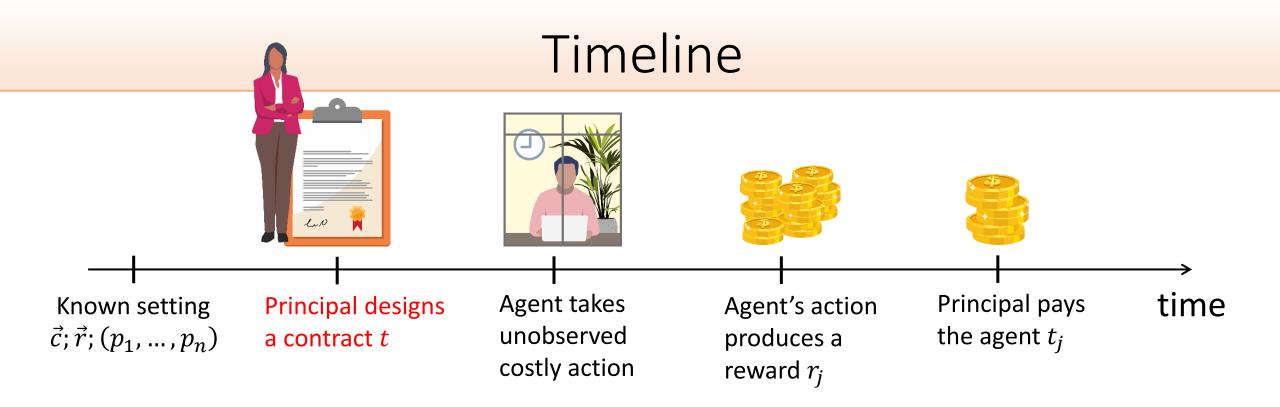
Contract \vec{t}

- Specifies a payment $t_i \ge 0$ per reward r_i (notice defining features!)
 - $T_i = \sum_j p_{i,j} t_j$ = expected payment for action a_i
 - $R_i = \sum_j p_{i,j} r_j$ = expected reward from action a_i
- Agent chooses a_i that maximizes her expected utility

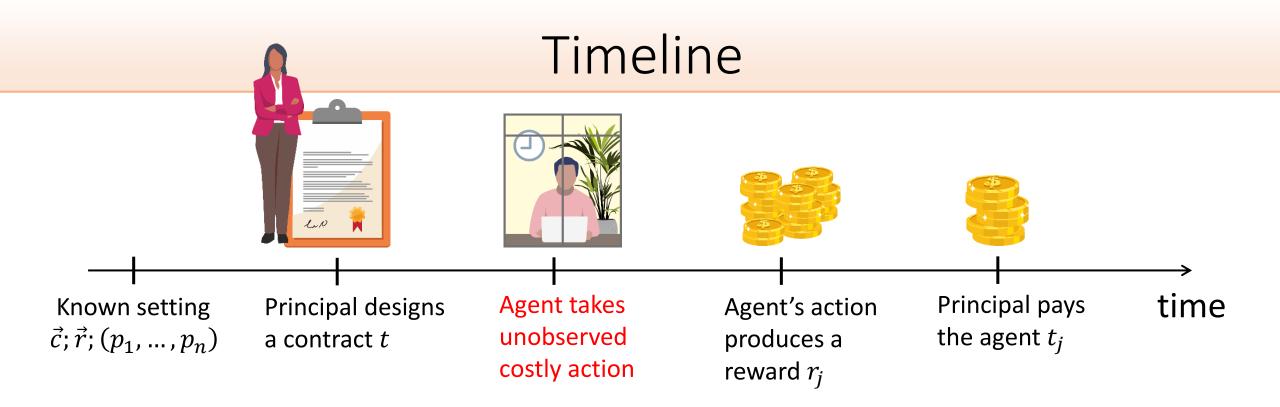






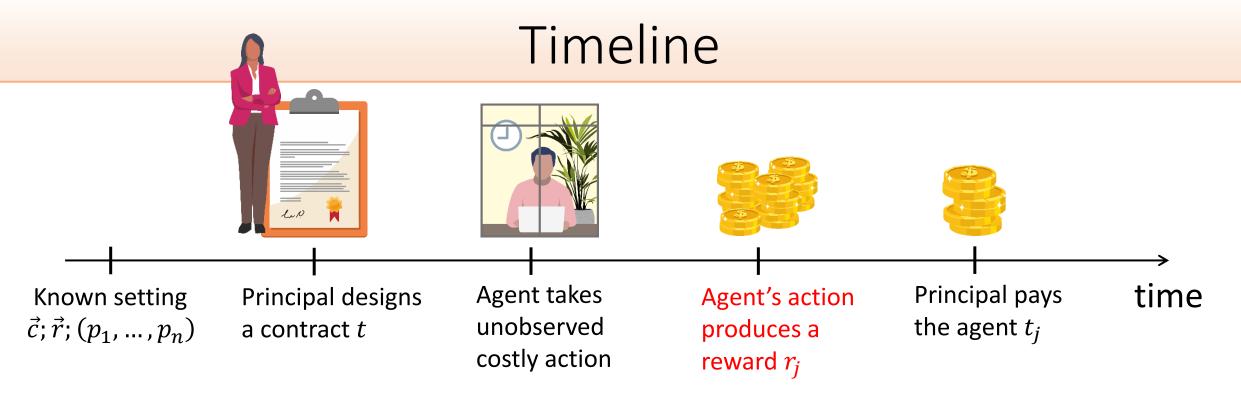


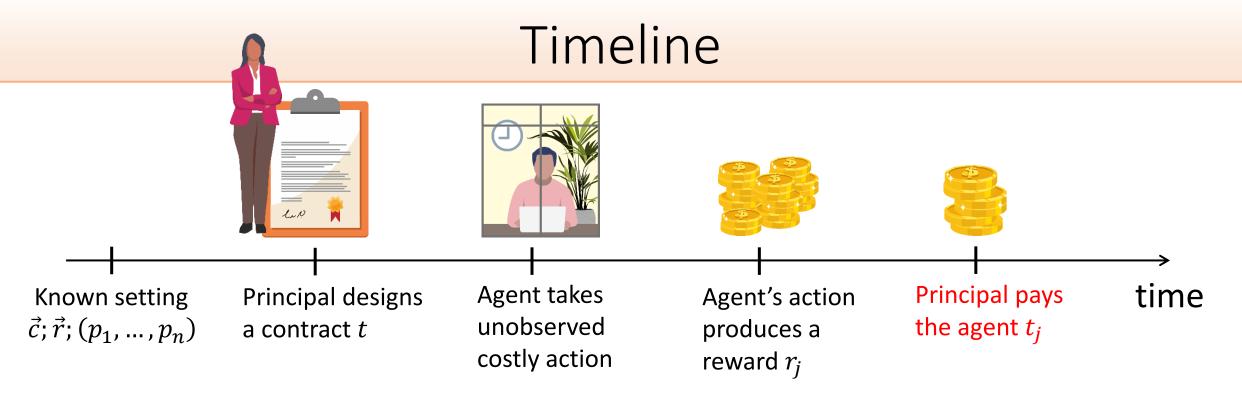
t = (0, 1, 4, 2, 6)

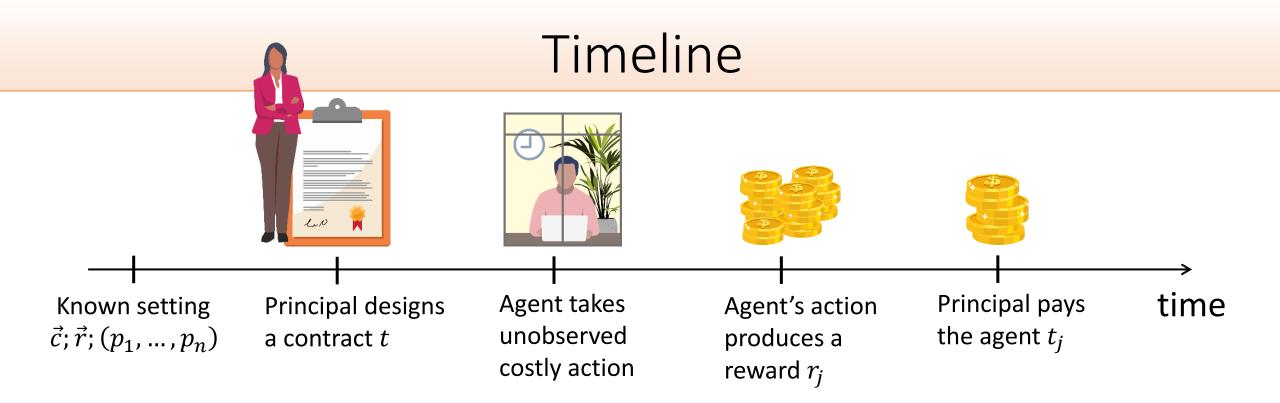


Calculates the **expected utility** for each action $U_A(i, t) = T_i(t) - c_i$

Selects action $i^*(t) \in \arg \max_{i \in [n]} U_A(i, t)$







Objective: maximize the principal's expected utility $U_P(t) = R_{i^*(t)} - T_{i^*(t)}(t)$ Reward of Expected payment of chosen action chosen action

Computing the Optimal Contract

MIN-PAY problem

- Input: Contract setting (\vec{c}, \vec{r}, p) ; an action a_i
- **Output**: Minimum T_i that incentivizes a_i

Observations:

- LP solvable (minimize T_i s.t. $U_A(i,t) \ge U_A(i',t)$ for every action i')
- Optimal contract solvable via n MIN-PAY problems

<u>Caveat</u>: Resulting contract can be weird (e.g., non-monotone)

Ambiguous contracts

Ambiguous Contracts

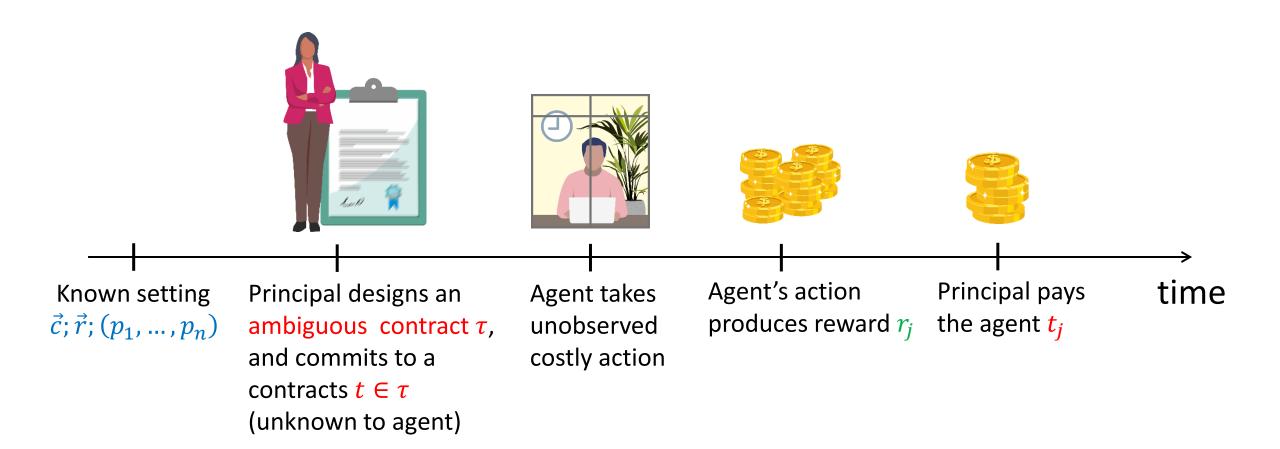
- An ambiguous contract is a set of contracts $\tau = (t^1, ..., t^k)$
 - $t^i = (t_1^i, \dots, t_m^i)$ for every i
- Agent is ambiguity averse: selects an action, $i^*(\tau)$, whose minimal expected utility across all contracts $t \in \tau$ is the highest

 $\underbrace{i^*(\tau) \in \arg\max_{i \in [n]} \min_{t \in \tau} U_A(i, t)}_{U_A(i, \tau)}$ [breaking ties in favor of principal]

• Credibility: principal is indifferent between all contracts $t \in \tau$ w.r.t. action $i^*(\tau)$, i.e., for any two contracts $t^j, t^l \in \tau$: $U_{\mathcal{D}}(i^*(\tau), t^j) = U_{\mathcal{D}}(i^*(\tau), t^l)$

(also implies that
$$T_{i^{*}(\tau)}(t^{j}) = T_{i^{*}(\tau)}(t^{l})$$
 and $U_{A}(i^{*}(\tau), t^{j}) = U_{A}(i^{*}(\tau), t^{l})$

Timeline



Example

	Cost	-	Get only B right (r= 2)	Get A&B right (r= 4)
Lazy A	0.25	1/2	0	1/4
Lazy B	0.25	0	1/2	1/4
Work hard	1	1/8	1/8	3/4

Best single contract:

- incentivizes "work hard"
- t = (0, 0, 3/2)
- Expected payment = $\frac{3}{4} * \frac{3}{2} = 1.125$

Consider ambiguous contract $\tau = (t^1, t^2)$ where $t^1 = (8,0,0)$ and $t^2 = (0,8,0)$

- "lazy A" gives -0.25 utility under t^2
- "lazy B" gives -0.25 utility under t¹
- Expected payment of both t^1 and t^2 under "work hard" = $\frac{1}{8} * 8 = 1$
 - "work hard" gives utility **0** under both t^1 , t^2

Example

	Cost	Get only A right (r= 1)	Get only B right (r= 2)	Get A&B right (r= 4)	
Lazy A	0.25	1/2	0	1/4	
Lazy B	0.25	0	1/2	1/4	
Work hard	1	1/8	1/8	3/4	

Best single contract incentivizes "work hard" for a payment of 1.125

• Principal's utility = 2.25

Best ambiguous contract incentivizes "work hard" for a payment of 1 < 1.125

• Principal's utility = 2.375

<u>Upshot</u>: principal can gain by employing ambiguous contracts

Many Questions Arise...

- What's the structure of the optimal ambiguous contract?
- What's the computational hardness of the optimal ambiguous contract?
- Are there classes of contracts that are "ambiguity-proof"?

• ...

• How much can the principal gain by employing ambiguous contracts?

Structure and computation

What's the structure and computational hardness of the optimal ambiguous contract?

Single-outcome-payment (SOP) contracts

Definition: an SOP contract is one that pays only for a single outcome, e.g., t = (0,0,4,0)

<u>Theorem (informal)</u>: For any ambiguous contract τ there's an "equivalent" ambiguous contract τ' composed of SOP contracts

<u>Theorem (formal)</u>: For any ambiguous contract τ there's an ambiguous contract $\hat{\tau}$ composed of at most min{n - 1, m} SOP contracts such that:

- $i^*(\tau) = i^*(\hat{\tau})$ [τ and $\hat{\tau}$ incentivize the same action]
- $T_{i^*(\tau)}(\tau) = T_{i^*(\tau)}(\hat{\tau})$
- [they do so for the same expected payment]

Remark: an analogous theorem for monotone contracts, with step contracts instead of SOPs

Proof Idea

For every action $i \neq i^*$, there exists a contract $t^i \in \tau$ such that

 $U_A(i,t^i) \le U_A(i^*,t^i) = U_A(i^*,\tau)$

<u>Plan</u>: modify t^i to an SOP contract \hat{t}^i such that:

- $T_{i^*}(\hat{t}^i) = T_{i^*}(\tau)$ (action i^* has the same E[payment] in \hat{t}^i as in τ)
- $T_i(\hat{t}^i) \leq T_i(t^i)$ (action *i* has E[payment] in \hat{t}^i at most as in t^i)

<u>We get</u>: $U_A(i, \hat{t}^i) \leq U_A(i, t^i) \leq U_A(i^*, \tau) = U_A(i^*, \hat{\tau})$ (so i^* is incentivized)

Constructing
$$\hat{t}^i$$
: Set $\hat{t}^i_{j_{max}} = \frac{T_{i^*}(\tau)}{p_{i^*,j_{max}}}$ and $\hat{t}^i_j = 0$ for all $j \neq j_{max}$,
where $j_{max} \in \arg \max_{i \in m} \frac{p_{i^*,j}}{p_{i,i}}$

Optimal Ambiguous Contract Computation

Theorem: An optimal ambiguous contract can be computed in $O(n^2m)$ time

Proof idea:

For every action *i*, compute an optimal ambiguous contract incentivizing it

- For any action $i' \neq i$ find an outcome $j(i') \in \arg \max_{j \in [m]} \frac{p_{i,j}}{p_{i',j}}$
- Calculate minimal expected payment to incentivize i over i' by paying for j(i')
- Update minimal expected payment to incentivize action *i* over all actions if needed

Generalizes maximum likelihood ratio principle, combined with waterfilling argument

 $\theta \leftarrow c_i$ $S \leftarrow \emptyset$ for each $i' \neq i$ do $j(i') \leftarrow \operatorname{argmax}_{j \in [m], p_{i,j} > 0} \frac{p_{i,j}}{p_{i',j}}$ $\theta_{i'} \leftarrow p_{i,j(i')} \cdot \frac{c_i - c_{i'}}{p_{i,j(i')} - p_{i',j(i')}}$ $\theta \leftarrow \max\{\theta, \theta_{i'}\}$ $S \leftarrow S \cup \{j(i')\}$ end $\tau^i \leftarrow \emptyset$ for each $j \in S$ do $t \leftarrow (0, \dots, 0, t_j = \frac{\theta}{p_{i,j}}, 0, \dots, 0)$ $\tau^i \leftarrow \tau^i \cup \{t\}$ end Return τ^i

Ambiguity Proofness

Are there classes of contracts that are "immune to ambiguous contracts"?

Ambiguity Proofness

Definition: A class of contracts \mathcal{T} is susceptible to ambiguity if there exists an instance, an action i and an ambiguous contract $\tau \in \mathcal{T}$, such that τ incentivizes action i at a strictly lower cost than any single contract in \mathcal{T}

Recall Example

		Cost	Get only A right (r= 1)	Get only B right (r= 2)	Get A&B right (r= 4)
	Lazy A	0.25	1/2	0	1/4
	Lazy B	0.25	0	1/2	1/4
7	Work hard	1	1/8	1/8	3/4

Best single contract incentivizes "work hard" for a payment of 1.125 Best ambiguous contract incentivizes "work hard" for a payment of 1 < 1.125

Ambiguity Proofness

Definition: A class of contracts \mathcal{T} is susceptible to ambiguity if there exists an instance, an action i and an ambiguous contract $\tau \in \mathcal{T}$, such that τ incentivizes action i at a strictly lower cost than any single contract in \mathcal{T}

Theorem: A class of contracts \mathcal{T} is susceptible to ambiguity iff there exist $t, t' \in \mathcal{T}$ and $x_1, x_2 \in \mathcal{R}^+$ s.t. $t(x_1) > t'(x_1)$ and $t(x_2) < t'(x_2)$

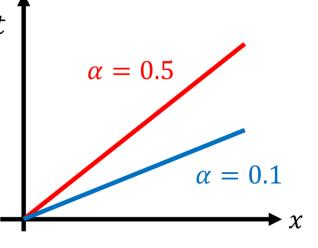
Proof (only if direction): Suppose that for every $t, t' \in \mathcal{T}$, either $t(x) \ge t'(x)$ for every $x \in \mathcal{R}^+$ or $t(x) \le t'(x)$ for every $x \in \mathcal{R}^+$. Then, one of them yields the agent (weakly) higher expected payment (and utility). Removing it does not change the agent's and principal's utilities.

Ambiguity Proofness

Definition: A class of contracts \mathcal{T} is susceptible to ambiguity if there exists an instance, an action *i* and an ambiguous contract $\tau \in \mathcal{T}$, such that τ incentivizes action *i* at a strictly lower cost than any single contract in \mathcal{T}

Theorem: A class of contracts \mathcal{T} is susceptible to ambiguity iff there exist $t, t' \in \mathcal{T}$ and $x_1, x_2 \in \mathcal{R}^+$ s.t. $t(x_1) > t'(x_1)$ and $t(x_2) < t'(x_2)$

 $t_j = \alpha r_j$ for some $\alpha \in [0,1]$ Corollary: linear contracts are ambiguity proof



A Long-Standing Puzzle

Why are simple, sub-optimal contract formats ubiquitous?

"It is probably the great robustness of [linear contracts] that accounts for their popularity. That point is not made as effectively as we would like by our model; we suspect that it cannot be made effectively in any traditional [...] model."

[Holmström & Milgrom'87]

Linear contracts are robustly optimal w.r.t.

- Unknown actions [Carroll'15]
- Unknown distributions [Duetting Talgam-Cohen Roughgarden'19]
- Our contribution to the puzzle: Linear contracts are ambiguity-proof

Ambiguity Proofness: Mixed Strategies

Theorem: mixed strategies eliminate the power of ambiguity altogether.

	Cost	-	-	Get A&B right (r= 4)	
Lazy A	0.25	1/2	0	1/4	
Lazy B	0.25	0	1/2	1/4	
Work hard	1	1/8	1/8	3/4	
	Lazy B	Lazy A 0.25 Lazy B 0.25	Lazy A0.251/2Lazy B0.250	Lazy A0.251/20Lazy B0.251/21/2	Image: Addition of the system

For example: here, mixing between (Lazy A, Lazy B) with prob. 0.5 each, gives the agent a higher utility than "work hard" against $\tau = ((8,0,0), (0,8,0))$

How much can the principal gain by ambiguous contracts?

Ambiguity gap of an instance (c, r, p):

maximal principal's utility using an **ambiguous contract**

 $\rho(c,r,p) = \frac{\max_{\tau} U_p(i^*(\tau),\tau)}{\max_{t} U_p(i^*(t),t)}$

maximal principal's utility using a **single contract**

Ambiguity gap of an instance (c, r, p):

maximal principal's utility using an **ambiguous contract**

 $\rho(c,r,p) = \frac{\max_{\tau} U_p(i^*(\tau),\tau)}{\max_{t} U_p(i^*(t),t)}$

maximal principal's utility using a **single contract**

Ambiguity gap of a class of instances \mathcal{C} : ρ

$$\rho(\mathcal{C}) = \sup_{(c,r,p)\in\mathcal{C}} \rho(c,r,p)$$

Max ambiguity gap over all instances in class $\ensuremath{\mathcal{C}}$

Ambiguity gap of an instance (c, r, p):

maximal principal's utility using an **ambiguous contract** maximal welfare of an action $\rho(c,r,p) = \frac{\underset{\tau}{\max} U_p(i^*(\tau),\tau)}{\underset{t}{\max} U_p(i^*(t),t)} \leq \frac{\underset{i\in[n]}{\max} W_i}{\underset{t}{\max} U_p(i^*(t),t)}$ maximal principal's utility using a single contract

Ambiguity gap of a class of instances \mathcal{C} : ho

$$(\mathcal{C}) = \sup_{(c,r,p)\in\mathcal{C}} \rho(c,r,p)$$

Max ambiguity gap over all instances in class $\ensuremath{\mathcal{C}}$

Main Results

Theorem: For any number n of effort levels, the ambiguity gap is at most n. Moreover, there exists such an instance with ambiguity gap n - 1.

This bound applies also to 1st vs. 2nd best ratio.

Remark: For instances with two effort levels ($c_i \in \{L, H\}$ for every action *i*), the ambiguity gap in tightly 2.

Two Effort Levels

Key Lemma: The worst ambiguity gap is obtained for a "diagonal instance", containing m actions with cost L and welfare W_L , and one action with cost H and welfare W_H .

	$r_1 = 0$	r_2	r_3		r _m
$c_1 = L$	1	0	0	0	0
$c_2 = L$	rest	$\frac{W_L + L}{r_2}$	0	0	0
$c_3 = L$	rest	0	$\frac{W_L + L}{r_3}$	0	0
	•••	•••	•••		
$c_m = L$	rest	0	0	0	$\frac{W_L + l}{r_m}$
$c_{m+1} = H$					

Summary

- Algorithmic contract design is a new frontier in AGT
- Many interesting directions waiting to be explored
- Ambiguity can be used by the principal to gain higher utility
- Optimal ambiguous contracts have simple structure (SOP, step)
- Computing the optimal ambiguous contract is feasible
- Linear contracts are immune to ambiguity manipulations
- The ambiguity gap is at most the number of effort levels

Additional Resources

STOC'22 Tutorial: Algorithmic Contract Theory (Feldman and Lucier) Dutting and Talgam-Cohen [slides pt1, slides pt2, video]

EC'19 Tutorial: Contract Theory: A New Frontier for AGT Dutting and Talgam-Cohen [slides pt1, slides pt2, video pt1, video pt2]

Coming soon: Survey on Algorithmic Contract Theory Dutting Feldman and Talgam-Cohen