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Algorithms Shape Economics and Society

Lodging and rides
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Social networks
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work

• Resources we get
• Content we see
• Whom we hire
• Opportunities we face
• …
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Contracts

A payment scheme (monetary or 
otherwise) that incentivizes strategic 
agents to put in effort, when their 
actions are hidden

• Examples:
• Outsourcing a task to a freelancer
• Getting students to learn

“Modern economies are held together 
by innumerable contracts”

[Nobel prize, 2016]



Example: Internet Marketing

A simple contract setting: 

• Marketing agent hired by website owner 
(principal) to promote a website

• Agent takes action (e.g., SEO, promotion 
campaign, influencers, bloggers, social 
media), principal pays

Defining features: 

(1) Action not directly observable

(2) Limited liability (principal pays the agents)

Agent

principal



Modern Applications

Growing in scale & complexity / moving online / data-driven

• Outsourcing a task to a freelancer → freelancing platforms

• Getting students to learn →massive online courses

An algorithmic approach is relevant and timely

Algorithmic contract design plays the role for markets for services as 
algorithmic mechanism design plays for markets for goods

- can potentially inform better design in practice



Emerging Frontier
• Simple vs optimal contracts: [Dutting Roughgarden & Talgam-Cohen EC’19], [Alon 

Dutting Li Talgam-Cohen EC’23]

• Combinatorial contracts: [Lavi & Shamash EC’19], [Dutting Roughgarden & Talgam-
Cohen SODA’20], [Dutting Ezra F. & Kesselheim FOCS’21], [Alon Lavi Shamash & 
Talgam-Cohen EC’21], [Dutting Ezra F. & Kesselheim STOC’23], [Babaioff F. Nisan 
EC’06], [Castiglioni et al. EC’23], [Dutting F. & Gal-Tzur, working paper] 

• Contract design for social goods: [Li Immorlica & Lucier WINE’11], [Ashlagi Li & Lo 
Management Science’23+]

• Typed agents: [Guruganesh Schneider & Wang EC’21], [Alon Dutting & Talgam-Cohen 
EC’21], [Castiglioni et al. EC ‘21], [Castiglioni et al. EC ‘22], [Guruganesh Schneider & 
Wang EC’23]

• Learning contracts: [Ho Slivkins & Vaughn EC’14], [Cohen Deligkas & Koren SAGT’22], 
[Zhu et al. EC’23], [Dutting Guruganesh Schneider & Wang ICML’23]



Today’s talk: Ambiguous Contracts

• In many contractual relations, contracts are “ambiguous”. E.g., 
• “We’ll grade one question in each problem set” (professors)

• “we’ll compensate good drivers” (insurance companies)

• “you’ll get promoted if you perform well” (companies)

• Motivating question: Why are ambiguous contracts so common?

• We study the power of ambiguity in contract design
• Lots of work in economic and algorithmic design on ambiguity as a constraint

• We study ambiguity as a tool (inspired by [Di Tillio et al. REStud 2017] who 
study ambiguity in auction design)



Classic 
Contract 
Design



Model [Holmström’79]

• Agent has 𝑛 actions (effort levels) with costs 𝑐1, … , 𝑐𝑛

• Principal has 𝑚 rewards 𝑟1, … , 𝑟𝑚

• Action 𝑎𝑖 induces distribution 𝑝𝑖 over Ԧ𝑟:

• 𝑝𝑖,𝑗 = probability that action 𝑎𝑖 yields reward 𝑟𝑗
• 𝑅𝑖 = σ𝑗 𝑝𝑖,𝑗𝑟𝑗 = expected reward from action 𝑎𝑖

𝑟1 = 1 𝑟2 = 1.1 𝑟3 = 4.9 𝑟4 = 5 𝑟5 = 5.1 𝑟6 = 5.2

𝑐1 = 0 3/8 3/8 2/8 0 0 0

𝑐2 = 1 0 3/8 3/8 2/8 0 0

𝑐3 = 2 0 0 3/8 3/8 2/8 0

𝑐4 = 2.2 0 0 0 3/8 3/8 2/8
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Setting: (𝑐, 𝑟, 𝑝)



• Specifies a payment 𝑡𝑗 ≥ 0 per reward 𝑟𝑗 (notice defining features!)
• 𝑇𝑖 = σ𝑗 𝑝𝑖,𝑗𝑡𝑗 = expected payment for action 𝑎𝑖
• 𝑅𝑖 = σ𝑗 𝑝𝑖,𝑗𝑟𝑗 = expected reward from action 𝑎𝑖

• Agent chooses 𝑎𝑖 that maximizes her expected utility
𝑇𝑖 − 𝑐𝑖

• Principal’s expected utility from agent’s choice 𝑎𝑖:
𝑅𝑖 − 𝑇𝑖

Contract Ԧ𝑡

expected 
payment

cost

expected 
reward

expected 
payment
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Contract Ԧ𝑡

expected 
payment

cost

expected 
reward

expected 
payment

𝑇𝑖 − 𝑐𝑖
Utility

𝑅𝑖 − 𝑇𝑖
Revenue

Wi = 𝑅𝑖 − 𝑐𝑖
Welfare pie from action 𝑎𝑖



Timeline

timeKnown setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Principal designs 
a contract 𝑡

Agent takes
unobserved 
costly action

Agent’s action 
produces a 
reward 𝑟𝑗

Principal pays 
the agent 𝑡𝑗



timePrincipal designs 
a contract 𝑡

Agent takes
unobserved 
costly action

Principal pays 
the agent 𝑡𝑗

Known setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Timeline

Agent’s action 
produces a 
reward 𝑟𝑗



timePrincipal designs 
a contract 𝑡

Agent takes
unobserved 
costly action

𝑡 = (0,1,4,2,6)

Principal pays 
the agent 𝑡𝑗

Known setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Timeline

Agent’s action 
produces a 
reward 𝑟𝑗



timePrincipal designs 
a contract 𝑡

Agent takes
unobserved 
costly action

Calculates the expected utility for each action  𝑈𝐴 𝑖, 𝑡 = 𝑇𝑖 𝑡 − 𝑐𝑖

Selects action 𝑖∗ 𝑡 ∈ argmax
i∈[n]

𝑈𝐴(𝑖, 𝑡)

Principal pays 
the agent 𝑡𝑗

Known setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Timeline

Agent’s action 
produces a 
reward 𝑟𝑗
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Agent takes
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timePrincipal designs 
a contract 𝑡

Agent takes
unobserved 
costly action

Principal pays 
the agent 𝑡𝑗

Objective: maximize the principal’s expected utility
𝑈𝑃 𝑡 = 𝑅𝑖∗ 𝑡 − 𝑇𝑖∗ 𝑡 (𝑡)

Known setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Timeline

Agent’s action 
produces a 
reward 𝑟𝑗

Reward of 
chosen action

Expected payment of 
chosen action



Computing the Optimal Contract

MIN-PAY problem

• Input: Contract setting ( Ԧ𝑐, Ԧ𝑟, 𝑝); an action 𝑎𝑖
• Output: Minimum 𝑇𝑖 that incentivizes 𝑎𝑖

Observations:

• LP solvable (minimize 𝑇𝑖 s.t. 𝑈𝐴 𝑖, 𝑡 ≥ 𝑈𝐴(𝑖
′, 𝑡) for every action 𝑖′)

• Optimal contract solvable via 𝑛 MIN-PAY problems

Caveat: Resulting contract can be weird (e.g., non-monotone)



Ambiguous 
contracts



Ambiguous Contracts

• An ambiguous contract is a set of contracts 𝜏 = 𝑡1, … , 𝑡𝑘

• 𝑡𝑖 = (𝑡1
𝑖 , … , 𝑡𝑚

𝑖 )  for every 𝑖

• Agent is ambiguity averse: selects an action, 𝑖∗(𝜏), whose minimal 
expected utility across all contracts t ∈ τ is the highest

• Credibility: principal is indifferent between all contracts 𝑡 ∈ 𝜏 w.r.t. action 
𝑖∗(𝜏), i.e., for any two contracts 𝑡𝑗 , 𝑡𝑙 ∈ 𝜏:

𝑈𝑃 𝑖∗ 𝜏 , 𝑡𝑗 = 𝑈𝑃(𝑖
∗ 𝜏 , 𝑡𝑙)

(also implies that 𝑇𝑖∗ 𝜏 𝑡𝑗 = 𝑇𝑖∗ 𝜏 𝑡𝑙 and 𝑈𝐴 𝑖∗ 𝜏 , 𝑡𝑗 = 𝑈𝐴 𝑖∗ 𝜏 , 𝑡𝑙 )

𝑖∗(𝜏) ∈ argmax
𝑖∈[𝑛]

min
𝑡∈𝜏

𝑈𝐴(𝑖, 𝑡) [breaking ties in favor of principal] 

𝑈𝐴 𝑖, 𝜏



Timeline

timeKnown setting
Ԧ𝑐; Ԧ𝑟; 𝑝1, … , 𝑝𝑛

Principal designs an 
ambiguous  contract 𝜏, 
and commits to a 
contracts 𝑡 ∈ 𝜏
(unknown to agent)

Agent takes
unobserved 
costly action

Agent’s action 
produces reward 𝑟𝑗

Principal pays 
the agent 𝑡𝑗



Example

Best single contract:
• incentivizes “work hard”
• 𝑡 = (0,0, Τ3 2)

• Expected payment = 
3

4
∗
3

2
=

1.125

Consider ambiguous contract 𝜏 = (𝑡1, 𝑡2) where 
𝑡1 = 8,0,0 and 𝑡2 = (0,8,0)
• “lazy A” gives -0.25 utility under 𝑡2

• “lazy B” gives -0.25 utility under 𝑡1

• Expected payment of both 𝑡1 and 𝑡2 under 

“work hard” =  
1

8
∗ 8 = 1

• “work hard” gives utility 0 under both 𝑡1, 𝑡2

Cost Get only A 
right (r=1)

Get only B 
right (r=2)

Get A&B 
right (r=4)

Lazy A 0.25 1/2 0 1/4

Lazy B 0.25 0 1/2 1/4

Work hard 1 1/8 1/8 3/4



Example

Best single contract incentivizes 
“work hard” for a payment of 
1.125
• Principal’s utility = 2.25

Best ambiguous contract incentivizes “work 
hard” for a payment of 1 < 1.125
• Principal’s utility = 2.375

Upshot: principal can gain by employing  
ambiguous contracts

Cost Get only A 
right (r=1)

Get only B 
right (r=2)

Get A&B 
right (r=4)

Lazy A 0.25 1/2 0 1/4

Lazy B 0.25 0 1/2 1/4

Work hard 1 1/8 1/8 3/4



Many Questions Arise…

• What’s the structure of the optimal ambiguous contract?

• What’s the computational hardness of the optimal ambiguous 
contract?

• Are there classes of contracts that are “ambiguity-proof”?

• How much can the principal gain by employing ambiguous contracts? 

• …



Structure and computation

What’s the structure and computational hardness of the optimal ambiguous contract?



Single-outcome-payment (SOP) contracts

Definition: an SOP contract is one that pays only for a single outcome, 
e.g., 𝑡 = (0,0,4,0)

Theorem (informal): For any ambiguous contract 𝜏 there’s an “equivalent” ambiguous 
contract 𝜏′ composed of SOP contracts

Theorem (formal): For any ambiguous contract 𝜏 there’s an ambiguous contract Ƹ𝜏
composed of at most min{𝑛 − 1,𝑚} SOP contracts such that:

• 𝑖∗ 𝜏 = 𝑖∗ ො𝜏 [𝜏 and Ƹ𝜏 incentivize the same action]

• T𝑖∗ 𝜏 𝜏 = T𝑖∗ 𝜏 Ƹ𝜏 [they do so for the same expected payment]

Remark: an analogous theorem for monotone contracts, with step contracts instead of SOPs



Proof Idea

For every action 𝑖 ≠ 𝑖∗, there exists a contract 𝑡𝑖 ∈ 𝜏 such that

𝑈𝐴 𝑖, 𝑡𝑖 ≤ 𝑈𝐴 𝑖∗, 𝑡𝑖 = 𝑈𝐴 𝑖∗, 𝜏

Plan: modify 𝑡𝑖 to an SOP contract Ƹ𝑡𝑖 such that:

• 𝑇𝑖∗ Ƹ𝑡𝑖 = 𝑇𝑖∗ 𝜏 (action 𝑖∗ has the same E[payment] in Ƹ𝑡𝑖 as in 𝜏)

• 𝑇𝑖 Ƹ𝑡𝑖 ≤ 𝑇𝑖 𝑡
𝑖 (action 𝑖 has E[payment] in Ƹ𝑡𝑖 at most as in 𝑡𝑖)

We get: 𝑈𝐴 𝑖, Ƹ𝑡𝑖 ≤ 𝑈𝐴 𝑖, 𝑡𝑖 ≤ 𝑈𝐴 𝑖∗, 𝜏 = 𝑈𝐴 𝑖∗, Ƹ𝜏 (so 𝑖∗ is incentivized)

Constructing Ƹ𝑡𝑖: Set Ƹ𝑡𝑗𝑚𝑎𝑥

𝑖 =
𝑇𝑖∗(𝜏)

𝑝𝑖∗,𝑗𝑚𝑎𝑥

and Ƹ𝑡𝑗
𝑖 = 0 for all 𝑗 ≠ 𝑗𝑚𝑎𝑥, 

where 𝑗𝑚𝑎𝑥 ∈ argmax
𝑗∈𝑚

𝑝𝑖∗,𝑗

𝑝𝑖,𝑗



Theorem: An optimal ambiguous contract can be 
computed in 𝑂 𝑛2𝑚 time

Proof idea:

For every action 𝑖, compute an optimal 
ambiguous contract incentivizing it

• For any action 𝑖′ ≠ 𝑖 find an outcome 

𝑗(𝑖′) ∈ arg max
𝑗∈[𝑚]

𝑝𝑖,𝑗
𝑝𝑖′,𝑗

• Calculate minimal expected payment to 
incentivize 𝑖 over 𝑖′ by paying for 𝑗 𝑖′

• Update minimal expected payment to 
incentivize action 𝑖 over all actions if needed

Generalizes maximum likelihood ratio principle, 
combined with waterfilling argument 

Optimal Ambiguous Contract Computation



Ambiguity Proofness

Are there classes of contracts that are “immune to ambiguous contracts”?



Definition: A class of contracts 𝒯 is susceptible to ambiguity if there exists 
an instance, an action 𝑖 and an ambiguous contract  𝜏 ∈ 𝒯, such that  
𝜏 incentivizes action 𝑖 at a strictly lower cost than any single contract in 𝒯

Ambiguity Proofness



Recall Example

Best single contract incentivizes 
“work hard” for a payment of 1.125

Best ambiguous contract incentivizes “work 
hard” for a payment of 1 < 1.125

Cost Get only A 
right (r=1)

Get only B 
right (r=2)

Get A&B 
right (r=4)

Lazy A 0.25 1/2 0 1/4

Lazy B 0.25 0 1/2 1/4

Work hard 1 1/8 1/8 3/4



Definition: A class of contracts 𝒯 is susceptible to ambiguity if there exists 
an instance, an action 𝑖 and an ambiguous contract  𝜏 ∈ 𝒯, such that  
𝜏 incentivizes action 𝑖 at a strictly lower cost than any single contract in 𝒯

Theorem: A class of contracts 𝒯 is susceptible to ambiguity iff there exist 
𝑡, 𝑡′ ∈ 𝒯 and 𝑥1, 𝑥2 ∈ ℛ+ s.t.

Proof (only if direction): Suppose that for every 𝑡, 𝑡′ ∈ 𝒯, either
𝑡 𝑥 ≥ 𝑡′(𝑥) for every 𝑥 ∈ ℛ+ or 𝑡 𝑥 ≤ 𝑡′(𝑥) for every 𝑥 ∈ ℛ+.
Then, one of them yields the agent (weakly) higher expected payment 
(and utility). Removing it does not change the agent’s and principal’s 
utilities. 

𝑡 𝑥1 > 𝑡′(𝑥1) and 𝑡 𝑥2 < 𝑡′(𝑥2)

Ambiguity Proofness



Definition: A class of contracts 𝒯 is susceptible to ambiguity if there exists 
an instance, an action 𝑖 and an ambiguous contract  𝜏 ∈ 𝒯, such that  
𝜏 incentivizes action 𝑖 at a strictly lower cost than any single contract in 𝒯

Theorem: A class of contracts 𝒯 is susceptible to ambiguity iff there exist 
𝑡, 𝑡′ ∈ 𝒯 and 𝑥1, 𝑥2 ∈ ℛ+ s.t. 𝑡 𝑥1 > 𝑡′(𝑥1) and 𝑡 𝑥2 < 𝑡′(𝑥2)

Corollary: linear contracts are ambiguity proof

𝑡𝑗 = 𝛼𝑟𝑗 for some 𝛼 ∈ 0,1

Ambiguity Proofness



A Long-Standing Puzzle

Why are simple, sub-optimal contract formats ubiquitous?

“It is probably the great robustness of [linear contracts] 
that accounts for their popularity. 
That point is not made as effectively as we would like by our 
model; we suspect that it cannot be made effectively in any 
traditional […] model.” 

[Holmström & Milgrom’87]

Linear contracts are robustly optimal w.r.t.
• Unknown actions [Carroll’15]
• Unknown distributions [Duetting Talgam-Cohen Roughgarden’19]
• Our contribution to the puzzle: Linear contracts are ambiguity-proof



Theorem: mixed strategies eliminate the power of ambiguity altogether. 

Ambiguity Proofness: Mixed Strategies

Cost Get only A 
right (r=1)

Get only B 
right (r=2)

Get A&B 
right (r=4)

Lazy A 0.25 1/2 0 1/4

Lazy B 0.25 0 1/2 1/4

Work hard 1 1/8 1/8 3/4

For example: here, mixing between (Lazy A, Lazy B) with prob. 0.5 each, gives the 
agent a higher utility than “work hard” against 𝜏 = ( 8,0,0 , 0,8,0 )
Remark: due to max-min behavior, it’s possible that the utility of a mixed strategy is 
higher than the utility of any action in its support 



How much can the principal gain by ambiguous contracts? 

Ambiguity gap



𝜌 𝑐, 𝑟, 𝑝 =
max
𝜏

𝑈𝑝(𝑖
∗ 𝜏 , 𝜏)

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

≤
max
𝑖∈[𝑛]

𝑊𝑖

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

maximal principal’s utility 
using a single contract 

maximal principal’s utility 
using an ambiguous contract 

Ambiguity gap

Ambiguity gap of an instance 𝑐, 𝑟, 𝑝 :



𝜌 𝑐, 𝑟, 𝑝 =
max
𝜏

𝑈𝑝(𝑖
∗ 𝜏 , 𝜏)

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

≤
max
𝑖∈[𝑛]

𝑊𝑖

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

𝜌 𝒞 = sup
(𝑐,𝑟,𝑝)∈𝒞

𝜌 𝑐, 𝑟, 𝑝

maximal principal’s utility 
using a single contract 

maximal principal’s utility 
using an ambiguous contract 

Max ambiguity gap over all 
instances in class 𝒞

Ambiguity gap

Ambiguity gap of an instance 𝑐, 𝑟, 𝑝 :

Ambiguity gap of a class of instances 𝒞: 



𝜌 𝑐, 𝑟, 𝑝 =
max
𝜏

𝑈𝑝(𝑖
∗ 𝜏 , 𝜏)

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

≤
max
𝑖∈[𝑛]

𝑊𝑖

max
𝑡

𝑈𝑝(𝑖
∗ 𝑡 , 𝑡)

𝜌 𝒞 = sup
(𝑐,𝑟,𝑝)∈𝒞

𝜌 𝑐, 𝑟, 𝑝

maximal principal’s utility 
using a single contract 

maximal principal’s utility 
using an ambiguous contract 

Max ambiguity gap over all 
instances in class 𝒞

Ambiguity gap

Ambiguity gap of an instance 𝑐, 𝑟, 𝑝 :

Ambiguity gap of a class of instances 𝒞: 

maximal welfare of an action 



Theorem: For any number 𝑛 of effort levels, the ambiguity gap is at most 
𝑛. Moreover, there exists such an instance with ambiguity gap 𝑛 − 1.

This bound applies also to 1st vs. 2nd best ratio.

Remark: For instances with two effort levels (𝑐𝑖 ∈ {𝐿, 𝐻} for every action 
𝑖), the ambiguity gap in tightly 2.

Main Results



Key Lemma: The worst ambiguity gap is obtained for a “diagonal instance”, containing 𝑚 actions 
with cost 𝐿 and welfare 𝑊𝐿, and one action with cost 𝐻 and welfare 𝑊𝐻.

𝑟1 = 0 𝑟2 𝑟3 … 𝑟𝑚

𝑐1 = 𝐿 1 0 0 0 0

𝑐2 = 𝐿 rest 𝑊𝐿 + 𝐿

𝑟2

0 0 0

𝑐3 = 𝐿 rest 0 𝑊𝐿 + 𝐿

𝑟3

0 0

… … … … …

𝑐𝑚 = 𝐿 rest 0 0 0 𝑊𝐿 + 𝑙

𝑟𝑚

𝑐𝑚+1 = 𝐻

Two Effort Levels



Summary

• Algorithmic contract design is a new frontier in AGT

• Many interesting directions waiting to be explored

• Ambiguity can be used by the principal to gain higher utility

• Optimal ambiguous contracts have simple structure (SOP, step)

• Computing the optimal ambiguous contract is feasible

• Linear contracts are immune to ambiguity manipulations

• The ambiguity gap is at most the number of effort levels



Additional Resources

STOC’22 Tutorial: Algorithmic Contract Theory (Feldman and Lucier)
Dutting and Talgam-Cohen
[slides pt1, slides pt2, video]

EC’19 Tutorial: Contract Theory: A New Frontier for AGT
Dutting and Talgam-Cohen
[slides pt1, slides pt2, video pt1, video pt2]

Coming soon: Survey on Algorithmic Contract Theory
Dutting Feldman and Talgam-Cohen


