Algorithmic Contract Theory and
Ambiguous Contracts

Michal Feldman

Tel Aviv University

Introductory Workshop: Mathematics and Computer Science of Market and
Mechanism Design

SLMath, September 2023

Joint work with:

Paul Duetting and Daniel Peretz

Algorithms Shape Economics and Society

**ﬁ Reputation /
Recommendation

systems
Adword
auetion 'l'Q @ o Lodging and rides
airbnb
% “ Cloud computing
voting
DODD -
= !‘ * Resources we get
Spectram Social networks * Content we see
e EO"""E commerce * Whom we hire
Ao e Opportunities we face

he Algorithms X Incentives Landscape

Algorithmic
Contract

Algorithmic

2

.= information Design
Algorithm design Incentives
design Algorithmic design

Mechanism
Design

Contracts

ﬁa yment scheme (monetary or
otherwise) that incentivizes strategic
agents to put in effort, when their
actions are hidden

* Examples:
e Qutsourcing a task to a freelancer
e Getting students to learn

“Modern economies are held together
by innumerable contracts’

[Nobel prize, 2016]

Example: Internet Marketing

A simple contract setting:

* Marketing agent hired by website owner
(principal) to promote a website

e Agent takes action (e.g., SEO, promotion
campaign, influencers, bloggers, social
media), principal pays

Defining features:
(1) Action not directly observable
(2) Limited liability (principal pays the agents)

principal

Modern Applications

Growing in scale & complexity / moving online / data-driven

* Qutsourcing a task to a freelancer = freelancing platforms
* Getting students to learn = massive online courses

[An algorithmic approach is relevant and timely]

Algorithmic contract design plays the role for markets for services as
algorithmic mechanism design plays for markets for goods

- can potentially inform better design in practice

Emerging Frontier

* Simple vs optimal contracts: [Dutting Roughgarden & Talgam-Cohen EC’19], [Alon
Dutting Li Talgam-Cohen EC’23]

* Combinatorial contracts: [Lavi & Shamash EC’19], [Dutting Roughgarden & Talgam-
Cohen SODA’20], [Dutting Ezra F. & Kesselheim FOCS’21], [Alon Lavi Shamash &
Talgam-Cohen EC’21], [Dutting Ezra F. & Kesselheim STOC’23], [Babaioff F. Nisan
EC’06], [Castiglioni et al. EC’23], [Dutting F. & Gal-Tzur, working paper]

e Contract design for social goods: [Li Immorlica & Lucier WINE’11], [Ashlagi Li & Lo
Management Science’23+]

* Typed agents: [Guruganesh Schneider & Wang EC’21], [Alon Dutting & Talgam-Cohen
EC’21], [Castiglioni et al. EC ‘21], [Castiglioni et al. EC 22], [Guruganesh Schneider &
Wang EC’23]

* Learning contracts: [Ho Slivkins & Vaughn EC'14], [Cohen Deligkas & Koren SAGT'22],
[Zhu et al. EC’23], [Dutting Guruganesh Schneider & Wang ICML 23]

oday’s talk: Ambiguous Contracts

* In many contractual relations, contracts are “ambiguous”. E.g.,
* “We’ll grade one question in each problem set” (professors)
* “we’ll compensate good drivers” (insurance companies)
» “you’ll get promoted if you perform well” (companies)

* Motivating question: Why are ambiguous contracts so common?

* We study the power of ambiguity in contract design
* Lots of work in economic and algorithmic design on ambiguity as a constraint

* We study ambiguity as a tool (inspired by [Di Tillio et al. REStud 2017] who
study ambiguity in auction design)

Classic
Contract
Design

Model [Holmstrom’79]

* Agent has n actions (effort levels) with costs ¢4, ..., ¢,

C1=0
C2=1
C3=2

Cy = 2.2

Model [Holmstrom’79]

* Agent has n actions (effort levels) with costs ¢4, ..., ¢,

* Principal has m rewards 74, ..., 17y,

* Principal has m rewards 74, ..., 17y,

Model [Holmstrom’79]

* Agent has n actions (effort levels) with costs ¢4, ..., ¢,

* Action a; induces distribution p; over 7
* Dij = probability that action a; yields reward 1

rn=1 rn, =1.1 3 =4.9 T, =5 rs = 5.1 Te = 5.2
c1 = 3/8 3/8 2/8 0 0 0
c, =1
C3 =

* Principal has m rewards 74, ..., 17y,

Model [Holmstrom’79]

* Agent has n actions (effort levels) with costs ¢4, ..., ¢,

* Action a; induces distribution p; over 7
* Dij = probability that action a; yields reward 1

rn=1 rn, =1.1 3 =4.9 T, =5 rs = 5.1 Te = 5.2
c1 = 3/8 3/8 2/8 0 0
;=1 3/8 3/8 2/8 0
C3 = 0 3/8 3/8 2/8
Cy = 2.2 0 0 3/8 3/8 2/8

Setting: (¢, 7, p)

Contract t

* Specifies a payment t; = 0 per reward r; (notice defining features!)
o T; = Zj p; jt;j = expected payment for action q;
* R; = Zj pi j1; = expected reward from action a;

* Agent chooses a; that maximizes her expected utility

T: — Ci
e
expected
payment
* Principal’s expected utility from agent’s choice a;:
Lot

expected expected
reward payment

Contract t

* Specifies a payment t; = 0 per reward r; (notice defining features!)
o T; = Zj p; jt;j = expected payment for action q;
* R; = Zj pi j1; = expected reward from action a;

* Agent chooses a; that maximizes her expected utility
T. — C:
Ly (L
expected
payment
* Principal’s expected utility from agent’s choice a;:
Lot
expected expected Revenue
reward payment

Wi = Ri — (i
Welfare pie from action a;

imeline

Z) N ,/E___—_f a
| | | | | S
| | | | | >
Known setting Principal designs Agent takes Agent’s action Principal pays time
¢;7; (py,...,pn) acontractt unobserved produces a the agent t;

costly action reward 1;

|
X

| | | | | S
| | | | | -

Known setting Principal designs Agent takes Agent’s action Principal pays time
C;7; (D) oeey D) a contract t unobserved produces a the agent t;
costly action reward 1;

|
X

| |
Known setting Principal designs
¢;7; (pqy,...,pn) acontractt

t = (0,1,4,2,6)

Agent takes
unobserved
costly action

Agent’s action
produces a
reward 7;

Principal pays
the agent ¢;

~
7

time

Known setting Principal designs Agent takes Agent’s action Principal pays
¢;7; (py,...,Pp) acontractt unobserved produces a the agent ¢;
costly action reward 1;

Calculates the expected utility for each action U,(i,t) = T;(t) — c;

Selects action i"(t) € arg rrel[au](Uy(i, t)
1€(n

\ 4

time

|
X

~
7

|
Known setting

G; 75 (D1, - Pr)

|
Principal designs
a contract t

Agent takes
unobserved
costly action

Agent’s action

produces a
reward 7;

Principal pays
the agent ¢;

time

|
X

~
7

|
Known setting

E; F; (plr ey pn)

|
Principal designs
a contract t

Agent takes
unobserved
costly action

Agent’s action

produces a
reward 7;

Principal pays
the agent t;

time

| | | | |

Known setting Principal designs Agent takes Agent’s action Principal pays

¢;7; (py,...,Pp) acontractt unobserved produces a the agent ¢;
costly action reward 1;

Objective: maximize the principal’s expected utility

Up(t) = Ryxp) — Ty ()
/ N

Reward of Expected payment of
chosen action chosen action

\ 4

time

Computing the Optimal Contract

MIN-PAY problem
* Input: Contract setting (¢, 7, p); an action q;
* Output: Minimum T; that incentivizes a;

Observations:
* LP solvable (minimize T; s.t. U, (i, t) = U, (i, t) for every action i')
* Optimal contract solvable via n MIN-PAY problems

Caveat: Resulting contract can be weird (e.g., non-monotone)

Ambiguous
contracts

Ambiguous Contracts

e An ambiguous contract is a set of contracts T = (tl, . tk)
o tt = (t}, .., tL) foreveryi

* Agent is ambiguity averse: selects an action, i*(7), whose minimal
expected utility across all contractst € T is the highest

~
i (T) € arg max min Uy, (i, t) [breaking ties in favor of principal]
lE[n] teT
_ UA(l) T)j

* Credibility: principal is indifferent between all contracts t € T w.r.t. action
i*(1), i.e., for any two contracts ¢/, th e T:

Up(i*(T), t]) — Up(i*(T), tl)
(also implies that T+ (t/) = Ty (t!) and U4 (i*(2), t7) = U, (i*(2), £1))

imeline

| ! | | S

| | | | >
Known setting Principal designs an Agent takes Agent’s action Principal pays time
¢;7; (pq,...,p,) ambiguous contract7, unobserved produces reward 7; the agent t;

and commits to a costly action
contractst € T
(unknown to agent)

Example

Cost Getonly A |GetonlyB | Get A&B
right (r=1) |right (r=2) | right (r=4)
Lazy A 0.25 1/2 0 1/4
Lazy B 0.25 0 1/2 1/4
Work hard |1 1/8 1/8 3/4

-

Best single contract:
* incentivizes “work hard”

S = (O'O' 3/2)
 Expected payment =

1.125
-

W

3
*_
2

J

t1 = (8,0,0) and t2 = (0,8,0)
* “lazy A” gives -0.25 utility under t*
* “lazy B” gives -0.25 utility under !

* Expected payment of both ' and t“ under

2

“work hard” = %* 8=1

Consider ambiguous contract T = (t1,t?) whera

N\ (©

“work hard” gives utility 0 under both t*, t* /

Example

Cost Getonly A |GetonlyB | Get A&B
right (r=1) |right (r=2) | right (r=4)

o |Lazy A 025 |1/2 0 1/4 i
‘ Lazy B 025 |0 1/2 1/4
Work hard |1 1/8 1/8 3/4

a2 "

/Best single contract incentivizes\ /Best ambiguous contract incentivizes “work \
“work hard” for a payment of hard” for a payment of 1 < 1.125
1.125 * Principal’s utility = 2.375
* Principal’s utility = 2.25

Upshot: principal can gain by employing

ambiguous contracts

N AN /

Many Questions Arise...

* What's the structure of the optimal ambiguous contract?

 What's the computational hardness of the optimal ambiguous
contract?

* Are there classes of contracts that are “ '
* How much can the principal gain by employing ambiguous contracts?

Structure and computation

What's the structure and computational hardness of the optimal ambiguous contract?

Single-outcome-payment (SOP) contracts

Definition: an SOP contract is one that pays only for a single outcome,
e.g., t = (0,0,4,0)

Theorem (informal): For any ambiguous contract 7 there’s an “equivalent” ambiguous
contract 7' composed of SOP contracts

Theorem (formal): For any ambiguous contract T there’s an ambiguous contract T
composed of at most min{n — 1, m} SOP contracts such that:

e i*(7) =i*(7) [T and f incentivize the same action]
* Tixr)(7) = Ty (1) (£) [they do so for the same expected payment]

Remark: an analogous theorem for monotone contracts, with step contracts instead of SOPs

Proof Idea

For every action i # i*, there exists a contract t' € T such that
Ua(i, t%) < Uy(i%,th) = Uy (i%, 1)
Plan: modify t! to an SOP contract £! such that:
* T;+(t") = T;+(7) (action i* has the same E[payment] in ' as in 7)
. Ti(fi) < Ti(ti) (action i has E[payment] in t' at most as in t!)
We get: UA(i,fi) < UA(i,ti) < U,(i*,7) = U,(i*,T) (soi* isincentivized)

_ Tp(7)

Constructing £': Set £’ and fji = 0forallj # jqs

Jmax

.* .
Pi Jmax

LR S

. pl ,j
where j,,,, € arg max
JEM Dij

Optimal Ambiguous Contract Computation

Theorem: An optlmal ambiguous contract can be

computed in O (n*m) time
Proof idea:

For every action i, compute an optimal
ambiguous contract incentivizing it

* For any action i’ # i find an outcome

Pi,j
j(@i") Eargmax
€m]p;r

e Calculate minimal expected payment to
incentivize i over i’ by paying for j(i')

* Update minimal expected payment to
incentivize action i over all actions if needed

Generalizes maximum likelihood ratio principle,

combined with waterfilling argument

9'{—8?:
S+ 0
for each i’ # i do

(2)(—argmaxje[] Pij

m|,pi,j >0 p,s
C'I',_Ci"r

9?:! (-pzjj(lf) .
6 + max{6,0, }
S+ S U {j)}

end
T)
for each 57 € S do

t«:—([],...,[],tj:

% 78U {t}
end
Return 7"

Pi gy~ Pil 5 (i)

Ambiguity Proofness

o
>

Are there classes of contracts that are “immune to ambiguous contracts”?

Ambiguity Proofness

Definition: A class of contracts T is susceptible to ambiguity if there exists
an instance, an action i and an ambiguous contract 7 € 77, such that
T incentivizes action i at a strictly lower cost than any single contract in I

%

a2 "

Recall Example

Cost Getonly A |GetonlyB |Get A&B
right (r=1) | right(r=2) |right (r=4)
Lazy A 0.25 1/2 0 1/4
Lazy B 0.25 0 1/2 1/4
Work hard |1 1/8 1/8 3/4

Best single contract incentivizes
“work hard” for a payment of 1.125

Best ambiguous contract incentivizes “work
hard” for a payment of 1 < 1.125

Ambiguity Proofness

Definition: A class of contracts T is susceptible to ambiguity if there exists
an instance, an action i and an ambiguous contract 7 € 77, such that
T incentivizes action i at a strictly lower cost than any single contract in I

Theorem: A class of contracts T is susceptible to ambiguity iff there exist
t,t' € T and xy,x, € RV sit. t(xy) > t'(x) and t(x,) < t'(xy)

Proof (only if direction): Suppose that for every t,t’ € T, either

t(x) = t'(x) forevery x € R ort(x) < t'(x) forevery x € R™.
Then, one of them yields the agent (weakly) higher expected payment
(and utility). Removing it does not change the agent’s and principal’s
utilities.

Ambiguity Proofness

Definition: A class of contracts T is susceptible to ambiguity if there exists
an instance, an action i and an ambiguous contract 7 € 77, such that
T incentivizes action i at a strictly lower cost than any single contract in I

Theorem: A class of contracts T is susceptible to ambiguity iff there exist
t,t' €T and xq,x, € R s.t. t(xy) > t'(xy) and t(xy) < t'(xy)

t
t; = ar; forsome a € [0,1]

Corollary: linear contracts are ambiguity proof

A Long-Standing Puzzle

Why are simple, sub-optimal contract formats ubiquitous?

K‘It is probably the great robustness of [linear contracts] \
that accounts for their popularity.

That point is not made as effectively as we would like by our
model; we suspect that it cannot be made effectively in any

traditional [...] model.”
\ [Holmstrom & I\/Iilgrom’87]/

Linear contracts are robustly optimal w.r.t.

* Unknown actions [Carroll’15]

* Unknown distributions [Duetting Talgam-Cohen Roughgarden’19]

* QOur contribution to the puzzle: Linear contracts are ambiguity-proof

Ambiguity Proofness: Mixed Strategies

Theorem: mixed strategies eliminate the power of ambiguity altogether.

Cost Getonly A |GetonlyB | Get A&B
right (r=1) |right (r=2) | right (r=4) —

o |LazyA 025 |1/2 0 1/4
‘ Lazy B 025 |0 1/2 1/4
Work hard |1 1/8 1/8 3/4 A8

For example: here, mixing between (Lazy A, Lazy B) with prob. 0.5 each, gives the
agent a higher utility than “work hard” against 7 = ((8,0,0), (0,8,0))

Ambiguity gap

How much can the principal gain by ambiguous contracts?

Ambiguity gap

Ambiguity gap of an instance (c, 1, p):

maximal principal’s utility
using an ambiguous contract

max U,(i*(7),7)

max U, (i*(t),t)

plc,r,p) =

maximal principal’s utility
using a single contract

Ambiguity gap

Ambiguity gap of an instance (c, 1, p):

maximal principal’s utility
using an ambiguous contract

max U,(i*(7),7)

max U, (i*(t),t)

plc,r,p) =

maximal principal’s utility
using a single contract

Ambiguity gap of a class of instances ¢: p(C) = sup p(c,71,p)
(c,r,p)EC

Max ambiguity gap over all
instances in class C

Ambiguity gap

Ambiguity gap of an instance (c, 1, p):

maximal principal’s utility

using an ambiguous contract maximal welfare of an action
max U,(i*(7),7) {Tel[fg](Wi
pc,r,p) = <

max U,(i*(t),t) — max U, (i*(t),t)

maximal principal’s utility
using a single contract

Ambiguity gap of a class of instances ¢: p(C) = sup p(c,71,p)
(c,r,p)EC

Max ambiguity gap over all
instances in class C

Main Results

Theorem: For any number n of effort levels, the ambiguity gap is at most
n. Moreover, there exists such an instance with ambiguity gap n — 1.

This bound applies also to 15t vs. 2"d best ratio.

Remark: For instances with two effort levels (¢; € {L, H} for every action
1), the ambiguity gap in tightly 2.

Two Effort Levels

Key Lemma: The worst ambiguity gap is obtained for a “diagonal instance”, containing m actions
with cost L and welfare W}, and one action with cost H and welfare Wy.

=0 T T3 Tm
C1 =L 1 0
¢, =L rest W +L
2
c3 =1L rest 0 W+ L 0 0
T3
€y, =L rest 0 0 0 W, +1
Tm
Cm+1 = H

Summary

* Algorithmic contract design is a new frontier in AGT
* Many interesting directions waiting to be explored

 Ambiguity can be used by the principal to gain higher utility

* Optimal ambiguous contracts have simple structure (SOP, step)
* Computing the optimal ambiguous contract is feasible

* Linear contracts are immune to ambiguity manipulations

* The ambiguity gap is at most the number of effort levels

Additional Resources

STOC’22 Tutorial: Algorithmic Contract Theory (Feldman and Lucier)
Dutting and Talgam-Cohen
[slides ptl, slides pt2, video]

EC’19 Tutorial: Contract Theory: A New Frontier for AGT
Dutting and Talgam-Cohen
[slides ptl, slides pt2, video ptl, video pt2]

Coming soon: Survey on Algorithmic Contract Theory
Dutting Feldman and Talgam-Cohen

