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The hyperbolic part of 3-manifolds

A consequence of the Geometrization theorem
(Thurston,...,Perelman):

Given M a closed oriented 3-manifold, M = Mf...4 My where each
M; is prime. Then after cutting M, along tori,

Mj:HjUSJ'

where H; admits a finite volume hyperbolic metric, and S; is a
Seifert manifold (i.e. “partitioned into circles").

The hyperbolic part of M is
k

Mhyp = U H;
j=1

(it is unique and has a unique hyperbolic metric gpyp).
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The hyperbolic part of 3-manifolds

Interpretations of the hyperbolic part My,

e My, is the truly 3-dimensional part of M,
e given any Riemannian metric (M, g), the correctly normalized
Ricci flow with surgery converges to (M, hyp) as t — 00,

o we'll see next that (Mpy,, ghyp) is the unique solution of an

infinite codimension Plateau problem.
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The homological Plateau problem can be “solved” with integral
currents of De Giorgi, Federer-Fleming. Let (N, g), let
h € H,(N;Z) and set

%' (h) := { integral currents representing h}.
Consider a sequence {C;} C €'(h) such that
lim mass(C;) = inf{mass(C); C € % (h)}.

1—00

Then, by Federer-Fleming compactness theorem, there is some
Cs € €(h) such that subsequentially

C,' = Coo-

By Almgren (see also De Lellis-Spadaro), Co, is smooth outside a
codimension 2 subset. Call such Cy, a Plateau solution for
h e H,(N;Z).
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Plateau problem in infinite dimensions

The theory of integral currents has been generalized in two
directions:

e White considered arbitrary complete normed abelian groups,

e Ambrosio-Kircheim considered any complete ambient metric
space (subsequent works of Lang, Wenger, Schmidt,
Sormani-Wenger...).

De Pauw-Hardt developed a very general theory encompassing
both directions.
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Let (K, g) be a separable Hilbert manifold of bounded diameter,
and let h € Hy(KC; Z). As before, set

% (h) := {integral currents representing h }.

Consider a sequence {C;} C %(h) such that
lim mass(C;) = inf{mass(C); C € % (h)}.

i—00

Because dim(K) = oo, C; may not converge in any reasonable way
to an integral current inside K.
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In place of Federer-Fleming's compactness theorem, we can use
Wenger's compactness theorem:

given a sequence of boundaryless integral currents S; of uniformly
bounded masses and diameters, subsequentially there are a Banach
space Z, an integral current Soc C Z, and isometric embeddings

j,'iS,"—)Z

such that inside Z,
(Ui)#Si = S

Rm: in fact here S; converges in the intrinsic flat topology

(Sormani-Wenger).
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Questions: Continuity of mass under C; — C.?7 Regularity of C,7?
What's known:

The mass is lower semicontinuous: M(Cy) < liminf;_. M(G).

Continuity is not clear.

In general, C is only known to be an integral current. At least for
an area-minimizing integral current T in a Hilbert space,
Ambrosio-De Lellis-Schmidt showed that spt(T) is smooth in an
open dense subset of spt(T). An Almgren type theorem seems
plausible for such T.
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An example of Plateau solution in infinite codimension

Let (M, go) be a closed oriented hyperbolic manifold. Let (M, go)
be the universal cover and fix 0 € M. Let (OM, d§) = boundary at
infinity with round measure df.

Let S,y := unit sphere in [2(OM; Z).
Let By : M — R be the Busemann functions. Consider the
Bieberbach embedding
M = S@I\;I
x = {0 — e‘%lBG(X)}.

By m1(M)-equivariance, it gives an embedding

(n—1)°
4n

B: (M, g0) — Syip/m1(M).

10
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An example of Plateau solution in infinite codimension

It is an isometric and minimal embedding (checked with a
computation). However we have much better:

Besson-Courtois-Gallot's theorem: the image B(M) is calibrated!

In particular B(M) is a Plateau solution in the spherical quotient
Syip/m1(M), for the homology class of S, /71 (M) given naturally
by M.

This embedding is very specific.

Questions: Uniqueness? What about non-locally symmetric

manifolds?
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The spherical Plateau problem for group homology

Idea: we want to define a homological Plateau solution for general
groups and group homology classes.

Let I' be a countable group (for instance the fundamental group of
a closed oriented manifold). Find a classifying space K for I with a
canonical Hilbert metric (C = quotient of a weakly contractible
space by a proper free action of I'). Consider a homology class

h € Hn(IC; Z). Solve the Plateau problem for h in K and get a
Plateau solution C.

12
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A Hilbert model for classifying spaces

Let H = the separable infinite dimensional Hilbert space. Given a
countable group I, let

S(T) := unit sphere in 2(T; H).

I" acts isometrically on S(I') by the regular representation
v.f(.) = f(y7L.). Set

S*(r):={f eS8(); ~.f+#f for any nontrivial v € T'}.

Fact: S*(I')/T is a Hilbert manifold and a classifying space for I'.

13
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The spherical Plateau problem

Example:

Let M be a closed oriented n-manifold. Let K := S*(I')/I be as in
the previous slide, for I := m1(M). M determines a class

hy € Hn(K; Z). Solve the Plateau problem for hyy and get a
Plateau solution C.

Rm: in the special case where M is hyperbolic, S, /71 (M) is not
isometric to K. In fact, M does not embed minimally in K.
Nevetherless S;;/m1(M) is isometrically embedded in the
ultralimit of /.

14



Hyperbolic manifolds and intrinsic uniqueness of Plateau solu-

tions

Thm: Let (M, ghyp) be a closed oriented hyperbolic manifold of
dimension > 3. Then any Plateau solution for hy, is intrinsically

_1)2
isometric to (M, %ghyp)-

ii5)



Hyperbolic manifolds and intrinsic uniqueness of Plateau solu-

tions

Thm: Let (M, ghyp) be a closed oriented hyperbolic manifold of

dimension > 3. Then any Plateau solution for hy, is intrinsically
C1)2

isometric to (M, %ghyp).

Conjecture: For n = 2, any Plateau solution for hy, is intrinsically

isometric to an element in the Deligne-Mumford compactification

of {hyperbolic metrics on M}.

ii5)
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About the proof

Let (M, %ghyp), I := m1(M). Besson-Courtois-Gallot initiated
the use of a “barycenter map” bar : S, /I — M.

In our setting, we define a variant
bar : I — M

such that | Jac, bar| < 1 and when | Jac, bar| is close to 1, the

differential dbar is almost an isometry.
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About the proof

Let C; C K be a minimizing sequence “converging” to a Plateau
solution Cy,. We are given bar : C; — M, maps of degree 1.

Steps :

_1\2
1. construct a limit map bary, : Coo — (M, %ghyp),
2. bars, is volume preserving,

3. bars, is an isometry for the path distances.

Difficulty: lack of a priori regularity for Co,: need to work on C;

and prove “almost” statements.
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3-manifolds and intrinsic uniqueness of Plateau solutions

Thm: Let M be a closed oriented 3-manifold with hyperbolic part
(Mhyp, hyp). Then any Plateau solution for hy is intrinsically
isometric to (Mhyp, 38hyp)-

Rm: unlike the hyperbolic case, here there is no good model metric
for a barycenter map. We need to work with a sequence of metrics
on M approximating the hyperbolic part My, and collapsing the
rest.

Sci-Fi question: how much of Geometrization can be recovered
with MCF methods?

Question: Is the Bieberbach embedding stable under MCF?
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Let I', h € H,(I';Z). A non-trivial Plateau solution Cy is never
isometrically embedded as a cycle in K... Let S*° /I, be an
“ultralimit” of I := S*(I)/T.

Thm: Any Plateau solution Cy, for h embeds isometrically inside
the spherical quotient S°° /I .. Moreover the restriction of C to

the smooth part of S /I, is mass-minimizing.

Let CZ0 := restriction of C,, to the smooth part of S/, =
noncollapsed part of C.

The support of CZ° is smooth on a dense open set by
Ambrosio-De Lellis-Schmidt.

21
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A general existence result

Combinatorial properties on (I', h) = Existence of non-trivial
mass-minimizing integral currents of the form C207?

Thm: Let I be a torsion-free hyperbolic group with
h € Hn(T;Z)\ {0} and n > 2. Then any Plateau solution C, for h
has a non-empty noncollapsed part C2°.

For instance, m; of negatively curved closed manifolds are
torsion-free hyperbolic.
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