The spherical Plateau problem

Antoine Song

MSRI workshop: Regularity Theory for Minimal Surfaces and Mean Curvature Flow March 2022

A consequence of the Geometrization theorem (Thurston,...,Perelman):

A consequence of the Geometrization theorem (Thurston,...,Perelman):

Given *M* a closed oriented 3-manifold, $M = M_1 \ddagger ... \ddagger M_k$ where each M_j is prime.

A consequence of the Geometrization theorem (Thurston,...,Perelman):

Given M a closed oriented 3-manifold, $M = M_1 \ddagger ... \ddagger M_k$ where each M_i is prime. Then after cutting M_i along tori,

$$M_j = H_j \cup S_j$$

where H_j admits a finite volume hyperbolic metric, and S_j is a Seifert manifold (i.e. "partitioned into circles").

A consequence of the Geometrization theorem (Thurston,...,Perelman):

Given M a closed oriented 3-manifold, $M = M_1 \ddagger ... \ddagger M_k$ where each M_i is prime. Then after cutting M_i along tori,

$$M_j = H_j \cup S_j$$

where H_j admits a finite volume hyperbolic metric, and S_j is a Seifert manifold (i.e. "partitioned into circles").

The hyperbolic part of M is

$$M_{hyp} := igcup_{j=1}^k H_j$$

(it is unique and has a unique hyperbolic metric g_{hyp}).

• M_{hyp} is the truly 3-dimensional part of M,

- M_{hyp} is the truly 3-dimensional part of M,
- given any Riemannian metric (M, g), the correctly normalized Ricci flow with surgery converges to (M_{hyp}, g_{hyp}) as t → ∞,

- M_{hyp} is the truly 3-dimensional part of M,
- given any Riemannian metric (M, g), the correctly normalized Ricci flow with surgery converges to (M_{hyp}, g_{hyp}) as t → ∞,
- we'll see next that (M_{hyp}, g_{hyp}) is the unique solution of an infinite codimension Plateau problem.

The homological Plateau problem can be "solved" with integral currents of De Giorgi, Federer-Fleming.

The homological Plateau problem can be "solved" with integral currents of De Giorgi, Federer-Fleming. Let (N, g), let $h \in H_n(N; \mathbb{Z})$ and set

 $\mathscr{C}(h) := \{ \text{ integral currents representing } h \}.$

The homological Plateau problem can be "solved" with integral currents of De Giorgi, Federer-Fleming. Let (N, g), let $h \in H_n(N; \mathbb{Z})$ and set

 $\mathscr{C}(h) := \{ \text{ integral currents representing } h \}.$

Consider a sequence $\{C_i\} \subset \mathscr{C}(h)$ such that

 $\lim_{i\to\infty} \operatorname{mass}(C_i) = \inf\{\operatorname{mass}(C); \quad C \in \mathscr{C}(h)\}.$

The homological Plateau problem can be "solved" with integral currents of De Giorgi, Federer-Fleming. Let (N, g), let $h \in H_n(N; \mathbb{Z})$ and set

 $\mathscr{C}(h) := \{ \text{ integral currents representing } h \}.$

Consider a sequence $\{C_i\} \subset \mathscr{C}(h)$ such that

$$\lim_{i\to\infty} \max(C_i) = \inf\{\max(C); \quad C\in\mathscr{C}(h)\}.$$

Then, by Federer-Fleming compactness theorem, there is some $C_{\infty} \in \mathscr{C}(h)$ such that subsequentially

$$C_i
ightarrow C_\infty$$
.

The homological Plateau problem can be "solved" with integral currents of De Giorgi, Federer-Fleming. Let (N, g), let $h \in H_n(N; \mathbb{Z})$ and set

 $\mathscr{C}(h) := \{ \text{ integral currents representing } h \}.$

Consider a sequence $\{C_i\} \subset \mathscr{C}(h)$ such that

$$\lim_{i\to\infty} \max(C_i) = \inf\{\max(C); \quad C\in\mathscr{C}(h)\}.$$

Then, by Federer-Fleming compactness theorem, there is some $C_{\infty} \in \mathscr{C}(h)$ such that subsequentially

$$C_i
ightarrow C_\infty$$
.

By Almgren (see also De Lellis-Spadaro), C_{∞} is smooth outside a codimension 2 subset.

The homological Plateau problem can be "solved" with integral currents of De Giorgi, Federer-Fleming. Let (N, g), let $h \in H_n(N; \mathbb{Z})$ and set

 $\mathscr{C}(h) := \{ \text{ integral currents representing } h \}.$

Consider a sequence $\{C_i\} \subset \mathscr{C}(h)$ such that

$$\lim_{i\to\infty} \max(C_i) = \inf\{\max(C); \quad C\in\mathscr{C}(h)\}.$$

Then, by Federer-Fleming compactness theorem, there is some $C_{\infty} \in \mathscr{C}(h)$ such that subsequentially

$$C_i
ightarrow C_\infty$$
.

By Almgren (see also De Lellis-Spadaro), C_{∞} is smooth outside a codimension 2 subset. Call such C_{∞} a Plateau solution for $h \in H_n(N; \mathbb{Z})$.

The theory of integral currents has been generalized in two directions:

- White considered arbitrary complete normed abelian groups,
- Ambrosio-Kircheim considered any complete ambient metric space (subsequent works of Lang, Wenger, Schmidt, Sormani-Wenger...).

The theory of integral currents has been generalized in two directions:

- White considered arbitrary complete normed abelian groups,
- Ambrosio-Kircheim considered any complete ambient metric space (subsequent works of Lang, Wenger, Schmidt, Sormani-Wenger...).

De Pauw-Hardt developed a very general theory encompassing both directions.

Let (\mathcal{K}, g) be a separable Hilbert manifold of bounded diameter, and let $h \in H_n(\mathcal{K}; \mathbb{Z})$. Let (\mathcal{K}, g) be a separable Hilbert manifold of bounded diameter, and let $h \in H_n(\mathcal{K}; \mathbb{Z})$. As before, set

 $\mathscr{C}(h) := \{ \text{integral currents representing } h \}.$

Let (\mathcal{K}, g) be a separable Hilbert manifold of bounded diameter, and let $h \in H_n(\mathcal{K}; \mathbb{Z})$. As before, set

 $\mathscr{C}(h) := \{ \text{integral currents representing } h \}.$

Consider a sequence $\{C_i\} \subset \mathscr{C}(h)$ such that

```
\lim_{i\to\infty} \max(C_i) = \inf\{\max(C); \quad C\in\mathscr{C}(h)\}.
```

Let (\mathcal{K}, g) be a separable Hilbert manifold of bounded diameter, and let $h \in H_n(\mathcal{K}; \mathbb{Z})$. As before, set

 $\mathscr{C}(h) := \{ \text{integral currents representing } h \}.$

Consider a sequence $\{C_i\} \subset \mathscr{C}(h)$ such that

$$\lim_{i\to\infty} \max(C_i) = \inf\{\max(C); \quad C \in \mathscr{C}(h)\}.$$

Because dim(\mathcal{K}) = ∞ , C_i may not converge in any reasonable way to an integral current inside \mathcal{K} .

In place of Federer-Fleming's compactness theorem, we can use Wenger's compactness theorem:

In place of Federer-Fleming's compactness theorem, we can use Wenger's compactness theorem:

given a sequence of boundaryless integral currents S_i of uniformly bounded masses and diameters, subsequentially there are a Banach space **Z**, an integral current $S_{\infty} \subset \mathbf{Z}$, and isometric embeddings

$$j_i:S_i\hookrightarrow \mathbf{Z}$$

such that inside **Z**,

$$(j_i)_{\#}S_i \rightharpoonup S_{\infty}.$$

In place of Federer-Fleming's compactness theorem, we can use Wenger's compactness theorem:

given a sequence of boundaryless integral currents S_i of uniformly bounded masses and diameters, subsequentially there are a Banach space **Z**, an integral current $S_{\infty} \subset \mathbf{Z}$, and isometric embeddings

$$j_i:S_i\hookrightarrow \mathbf{Z}$$

such that inside **Z**,

$$(j_i)_{\#}S_i \rightharpoonup S_{\infty}.$$

Rm: in fact here S_i converges in the intrinsic flat topology (Sormani-Wenger).

In particular, there is a Banach space Z, isometric embeddings $C_i \hookrightarrow Z$, and an integral current $C_{\infty} \subset Z$ such that

$$C_i \rightharpoonup C_\infty$$

In particular, there is a Banach space Z, isometric embeddings $C_i \hookrightarrow Z$, and an integral current $C_{\infty} \subset Z$ such that

$$C_i \rightharpoonup C_\infty$$

Call any such C_{∞} a Plateau solution for *h*.

In particular, there is a Banach space Z, isometric embeddings $C_i \hookrightarrow Z$, and an integral current $C_{\infty} \subset Z$ such that

$$C_i
ightarrow C_\infty$$

Call any such C_{∞} a Plateau solution for *h*.

Questions: Regularity of C_{∞} ? Continuity of mass under $C_i \rightharpoonup C_{\infty}$?

Questions: Continuity of mass under $C_i
ightarrow C_\infty$? Regularity of C_∞ ?

Questions: Continuity of mass under $C_i
ightarrow C_\infty$? Regularity of C_∞ ? What's known: Questions: Continuity of mass under $C_i \rightharpoonup C_\infty$? Regularity of C_∞ ? What's known:

The mass is lower semicontinuous: $\mathbf{M}(C_{\infty}) \leq \liminf_{i \to \infty} \mathbf{M}(C_i)$. Continuity is not clear. Questions: Continuity of mass under $C_i
ightarrow C_\infty$? Regularity of C_∞ ? What's known:

The mass is lower semicontinuous: $\mathbf{M}(C_{\infty}) \leq \liminf_{i \to \infty} \mathbf{M}(C_i)$. Continuity is not clear.

In general, C_{∞} is only known to be an integral current. At least for an area-minimizing integral current T in a Hilbert space, Ambrosio-De Lellis-Schmidt showed that spt(T) is smooth in an open dense subset of spt(T). An Almgren type theorem seems plausible for such T.

Let (M, g_0) be a closed oriented hyperbolic manifold. Let (\tilde{M}, g_0) be the universal cover and fix $o \in \tilde{M}$.

Let (M, g_0) be a closed oriented hyperbolic manifold. Let (\tilde{M}, g_0) be the universal cover and fix $o \in \tilde{M}$. Let $(\partial \tilde{M}, d\theta) =$ boundary at infinity with round measure $d\theta$.

Let $\mathcal{S}_{\partial \tilde{M}} :=$ unit sphere in $L^2(\partial \tilde{M}; \mathbb{Z})$.

Let (M, g_0) be a closed oriented hyperbolic manifold. Let (\tilde{M}, g_0) be the universal cover and fix $o \in \tilde{M}$. Let $(\partial \tilde{M}, d\theta)$ = boundary at infinity with round measure $d\theta$.

Let $\mathcal{S}_{\partial \tilde{M}} :=$ unit sphere in $L^2(\partial \tilde{M}; \mathbb{Z})$.

Let $B_{\theta} : \tilde{M} \to \mathbb{R}$ be the Busemann functions.

Let (M, g_0) be a closed oriented hyperbolic manifold. Let (\tilde{M}, g_0) be the universal cover and fix $o \in \tilde{M}$. Let $(\partial \tilde{M}, d\theta) =$ boundary at infinity with round measure $d\theta$.

Let $S_{\partial \tilde{M}} :=$ unit sphere in $L^2(\partial \tilde{M}; \mathbb{Z})$. Let $B_{\theta} : \tilde{M} \to \mathbb{R}$ be the Busemann functions. Consider the Bieberbach embedding

$$ilde{M} o \mathcal{S}_{\partial ilde{M}}$$

 $x \mapsto \{ \theta \mapsto e^{-rac{n-1}{2}B_{\theta}(x)} \}.$

Let (M, g_0) be a closed oriented hyperbolic manifold. Let (\tilde{M}, g_0) be the universal cover and fix $o \in \tilde{M}$. Let $(\partial \tilde{M}, d\theta)$ = boundary at infinity with round measure $d\theta$.

Let $S_{\partial \tilde{M}} :=$ unit sphere in $L^2(\partial \tilde{M}; \mathbb{Z})$. Let $B_{\theta} : \tilde{M} \to \mathbb{R}$ be the Busemann functions. Consider the Bieberbach embedding

$$\widetilde{M} \to \mathcal{S}_{\partial \widetilde{M}}$$

 $\mathbf{x} \mapsto \{ \theta \mapsto e^{-\frac{n-1}{2}B_{\theta}(\mathbf{x})} \}.$

By $\pi_1(M)$ -equivariance, it gives an embedding

$$B: (M, rac{(n-1)^2}{4n}g_0)
ightarrow \mathcal{S}_{\partial \tilde{M}}/\pi_1(M).$$
Besson-Courtois-Gallot's theorem: the image B(M) is calibrated!

Besson-Courtois-Gallot's theorem: the image B(M) is calibrated!

In particular B(M) is a Plateau solution in the spherical quotient $S_{\partial \tilde{M}}/\pi_1(M)$, for the homology class of $S_{\partial \tilde{M}}/\pi_1(M)$ given naturally by M.

Besson-Courtois-Gallot's theorem: the image B(M) is calibrated!

In particular B(M) is a Plateau solution in the spherical quotient $S_{\partial \tilde{M}}/\pi_1(M)$, for the homology class of $S_{\partial \tilde{M}}/\pi_1(M)$ given naturally by M.

This embedding is very specific.

Besson-Courtois-Gallot's theorem: the image B(M) is calibrated!

In particular B(M) is a Plateau solution in the spherical quotient $S_{\partial \tilde{M}}/\pi_1(M)$, for the homology class of $S_{\partial \tilde{M}}/\pi_1(M)$ given naturally by M.

This embedding is very specific.

Questions: Uniqueness? What about non-locally symmetric manifolds?

Let Γ be a countable group (for instance the fundamental group of a closed oriented manifold).

Let Γ be a countable group (for instance the fundamental group of a closed oriented manifold). Find a classifying space \mathcal{K} for Γ with a canonical Hilbert metric (\mathcal{K} = quotient of a weakly contractible space by a proper free action of Γ).

Let Γ be a countable group (for instance the fundamental group of a closed oriented manifold). Find a classifying space \mathcal{K} for Γ with a canonical Hilbert metric (\mathcal{K} = quotient of a weakly contractible space by a proper free action of Γ). Consider a homology class $h \in H_n(\mathcal{K}; \mathbb{Z})$.

Let Γ be a countable group (for instance the fundamental group of a closed oriented manifold). Find a classifying space \mathcal{K} for Γ with a canonical Hilbert metric (\mathcal{K} = quotient of a weakly contractible space by a proper free action of Γ). Consider a homology class $h \in H_n(\mathcal{K}; \mathbb{Z})$. Solve the Plateau problem for h in \mathcal{K} and get a Plateau solution C_{∞} .

Let $\mathbf{H} =$ the separable infinite dimensional Hilbert space.

 $\mathcal{S}(\Gamma) :=$ unit sphere in $\ell^2(\Gamma; \mathbf{H})$.

$$S(\Gamma) :=$$
 unit sphere in $\ell^2(\Gamma; \mathbf{H})$.

 Γ acts isometrically on $\mathcal{S}(\Gamma)$ by the regular representation $\gamma.f(.)=f(\gamma^{-1}.).$

$$S(\Gamma) :=$$
 unit sphere in $\ell^2(\Gamma; \mathbf{H})$.

 Γ acts isometrically on $\mathcal{S}(\Gamma)$ by the regular representation $\gamma.f(.)=f(\gamma^{-1}.).$ Set

 $\mathcal{S}^*(\Gamma) := \{ f \in \mathcal{S}(\Gamma); \quad \gamma.f \neq f \text{ for any nontrivial } \gamma \in \Gamma \}.$

$$S(\Gamma) :=$$
 unit sphere in $\ell^2(\Gamma; \mathbf{H})$.

 Γ acts isometrically on $\mathcal{S}(\Gamma)$ by the regular representation $\gamma.f(.)=f(\gamma^{-1}.).$ Set

 $\mathcal{S}^*(\Gamma) := \{ f \in \mathcal{S}(\Gamma); \quad \gamma.f \neq f \text{ for any nontrivial } \gamma \in \Gamma \}.$

Fact: $\mathcal{S}^*(\Gamma)/\Gamma$ is a Hilbert manifold and a classifying space for Γ .

Let M be a closed oriented *n*-manifold. Let $\mathcal{K} := \mathcal{S}^*(\Gamma)/\Gamma$ be as in the previous slide, for $\Gamma := \pi_1(M)$.

Let M be a closed oriented *n*-manifold. Let $\mathcal{K} := \mathcal{S}^*(\Gamma)/\Gamma$ be as in the previous slide, for $\Gamma := \pi_1(M)$. M determines a class $h_M \in H_n(\mathcal{K}; \mathbb{Z})$.

Let M be a closed oriented *n*-manifold. Let $\mathcal{K} := \mathcal{S}^*(\Gamma)/\Gamma$ be as in the previous slide, for $\Gamma := \pi_1(M)$. M determines a class $h_M \in H_n(\mathcal{K}; \mathbb{Z})$. Solve the Plateau problem for h_M and get a Plateau solution C_{∞} .

Let M be a closed oriented n-manifold. Let $\mathcal{K} := \mathcal{S}^*(\Gamma)/\Gamma$ be as in the previous slide, for $\Gamma := \pi_1(M)$. M determines a class $h_M \in H_n(\mathcal{K}; \mathbb{Z})$. Solve the Plateau problem for h_M and get a Plateau solution C_{∞} .

Rm: in the special case where M is hyperbolic, $S_{\partial \tilde{M}}/\pi_1(M)$ is not isometric to \mathcal{K} . In fact, M does not embed minimally in \mathcal{K} . Nevetherless $S_{\partial \tilde{M}}/\pi_1(M)$ is isometrically embedded in the ultralimit of \mathcal{K} .

Hyperbolic manifolds and intrinsic uniqueness of Plateau solutions

Thm: Let (M, g_{hyp}) be a closed oriented hyperbolic manifold of dimension ≥ 3 . Then any Plateau solution for h_M is intrinsically isometric to $(M, \frac{(n-1)^2}{4n}g_{hyp})$.

Thm: Let (M, g_{hyp}) be a closed oriented hyperbolic manifold of dimension ≥ 3 . Then any Plateau solution for h_M is intrinsically isometric to $(M, \frac{(n-1)^2}{4n}g_{hyp})$.

Conjecture: For n = 2, any Plateau solution for h_M is intrinsically isometric to an element in the Deligne-Mumford compactification of {hyperbolic metrics on M}.

Let $(M, \frac{(n-1)^2}{4n}g_{hyp})$, $\Gamma := \pi_1(M)$. Besson-Courtois-Gallot initiated the use of a "barycenter map" bar : $S_{\partial \tilde{M}}/\Gamma \to M$.

Let $(M, \frac{(n-1)^2}{4n}g_{hyp})$, $\Gamma := \pi_1(M)$. Besson-Courtois-Gallot initiated the use of a "barycenter map" bar : $S_{\partial \tilde{M}}/\Gamma \to M$.

In our setting, we define a variant

 $\mathrm{bar}:\mathcal{K}\to M$

such that $|\operatorname{Jac}_n \operatorname{bar}| \le 1$ and when $|\operatorname{Jac}_n \operatorname{bar}|$ is close to 1, the differential dbar is almost an isometry.

Let $C_i \subset \mathcal{K}$ be a minimizing sequence "converging" to a Plateau solution C_{∞} . We are given bar : $C_i \to M$, maps of degree 1.

Let $C_i \subset \mathcal{K}$ be a minimizing sequence "converging" to a Plateau solution C_{∞} . We are given bar : $C_i \to M$, maps of degree 1. Steps :

- 1. construct a limit map $\operatorname{bar}_{\infty} : C_{\infty} \to (M, \frac{(n-1)^2}{4n}g_{hyp}),$
- 2. bar_{∞} is volume preserving,
- 3. bar_∞ is an isometry for the path distances.

Let $C_i \subset \mathcal{K}$ be a minimizing sequence "converging" to a Plateau solution C_{∞} . We are given bar : $C_i \to M$, maps of degree 1. Steps :

- 1. construct a limit map $\operatorname{bar}_{\infty} : C_{\infty} \to (M, \frac{(n-1)^2}{4n}g_{hyp}),$
- 2. $\operatorname{bar}_{\infty}$ is volume preserving,
- 3. bar_∞ is an isometry for the path distances.

Difficulty: lack of a priori regularity for C_{∞} : need to work on C_i and prove "almost" statements.

Rm: unlike the hyperbolic case, here there is no good model metric for a barycenter map. We need to work with a sequence of metrics on M approximating the hyperbolic part M_{hyp} , and collapsing the rest.

Rm: unlike the hyperbolic case, here there is no good model metric for a barycenter map. We need to work with a sequence of metrics on M approximating the hyperbolic part M_{hyp} , and collapsing the rest.

Sci-Fi question: how much of Geometrization can be recovered with MCF methods?

Rm: unlike the hyperbolic case, here there is no good model metric for a barycenter map. We need to work with a sequence of metrics on M approximating the hyperbolic part M_{hyp} , and collapsing the rest.

Sci-Fi question: how much of Geometrization can be recovered with MCF methods?

Question: Is the Bieberbach embedding stable under MCF?

A general structure result

Let Γ , $h \in H_n(\Gamma; \mathbb{Z})$.

Let Γ , $h \in H_n(\Gamma; \mathbb{Z})$. A non-trivial Plateau solution C_{∞} is never isometrically embedded as a cycle in \mathcal{K} ...

Let Γ , $h \in H_n(\Gamma; \mathbb{Z})$. A non-trivial Plateau solution C_{∞} is never isometrically embedded as a cycle in \mathcal{K} ... Let $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ be an "ultralimit" of $\mathcal{K} := \mathcal{S}^*(\Gamma)/\Gamma$.
Thm: Any Plateau solution C_{∞} for *h* embeds isometrically inside the spherical quotient $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$. Moreover the restriction of C_{∞} to the smooth part of $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ is mass-minimizing.

Thm: Any Plateau solution C_{∞} for *h* embeds isometrically inside the spherical quotient $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$. Moreover the restriction of C_{∞} to the smooth part of $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ is mass-minimizing.

Let $\mathcal{C}_\infty^{>0}:=$ restriction of \mathcal{C}_∞ to the smooth part of $\mathbf{S}^\infty/\mathbf{\Gamma}_\infty$

Thm: Any Plateau solution C_{∞} for *h* embeds isometrically inside the spherical quotient $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$. Moreover the restriction of C_{∞} to the smooth part of $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ is mass-minimizing.

Let $C_{\infty}^{>0}$:= restriction of C_{∞} to the smooth part of $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ = noncollapsed part of C_{∞} .

Thm: Any Plateau solution C_{∞} for *h* embeds isometrically inside the spherical quotient $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$. Moreover the restriction of C_{∞} to the smooth part of $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ is mass-minimizing.

Let $C_{\infty}^{>0}$:= restriction of C_{∞} to the smooth part of $\mathbf{S}^{\infty}/\mathbf{\Gamma}_{\infty}$ = noncollapsed part of C_{∞} .

The support of $C_{\infty}^{>0}$ is smooth on a dense open set by Ambrosio-De Lellis-Schmidt.

Combinatorial properties on $(\Gamma, h) \Longrightarrow$ Existence of non-trivial mass-minimizing integral currents of the form $C_{\infty}^{>0}$?

Combinatorial properties on $(\Gamma, h) \Longrightarrow$ Existence of non-trivial mass-minimizing integral currents of the form $C_{\infty}^{>0}$?

Thm: Let Γ be a torsion-free hyperbolic group with $h \in H_n(\Gamma; \mathbb{Z}) \setminus \{0\}$ and $n \ge 2$. Then any Plateau solution C_{∞} for h has a non-empty noncollapsed part $C_{\infty}^{>0}$.

Combinatorial properties on $(\Gamma, h) \Longrightarrow$ Existence of non-trivial mass-minimizing integral currents of the form $C_{\infty}^{>0}$?

Thm: Let Γ be a torsion-free hyperbolic group with $h \in H_n(\Gamma; \mathbb{Z}) \setminus \{0\}$ and $n \ge 2$. Then any Plateau solution C_{∞} for h has a non-empty noncollapsed part $C_{\infty}^{>0}$.

For instance, π_1 of negatively curved closed manifolds are torsion-free hyperbolic.