Regularity results for the
Special Lagrangian equations
C. Mooney
U. Lavine
Let $F: \mathbb{R}^n \rightarrow \mathbb{R}^n$, $Z = \gamma$. (F)
\mathbb{R}^n 'y
0
\mathbb{R}^n 'y
0
\mathbb{R}^n 'y
$\mathbb{R$

: Lag. angle:
$$
\underline{det}(\underline{\tau}+i\underline{D}^{2}u) \stackrel{(*)}{=} e^{i\theta(\pi)}
$$

\n $\overrightarrow{H} = \overrightarrow{J} \underline{\nabla}_{\underline{\tau}} \underline{\theta} \longrightarrow \underline{\sum_{\text{minimize } i'_{\text{f}}} \theta = \text{const}$
\nin fact, \overrightarrow{Z} is vol. minimizing if $\theta = \text{const}$:
\n $\overrightarrow{R}e$ ($\overrightarrow{e}^{i\theta}ds, \lambda \dots \lambda d\overrightarrow{e}n$) *calibrates* ($\overrightarrow{B}_{k} = X_{k} + iy_{k}$)
\n• *Of* \overrightarrow{R} :
\n(1) $F(D^{2}u) := \sum_{k=1}^{n} \tan^{2}(\lambda_{k}) = 0$
\n $\overrightarrow{B} = \frac{1}{2} \cdot \frac{1$

$$
(2)
$$
 $(1-6_{2}+...)+i(6_{1}-6_{3}+...)=\sqrt{4+1} \cdot (cos\theta + isin\theta)$
\nN=2: $\theta=0 \rightarrow \Delta eqn$, $\theta=\pi/2$, $M-A$ sgu

$$
\underline{h=3:} \quad \theta=0 \quad \text{det}=\Delta_{1} \quad \theta= \pi|_{2} \quad G_{2}=1.
$$

Rmle: Can contributing pass through phase.
by notating
$$
\Sigma
$$
:

 PDE , known results $(0 = const.)$

1.)
$$
3!
$$
 $15.$ $56.$ $4.$ $4.$ $6.$
\n $\int F(D^2u) = \sum_{i=1}^{7} 4a^2(k_1) = 0,$
\n $(u|_{3}R_1 = 4.6 \cdot 0.05)$
\n(Pluoni's *Muthod*; $\int 35.$ $6.05.$
\n2.) a) $4.6 \cdot 0.04 \cdot 10^{12} (h-2)^{1/2} \Rightarrow 4.6 \cdot 0.05$
\nb) $101 \ge (h-2)^{1/2} \Rightarrow 4.6 \cdot 0.06$, 6.05
\nb) $101 \ge (h-2)^{1/2} \Rightarrow 4.6 \cdot 0.06$, 6.05
\n (14)
\n $(key: eqm: concave; S_3) \land m = 0$
\na.: boundary C^2 $8.8 + 2$ $8.0 - 2$
\nb. $\int 4$ $10^{1/2} \cdot 0.06 \$

ex's
$$
\in C^{1,1/3}
$$
 by Nadirashvili - Vladit, '10

 $\frac{1}{2}$ $\frac{1}{2}$ $\label{eq:2.1} \Phi_{\alpha\beta} = \Phi_{\alpha\beta} \Phi_{\alpha\beta} + \Phi_{\alpha\beta} \Phi_{\alpha\beta} + \Phi_{\alpha\beta} \Phi_{\alpha\beta} + \Phi_{\alpha\beta} \Phi_{\beta\beta} + \Phi_{\beta\beta} \Phi_{\beta\beta}$

$$
?EX5 \in C'; \dots \quad \text{any } m z z, b y \quad \text{Wang-Yuan} ; '13
$$

Open questions:
\n(1)
$$
|| \nabla u ||_{L^{2}(B_{n_{2}})} \le C(n_{1} ||u||_{L^{2}(B_{n})})
$$
, $||0| < (n-2)\pi$
\n $\theta \in C^{1}$?

(2) Do 3 sing. sol'us u/ non-analytic & graph, (e.g. non-flats graphical slag cones.)?

Modest progress on ¹ natural counterexample candidates satisfy ^a ^U ^o homogeneous OL ⁹ 1 ^b I detoul so on

 i ssue: this ex not vise sol'4 \circledcirc Need

Thm A (M, '22). Thus are no fens on:
\n
$$
\mathbb{R}^{n}
$$
 satisfying (a), (b) and (c) simultaneously.
\n...
\n...
\n1000 Anthuod shapes of c-ens are ruled out.
\n11000: A can:
\n121000: A can:
\n $\frac{\pi}{2}$ (M, '22)
\nLet π = cone over Γ = Sⁿ⁻¹ If 3 u sl.
\n(a) $u + h$ must be a Γ
\n(b) $\frac{d}{dt}S^{2}u(3000) \Gamma$
\n(c) $u > 0$ in \mathbb{R} , $u|_{20} = 0$
\n $\Rightarrow \mathcal{D}^{c}$ is a $\mathbf{C} \times \mathbf{C}$ or \mathbf{C}
\n $\Rightarrow \mathcal{D}^{c}$ is a $\mathbf{C} \times \mathbf{C}$ or \mathbf{C}
\n(c) $u > 0$ in \mathbb{R} , $u|_{20} = 0$
\n $\Rightarrow \mathcal{D}^{c}$ is a $\mathbf{C} \times \mathbf{C}$ or \mathbf{C}
\n $\Rightarrow \mathcal{D}^{c}$ is a $\mathbf{C} \times \mathbf{C}$ or \mathbf{C}
\n(b) can be already to det $\mathbf{C}^{u} \times \mathbf{C}$ or \mathbf{C} , $k := \frac{|\mathbf{D}^{u}|^{n}}{4\pi \mathbf{D}^{u}} = \frac{1}{\mathbf{D}^{u}} \mathbf{D}^{c}$
\n $\mathbf{D}^{u} \times \mathbf{C}$

. "Function-theoretic" result, related also to mappings $w/$ bud'd dilatation (clasticity theory) $+$ M-A eque $\omega /$ convexity hypotheses on solly.

Max principle

 $N \geq 5$: topology / geom. of cones is complicated... need ^a new approach

II. Th. B,
$$
n=2
$$
, *analytical proof*.
\nlet $V = \begin{cases} u^{1/r}, & D. \\ 0, & \text{otherwise} \end{cases}$
\n $\Rightarrow \begin{cases} V & 1-\text{homogeneous,} \\ V = |CV| = 0 & \text{on } 3D. \end{cases}$
\nCalculate to: $\Delta V = C_{\alpha} u^{\frac{1}{\alpha}-2} \det D^2 u$ on Γ
\n $+ * \Rightarrow V$ is *convex*
\n $\Rightarrow \{v=0\} = \Omega^c$ is a *ovx* cover.

 $\frac{1}{2}$

 $\iota^{\sigma\sigma(\epsilon)}$

 $J2^c$ = - CVK dual $\bigwedge_{\mathcal{R}^c}$ of c .

Thank you for your attention!