Boundary regularity of area-minimizing currents: a linear model with analytic interface

> Zihui Zhao joint work with Camillo De Lellis

> > University of Chicago

MSRI Hot Topics Workshop: Regularity Theory for Minimal Surfaces and Mean Curvature Flow

< 🗇 🕨 < 🖃 🕨

Background

Figure: Soap film. Photo credit: archdaily.com

Plateau's problem: Given a closed curve Γ , what is the surface T that spans Γ with the least area?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Depending on what class of surfaces we are minimizing,

э

(日)

Depending on what class of surfaces we are minimizing, there are different formulations of Plateau's problem:

• Classical area-minimizing surfaces using the parametric approach (as images of a disk, or surfaces of higher genus Σ_g), *Douglas, Radó, Courant et al.*

<日本

<</p>

Depending on what class of surfaces we are minimizing, there are different formulations of Plateau's problem:

- Classical area-minimizing surfaces using the parametric approach (as images of a disk, or surfaces of higher genus Σ_g), *Douglas, Radó, Courant et al.*
- Integral currents, *Federer-Fleming et al.*
- Set-theoretic approach, Reifenberg, Harrison-Pugh, David et al.
- Integral varifolds, Almgren, Allard et al.

Integral currents: model orientable submanifolds

In 1960 Federer and Fleming introduced the notion of *integral current* and proved the existence of area-minimizers in this class.

Definition

We say a current $T \subset \mathbb{R}^{m+n}$ of dimension *m* is **integer rectifiable**, if there are

- countably *m*-dimensional <u>orientable</u> C^1 submanifolds $M_i \subset \mathbb{R}^{m+n}$,
- pairwise disjoint closed sets $A_i \subset M_i$,
- positive integers $k_i \in \mathbb{N}$,

such that

$$\mathcal{T} = \sum_i k_i \llbracket A_i
rbracket, \quad \mathsf{modulo} \ \mathsf{a} \ \mathsf{set} \ \mathsf{of} \ \mathsf{zero} \ \mathcal{H}^m$$
-measure.

We say a current T is **integral** if both T and its boundary ∂T are integer rectifiable.

Zihui Zhao

Area-minimizing current

Definition (Area-minimizing current)

Let T be an *m*-dimensional integral current in \mathbb{R}^{m+n} (or in a Riemannian manifold M^{m+n}). We say T is *area minimizing*, if

Area
$$(T') \ge Area(T)$$
 for any *competitor* T' of T ,

that is, T' is an integral current such that T' = T outside of some compact set.

ヘロト ヘヨト ヘヨト

Interior regularity: codimension one (n = 1)

Theorem (De Giorgi, Simons, Federer, Simon et al.)

Assume T is an area-minimizing current and n = 1. Then

- If $2 \le m \le 6$, T is regular, i.e. $\operatorname{Sing}_i(T) = \emptyset$.
- **2** If m = 7, $Sing_i(T)$ consists of isolated points.
- If m > 7, Sing_i(T) has Hausdorff dimension at most m − 7, and it is (m − 7)-rectifiable.

<日

<</p>

When the codimension $n \ge 2$, branch point starts to emerge.

Example of branch singularity. The holomorphic curve

$$C:=\{(z,w)\in\mathbb{C}^2:z^2=w^3\}$$

is a 2-dimensional area-minimizing current in \mathbb{R}^4 . The origin is singular despite that C has a flat tangent plane $\{(z, w) \in \mathbb{C}^2 : z = 0\}$ at the origin.

- 4 同 ト 4 三 ト - 4 三 ト - -

Theorem (Almgren, Chang, DeLellis-Spadaro, DeLellis-Spadaro-Spolaor)

Assume T is an area-minimizing current and $n \ge 2$. Then

- When m = 2, $Sing_i(T)$ consists of isolated points.
- Sing_i(T) has Hausdorff dimension at most m 2.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Theorem (Almgren, Chang, DeLellis-Spadaro, DeLellis-Spadaro-Spolaor)

Assume T is an area-minimizing current and $n \ge 2$. Then

• When m = 2, $Sing_i(T)$ consists of isolated points.

Sing_i(T) has Hausdorff dimension at most m - 2.

Remark

 In particular, if T is a two-dimensional area-minimizing current, then locally spt(T) is a branched minimal surface.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem (Almgren, Chang, DeLellis-Spadaro, DeLellis-Spadaro-Spolaor)

Assume T is an area-minimizing current and $n \ge 2$. Then

• When m = 2, $Sing_i(T)$ consists of isolated points.

Sing_i(T) has Hausdorff dimension at most m - 2.

Remark

- In particular, if T is a two-dimensional area-minimizing current, then locally spt(T) is a branched minimal surface.
- By a dimension reduction argument, it suffices to study *flat* singular points.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f: \mathbb{D} \subset \mathbb{R}^m \to \mathcal{A}_Q(\mathbb{R}^n)$$

where $\mathcal{A}_Q(\mathbb{R}^n)$ is the metric space of unordered Q-tuples of points in \mathbb{R}^n , and the integer Q equals $\Theta(\mathcal{T}, p) := \lim_{s \to 0} \frac{\|\mathcal{T}\|(\mathcal{B}_s(p))}{\omega_m s^m}$.

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f:\mathbb{D}\subset\mathbb{R}^m\to\mathcal{A}_Q(\mathbb{R}^n)$$

② If the current *T* is area-minimizing, *f* is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f: \mathbb{D} \subset \mathbb{R}^m \to \mathcal{A}_Q(\mathbb{R}^n)$$

② If the current *T* is area-minimizing, *f* is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2$.

The reason is that

$$\|T\|(\boldsymbol{C}_r(x))-Q\cdot\omega_m r^m\approx \frac{1}{2}\int_{B_r(x)}|Df|^2,$$

where $\boldsymbol{C}_r(x)$ denotes the cylinder $B_r(x) \times \mathbb{R}^n \subset \mathbb{D} \times \mathbb{R}^n$.

ロトス団とスヨトスヨト

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f:\mathbb{D}\subset\mathbb{R}^m\to\mathcal{A}_Q(\mathbb{R}^n)$$

② If the current *T* is area-minimizing, *f* is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2$.

Prove analogous regularity result for multi-valued functions which minimize the Dirichlet energy.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Near a flat singular point p, approximate the current T locally by the graph of a multi-valued function

$$f: \mathbb{D} \subset \mathbb{R}^m \to \mathcal{A}_Q(\mathbb{R}^n)$$

- ② If the current *T* is area-minimizing, *f* is close to be a minimizer of the Dirichlet energy $\text{Dir}(f, \mathbb{D}) := \int_{\mathbb{D}} |Df|^2$.
- Onstruct the *central manifold*, to make sure singularity does not disappear after the blow-up.
- Prove analogous regularity result for multi-valued functions which minimize the Dirichlet energy.

(D) (A P) (B) (B)

Boundary regularity

On the boundary, a regular point can be either one-sided or two-sided.

Example. Let π be a two-dimensional plane and $\Gamma = \Gamma_1 \cup \Gamma_2$. The area-minimizing current T which bounds Γ is the sum of the two disks bounded by Γ_1 and Γ_2 , counting multiplicity.

・ 何 ト ・ ヨ ト ・ ヨ ト

The first boundary regularity result is by Allard (for varifolds):

Theorem (Allard 1969)

- If p ∈ Γ is a point where the density Θ(T, p) equals ¹/₂, i.e. p is one-sided, then p ∈ Reg_b(T).
- **②** If there is some wedge *W* of opening angle smaller than *π* whose tip contains *p* and such that spt(*T*) ⊂ *W*, then $\Theta(T, p) = \frac{1}{2}$ and thus $p \in \text{Reg}_b(T)$.

The first boundary regularity result is by Allard (for varifolds):

Theorem (Allard 1969)

- If $p \in \Gamma$ is a point where the density $\Theta(T, p)$ equals $\frac{1}{2}$, i.e. p is one-sided, then $p \in \operatorname{Reg}_b(T)$.
- If there is some wedge W of opening angle smaller than π whose tip contains p and such that spt(T) ⊂ W, then $Θ(T, p) = \frac{1}{2}$ and thus $p \in \text{Reg}_b(T)$.

Remark

DeLellis-Nardulli-Steinbrüchel: When $\partial T = Q[[\Gamma]]$, any boundary point $p \in \Gamma$ with density $< \frac{Q+1}{2}$ is regular.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Boundary regularity in codimension one

Theorem (Hardt-Simon 1979)

Let $\Gamma \subset \mathbb{R}^{m+1}$ be a $C^{1,\alpha}$ closed oriented embedded submanifold of dimension m-1. Suppose T is an area-minimizing current with boundary Γ , then $\operatorname{Sing}_{b}(T) = \emptyset$.

Remark

In particular when m = 2, spt(T) is an embedded surface (with boundary) of finite genus.

・ 何 ト ・ ヨ ト ・ ヨ ト

Boundary regularity in higher codimensions

Again, the case of higher codimensions is different.

• Genuine branch singularity. For example, cut the minimizing current $\{(z, w) \in \mathbb{C}^2 : z^3 = w^{3k+1}\}$ where $k \in \mathbb{N}$.

- ロ ト - (理 ト - (ヨ ト - (ヨ ト -)

Boundary regularity in higher codimensions

Again, the case of higher codimensions is different.

- Genuine branch singularity. For example, cut the minimizing current $\{(z, w) \in \mathbb{C}^2 : z^3 = w^{3k+1}\}$ where $k \in \mathbb{N}$.
- Self-intersection, or singular point of crossing type.
 - For example, let $\pi_1, \pi_2 \subset \mathbb{R}^4$ be two-dimensional planes such that $\pi_1 \cap \pi_2 = \{0\}$. Then $T = \llbracket \pi_1^+ \rrbracket + \llbracket \pi_2 \rrbracket$ is an area-minimizing current with boundary \mathbb{R} , and $0 \in \operatorname{Sing}_b(T)$.

Boundary regularity in higher codimensions

Again, the case of higher codimensions is different.

- Genuine branch singularity. For example, cut the minimizing current $\{(z, w) \in \mathbb{C}^2 : z^3 = w^{3k+1}\}$ where $k \in \mathbb{N}$.
- Self-intersection, or singular point of *crossing* type.
 - For example, let $\pi_1, \pi_2 \subset \mathbb{R}^4$ be two-dimensional planes such that $\pi_1 \cap \pi_2 = \{0\}$. Then $T = \llbracket \pi_1^+ \rrbracket + \llbracket \pi_2 \rrbracket$ is an area-minimizing current with boundary \mathbb{R} , and $0 \in \operatorname{Sing}_b(T)$.
 - Alternatively, add to $\{(z, w) \in \mathbb{C}^2 : z^2 = w^3\}$ a half plane $[\pi^+]$, where $\pi \cap \mathbb{C}^2 = \{0\}$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Boundary regularity in higher codimensions (cont.)

Until recently it is not even known if $\operatorname{Reg}_b(\Gamma) \neq \emptyset$ for general, non-convex boundary Γ .

イロト 不良 トイヨト イヨト

Boundary regularity in higher codimensions (cont.)

Until recently it is not even known if $\operatorname{Reg}_b(\Gamma) \neq \emptyset$ for general, non-convex boundary Γ .

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

Let $\Gamma \subset \mathbb{R}^{m+n}$ be a $C^{3,\alpha}$ closed oriented submanifold of dimension m-1. Suppose T is an area-minimizing current with boundary Γ , then $\operatorname{Reg}_b(T)$ is open and dense in Γ .

・ 何 ト ・ ヨ ト ・ ヨ ト

Boundary regularity in higher codimensions (cont.)

Until recently it is not even known if $\operatorname{Reg}_b(\Gamma) \neq \emptyset$ for general, non-convex boundary Γ .

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

Let $\Gamma \subset \mathbb{R}^{m+n}$ be a $C^{3,\alpha}$ closed oriented submanifold of dimension m-1. Suppose T is an area-minimizing current with boundary Γ , then $\operatorname{Reg}_b(T)$ is open and dense in Γ .

Remark

The proof is reduced to the case when T is collapsed at the boundary Γ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Boundary singularity (when m = 2, $n \ge 2$)

Question: Can we analyze the size of the boundary singular set, in the particular case of two-dimensional area-minimizing currents?

Boundary singularity (when m = 2, $n \ge 2$)

Question: Can we analyze the size of the boundary singular set, in the particular case of <u>two-dimensional</u> area-minimizing currents?

Recall that $\operatorname{Sing}_i(T)$ consists of isolated points. What about $\operatorname{Sing}_b(T)$?

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Boundary singularity (when m = 2, $n \ge 2$)

Question: Can we analyze the size of the boundary singular set, in the particular case of <u>two-dimensional</u> area-minimizing currents?

Recall that $\operatorname{Sing}_i(T)$ consists of isolated points. What about $\operatorname{Sing}_b(T)$?

Conjecture

When Γ is a closed <u>analytic</u> curve, and T is an area-minimizing current with $\partial T = \llbracket \Gamma \rrbracket$, then $\operatorname{Sing}_b(T)$ is discrete.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Analytic boundary: motivations

Theorem (Gulliver-Lesley 1973, Gulliver 1977, White 1997)

Let Γ be a closed analytic curve, and let T be a classical area-minimizing surface spanning Γ . Then T has no boundary branch point.

Analytic boundary: motivations

Theorem (Gulliver-Lesley 1973, Gulliver 1977, White 1997)

Let Γ be a closed analytic curve, and let T be a classical area-minimizing surface spanning Γ . Then T has no boundary branch point.

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

There are a C^{∞} simple closed curve $\Gamma \subset \mathbb{R}^4$ and an area-minimizing current T spanning Γ , such that $\operatorname{Sing}_b(T)$ has an accumulation point.

・ 何 ト ・ ヨ ト ・ ヨ ト

Analytic boundary: motivations

Theorem (Gulliver-Lesley 1973, Gulliver 1977, White 1997)

Let Γ be a closed analytic curve, and let T be a classical area-minimizing surface spanning Γ . Then T has no boundary branch point.

Theorem (DeLellis-DePhilippis-Hirsch-Massaccesi)

There are a C^{∞} simple closed curve $\Gamma \subset \mathbb{R}^4$ and an area-minimizing current T spanning Γ , such that $\operatorname{Sing}_b(T)$ has an accumulation point.

Remark

This is due to the failure of unique continuation at the boundary.

< □ > < □ > < □ > < □ > < □ > < □ >

• Inspired by Almgren's approach, we need to understand the analogous problem for Dirichlet energy-minimizers.

・ 何 ト ・ ヨ ト ・ ヨ ト

- Inspired by Almgren's approach, we need to understand the analogous problem for Dirichlet energy-minimizers.
- Assume Γ is an analytic curve in ℝ²⁺ⁿ. We write Γ = (γ, φ), where γ is the projection of Γ onto a two-dimensional plane π and φ ∈ π[⊥].

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Inspired by Almgren's approach, we need to understand the analogous problem for Dirichlet energy-minimizers.
- Assume Γ is an analytic curve in ℝ²⁺ⁿ. We write Γ = (γ, φ), where γ is the projection of Γ onto a two-dimensional plane π and φ ∈ π[⊥].

Definition

We say that a pair $f = (f^+, f^-)$ is in the space $W^{1,2}(\mathbb{D}, \mathcal{A}_Q^{\pm})$ with interface (γ, φ) , if • $f^+ \in W^{1,2}(\mathbb{D}^+, \mathcal{A}_{Q+1})$ and $f^- \in W^{1,2}(\mathbb{D}^-, \mathcal{A}_Q)$;

ヘロト 人間 ト イヨト イヨト

- Inspired by Almgren's approach, we need to understand the analogous problem for Dirichlet energy-minimizers.
- Assume Γ is an analytic curve in ℝ²⁺ⁿ. We write Γ = (γ, φ), where γ is the projection of Γ onto a two-dimensional plane π and φ ∈ π[⊥].

Definition

We say that a pair $f = (f^+, f^-)$ is in the space $W^{1,2}(\mathbb{D}, \mathcal{A}_Q^{\pm})$ with interface (γ, φ) , if • $f^+ \in W^{1,2}(\mathbb{D}^+, \mathcal{A}_{Q+1})$ and $f^- \in W^{1,2}(\mathbb{D}^-, \mathcal{A}_Q)$; • $f^+|_{\gamma} = f^-|_{\gamma} + [\![\varphi]\!].$

イロト 不得 トイヨト イヨト

Dirichlet energy-minimizers with analytic interface

Theorem (DeLellis-Z.)

Given an analytic interface (γ, φ) , suppose $f \in W^{1,2}(\mathbb{D}, \mathcal{A}_Q^{\pm})$ minimizes the Dirichlet energy among all competitors with the prescribed interface. Then the singular set of f is discrete.

Dirichlet energy-minimizers with analytic interface

Theorem (DeLellis-Z.)

Given an analytic interface (γ, φ) , suppose $f \in W^{1,2}(\mathbb{D}, \mathcal{A}_Q^{\pm})$ minimizes the Dirichlet energy among all competitors with the prescribed interface. Then the singular set of f is discrete.

Remark

Exceptional case: non-homogeneous blow-down of half of the Enneper surface.

・ 何 ト ・ ヨ ト ・ ヨ ト

Thank you!

æ

イロト イヨト イヨト イヨト