
The spherical Plateau problem

Antoine Song

MSRI workshop: Regularity Theory for Minimal Surfaces and Mean

Curvature Flow

March 2022

1



The hyperbolic part of 3-manifolds

A consequence of the Geometrization theorem

(Thurston,...,Perelman):

Given M a closed oriented 3-manifold, M = M1]...]Mk where each

Mj is prime. Then after cutting Mj along tori,

Mj = Hj ∪ Sj

where Hj admits a finite volume hyperbolic metric, and Sj is a

Seifert manifold (i.e. “partitioned into circles”).

The hyperbolic part of M is

Mhyp :=
k⋃

j=1

Hj

(it is unique and has a unique hyperbolic metric ghyp).
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The hyperbolic part of 3-manifolds

Interpretations of the hyperbolic part Mhyp:

• Mhyp is the truly 3-dimensional part of M,

• given any Riemannian metric (M, g), the correctly normalized

Ricci flow with surgery converges to (Mhyp, ghyp) as t →∞,

• we’ll see next that (Mhyp, ghyp) is the unique solution of an

infinite codimension Plateau problem.
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Plateau problem in finite dimensions

The homological Plateau problem can be “solved” with integral

currents of De Giorgi, Federer-Fleming.

Let (N, g), let

h ∈ Hn(N;Z) and set

C (h) := { integral currents representing h}.

Consider a sequence {Ci} ⊂ C (h) such that

lim
i→∞

mass(Ci ) = inf{mass(C ); C ∈ C (h)}.

Then, by Federer-Fleming compactness theorem, there is some

C∞ ∈ C (h) such that subsequentially

Ci ⇀ C∞.

By Almgren (see also De Lellis-Spadaro), C∞ is smooth outside a

codimension 2 subset. Call such C∞ a Plateau solution for

h ∈ Hn(N;Z).
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Plateau problem in infinite dimensions

The theory of integral currents has been generalized in two

directions:

• White considered arbitrary complete normed abelian groups,

• Ambrosio-Kircheim considered any complete ambient metric

space (subsequent works of Lang, Wenger, Schmidt,

Sormani-Wenger...).

De Pauw-Hardt developed a very general theory encompassing

both directions.
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Plateau problem in infinite dimensions

Let (K, g) be a separable Hilbert manifold of bounded diameter,

and let h ∈ Hn(K;Z).

As before, set

C (h) := {integral currents representing h }.

Consider a sequence {Ci} ⊂ C (h) such that

lim
i→∞

mass(Ci ) = inf{mass(C ); C ∈ C (h)}.

Because dim(K) =∞, Ci may not converge in any reasonable way

to an integral current inside K.
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Plateau problem in infinite dimensions

In place of Federer-Fleming’s compactness theorem, we can use

Wenger’s compactness theorem:

given a sequence of boundaryless integral currents Si of uniformly

bounded masses and diameters, subsequentially there are a Banach

space Z, an integral current S∞ ⊂ Z, and isometric embeddings

ji : Si ↪→ Z

such that inside Z,

(ji )#Si ⇀ S∞.

Rm: in fact here Si converges in the intrinsic flat topology

(Sormani-Wenger).
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Plateau problem in infinite dimensions

In particular, there is a Banach space Z, isometric embeddings

Ci ↪→ Z, and an integral current C∞ ⊂ Z such that

Ci ⇀ C∞.

Call any such C∞ a Plateau solution for h.

Questions: Regularity of C∞? Continuity of mass under Ci ⇀ C∞?
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Plateau problem in infinite dimensions

Questions: Continuity of mass under Ci ⇀ C∞? Regularity of C∞?

What’s known:

The mass is lower semicontinuous: M(C∞) ≤ lim inf i→∞M(Ci ).

Continuity is not clear.

In general, C∞ is only known to be an integral current. At least for

an area-minimizing integral current T in a Hilbert space,

Ambrosio-De Lellis-Schmidt showed that spt(T ) is smooth in an

open dense subset of spt(T ). An Almgren type theorem seems

plausible for such T .
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An example of Plateau solution in infinite codimension

Let (M, g0) be a closed oriented hyperbolic manifold. Let (M̃, g0)

be the universal cover and fix o ∈ M̃.

Let (∂M̃, dθ) = boundary at

infinity with round measure dθ.

Let S∂M̃ := unit sphere in L2(∂M̃;Z).

Let Bθ : M̃ → R be the Busemann functions. Consider the

Bieberbach embedding

M̃ → S∂M̃
x 7→ {θ 7→ e−

n−1
2

Bθ(x)}.

By π1(M)-equivariance, it gives an embedding

B : (M,
(n − 1)2

4n
g0)→ S∂M̃/π1(M).
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An example of Plateau solution in infinite codimension

It is an isometric and minimal embedding (checked with a

computation). However we have much better:

Besson-Courtois-Gallot’s theorem: the image B(M) is calibrated!

In particular B(M) is a Plateau solution in the spherical quotient

S∂M̃/π1(M), for the homology class of S∂M̃/π1(M) given naturally

by M.

This embedding is very specific.

Questions: Uniqueness? What about non-locally symmetric

manifolds?
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The spherical Plateau problem for group homology

Idea: we want to define a homological Plateau solution for general

groups and group homology classes.

Let Γ be a countable group (for instance the fundamental group of

a closed oriented manifold). Find a classifying space K for Γ with a

canonical Hilbert metric (K = quotient of a weakly contractible

space by a proper free action of Γ). Consider a homology class

h ∈ Hn(K;Z). Solve the Plateau problem for h in K and get a

Plateau solution C∞.
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A Hilbert model for classifying spaces

Let H = the separable infinite dimensional Hilbert space.

Given a

countable group Γ, let

S(Γ) := unit sphere in `2(Γ; H).

Γ acts isometrically on S(Γ) by the regular representation

γ.f (.) = f (γ−1.). Set

S∗(Γ) := {f ∈ S(Γ); γ.f 6= f for any nontrivial γ ∈ Γ}.

Fact: S∗(Γ)/Γ is a Hilbert manifold and a classifying space for Γ.

13



A Hilbert model for classifying spaces

Let H = the separable infinite dimensional Hilbert space. Given a

countable group Γ, let

S(Γ) := unit sphere in `2(Γ; H).

Γ acts isometrically on S(Γ) by the regular representation

γ.f (.) = f (γ−1.). Set

S∗(Γ) := {f ∈ S(Γ); γ.f 6= f for any nontrivial γ ∈ Γ}.

Fact: S∗(Γ)/Γ is a Hilbert manifold and a classifying space for Γ.

13



A Hilbert model for classifying spaces

Let H = the separable infinite dimensional Hilbert space. Given a

countable group Γ, let

S(Γ) := unit sphere in `2(Γ; H).

Γ acts isometrically on S(Γ) by the regular representation

γ.f (.) = f (γ−1.).

Set

S∗(Γ) := {f ∈ S(Γ); γ.f 6= f for any nontrivial γ ∈ Γ}.

Fact: S∗(Γ)/Γ is a Hilbert manifold and a classifying space for Γ.

13



A Hilbert model for classifying spaces

Let H = the separable infinite dimensional Hilbert space. Given a

countable group Γ, let

S(Γ) := unit sphere in `2(Γ; H).

Γ acts isometrically on S(Γ) by the regular representation

γ.f (.) = f (γ−1.). Set

S∗(Γ) := {f ∈ S(Γ); γ.f 6= f for any nontrivial γ ∈ Γ}.

Fact: S∗(Γ)/Γ is a Hilbert manifold and a classifying space for Γ.

13



A Hilbert model for classifying spaces

Let H = the separable infinite dimensional Hilbert space. Given a

countable group Γ, let

S(Γ) := unit sphere in `2(Γ; H).

Γ acts isometrically on S(Γ) by the regular representation

γ.f (.) = f (γ−1.). Set

S∗(Γ) := {f ∈ S(Γ); γ.f 6= f for any nontrivial γ ∈ Γ}.

Fact: S∗(Γ)/Γ is a Hilbert manifold and a classifying space for Γ.

13



The spherical Plateau problem

Example:

Let M be a closed oriented n-manifold. Let K := S∗(Γ)/Γ be as in

the previous slide, for Γ := π1(M). M determines a class

hM ∈ Hn(K;Z). Solve the Plateau problem for hM and get a

Plateau solution C∞.

Rm: in the special case where M is hyperbolic, S∂M̃/π1(M) is not

isometric to K. In fact, M does not embed minimally in K.

Nevetherless S∂M̃/π1(M) is isometrically embedded in the

ultralimit of K.
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Hyperbolic manifolds and intrinsic uniqueness of Plateau solu-

tions

Thm: Let (M, ghyp) be a closed oriented hyperbolic manifold of

dimension ≥ 3. Then any Plateau solution for hM is intrinsically

isometric to (M, (n−1)
2

4n ghyp).

Conjecture: For n = 2, any Plateau solution for hM is intrinsically

isometric to an element in the Deligne-Mumford compactification

of {hyperbolic metrics on M}.
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About the proof

Let (M, (n−1)
2

4n ghyp), Γ := π1(M). Besson-Courtois-Gallot initiated

the use of a “barycenter map” bar : S∂M̃/Γ→ M.

In our setting, we define a variant

bar : K → M

such that | Jacn bar| ≤ 1 and when | Jacn bar| is close to 1, the

differential dbar is almost an isometry.
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About the proof

Let Ci ⊂ K be a minimizing sequence “converging” to a Plateau

solution C∞. We are given bar : Ci → M, maps of degree 1.

Steps :

1. construct a limit map bar∞ : C∞ → (M, (n−1)
2

4n ghyp),

2. bar∞ is volume preserving,

3. bar∞ is an isometry for the path distances.

Difficulty: lack of a priori regularity for C∞: need to work on Ci

and prove “almost” statements.

17



About the proof

Let Ci ⊂ K be a minimizing sequence “converging” to a Plateau

solution C∞. We are given bar : Ci → M, maps of degree 1.

Steps :

1. construct a limit map bar∞ : C∞ → (M, (n−1)
2

4n ghyp),

2. bar∞ is volume preserving,

3. bar∞ is an isometry for the path distances.

Difficulty: lack of a priori regularity for C∞: need to work on Ci

and prove “almost” statements.

17



About the proof

Let Ci ⊂ K be a minimizing sequence “converging” to a Plateau

solution C∞. We are given bar : Ci → M, maps of degree 1.

Steps :

1. construct a limit map bar∞ : C∞ → (M, (n−1)
2

4n ghyp),

2. bar∞ is volume preserving,

3. bar∞ is an isometry for the path distances.

Difficulty: lack of a priori regularity for C∞: need to work on Ci

and prove “almost” statements.

17



18



19



3-manifolds and intrinsic uniqueness of Plateau solutions

Thm: Let M be a closed oriented 3-manifold with hyperbolic part

(Mhyp, ghyp). Then any Plateau solution for hM is intrinsically

isometric to (Mhyp,
1
3ghyp).

Rm: unlike the hyperbolic case, here there is no good model metric

for a barycenter map. We need to work with a sequence of metrics

on M approximating the hyperbolic part Mhyp, and collapsing the

rest.

Sci-Fi question: how much of Geometrization can be recovered

with MCF methods?

Question: Is the Bieberbach embedding stable under MCF?
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A general structure result

Let Γ, h ∈ Hn(Γ;Z).

A non-trivial Plateau solution C∞ is never

isometrically embedded as a cycle in K... Let S∞/Γ∞ be an

“ultralimit” of K := S∗(Γ)/Γ.

Thm: Any Plateau solution C∞ for h embeds isometrically inside

the spherical quotient S∞/Γ∞. Moreover the restriction of C∞ to

the smooth part of S∞/Γ∞ is mass-minimizing.

Let C>0
∞ := restriction of C∞ to the smooth part of S∞/Γ∞ =

noncollapsed part of C∞.

The support of C>0
∞ is smooth on a dense open set by

Ambrosio-De Lellis-Schmidt.
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A general existence result

Combinatorial properties on (Γ, h) =⇒ Existence of non-trivial

mass-minimizing integral currents of the form C>0
∞ ?

Thm: Let Γ be a torsion-free hyperbolic group with

h ∈ Hn(Γ;Z) \ {0} and n ≥ 2. Then any Plateau solution C∞ for h

has a non-empty noncollapsed part C>0
∞ .

For instance, π1 of negatively curved closed manifolds are

torsion-free hyperbolic.

22



A general existence result

Combinatorial properties on (Γ, h) =⇒ Existence of non-trivial

mass-minimizing integral currents of the form C>0
∞ ?

Thm: Let Γ be a torsion-free hyperbolic group with

h ∈ Hn(Γ;Z) \ {0} and n ≥ 2. Then any Plateau solution C∞ for h

has a non-empty noncollapsed part C>0
∞ .

For instance, π1 of negatively curved closed manifolds are

torsion-free hyperbolic.

22



A general existence result

Combinatorial properties on (Γ, h) =⇒ Existence of non-trivial

mass-minimizing integral currents of the form C>0
∞ ?

Thm: Let Γ be a torsion-free hyperbolic group with

h ∈ Hn(Γ;Z) \ {0} and n ≥ 2. Then any Plateau solution C∞ for h

has a non-empty noncollapsed part C>0
∞ .

For instance, π1 of negatively curved closed manifolds are

torsion-free hyperbolic.

22


