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Reminder: (Gapless) Compression Theorem

Theorem

There exists poly-time computable GaplessCompress where if D

is decider for UGS G = (Gn)n with complexity nλ then

GaplessCompress(D, λ) outputs a decider D ′ for G ′ = (G ′
n)n

where

1. (Complexity) D ′ has complexity logβ n where β = poly(λ),

2. (Value) ω(G ′
n) = 1 iff ω(Gn) = 1

Compression = Question Reduction + Answer Reduction
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Question Reduction



Theorem (Question Reduction)

There exists poly-time computable map QuestionReduce where

if D is decider for UGS G = (Gn)n with complexity nλ

then QuestionReduce(D, λ) outputs a decider D ′ for

G ′ = (G ′
n)n where

1. (Complexity)

complexity(D ′) ≤ nβ

question lengths of G ′
n ≤ logβ n

for β = poly(λ),

2. (Value) ω(G ′
n) = 1 iff ω(Gn) = 1
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Question Reduction: High-level idea

Super High level idea: Suppose G = (Gn)n has complexity n (i.e.

λ = 1).

Instead of sampling questions (x , y) ∼ µn, the game G ′
n plays a

random subgame:

1. (Introspection game) Ask Alice to sample x herself and

respond with answer a, ask Bob to sample y himself and

respond with answer b, and compute Dn(x , y , a, b); or

2. (Rigidity game) Verify that Alice/Bob sample uniformly

random questions, and Alice does not know Bob’s

question and vice versa.
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Question Reduction: High-level idea

Fix n. Let G = Gn and let G ′ = G ′
n.

First, we design an honest strategy S ′ for the Introspection

subgame.

Then, we design the Rigidity game to “force” near-optimal

strategies for G ′ to be close to S ′.
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Introspection game

Introspection game is played as follows:

• Send Alice question label “IntrospectA” and get

(x , a) ∈ {0, 1}2n.
• Send Bob question label “IntrospectB” and get

(y , b) ∈ {0, 1}2n.
• Compute D(n, x , y , a, b). If output is 1 or ⊥, players win. If

output is 0, players lose.
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Honest strategy: Introspection game

Let S = (Ax ,a) be optimal strategy for G with dimension d .

Honest strategy S ′ = (Fw ,c) for the Introspection game:

1. Hilbert space: (C2)⊗n︸ ︷︷ ︸
Alice questions

⊗ (C2)⊗n︸ ︷︷ ︸
Bob questions

⊗ Cd︸︷︷︸
Answers

2. FIntroA,(x ,a) := |x⟩⟨x | ⊗ In ⊗ Ax ,a

3. FIntroB ,(y ,b) := In ⊗ |y⟩⟨y | ⊗ Ay ,b

Claim: Success probability of honest strategy S ′ in Introspection

game

(1− α) + α · ω(G )

where α = 2−2n · |supp(µn)|.

In particular: ω(G ) = 1 iff S ′ wins Introspection game with

probability 1.
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That’s nice, but why would Alice and Bob follow the honest

Introspection strategy?

Consider the following cheating strategy: suppose for every

question pair (x , y) there is a canonical answer pair (axy , bxy )

where D(n, x , y , a, b) = 1.

In the Introspection Game, Alice and Bob measure both question

registers to sample (x , y). Alice outputs axy and Bob outputs bxy .

This evil strategy always wins!
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Rigidity game: High level

Goal of Rigidity game: Force (near-)optimal strategies of G ′ to

be (close to) the the honest strategy for the Introspection game.

Rigidity game consists of three subgames:

• (Pauli game) Test for Pauli measurements on 2n qubits

• (Sampling game) Test IntrospectA is consistent with

standard basis measurements on Alice’s question register.

• (Don’t Peek game) Test IntrospectA does not “peek” at

Bob’s question register.
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Interlude: rigidity for many qubits



Magic Square

Yesterday: rigidity/self-testing for CHSH game.

It will be more convenient to use the Magic Square game. The

relevant properties:

• Synchronous game

• Has perfect quantum strategy

• Question set includes two questions labelled X and Z .

• Answers for questions X , Z are binary {0, 1}.
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Theorem (Magic Square rigidity)

Any value-(1− ϵ) strategy for Magic Square must be

O(
√
ϵ)-close to the honest strategy where

• (Two qubits) Hilbert space: C2 ⊗ C2

• (Standard basis) The POVM for question Z

MZ ,0 := |0⟩⟨0| ⊗ I , MZ ,1 := |1⟩⟨1| ⊗ I

• (Hadamard basis) The POVM for question X are

MX ,0 = (H|0⟩⟨0|H)⊗ I , MX ,1 = (H|1⟩⟨1|H)⊗ I

where H = 1√
2

(
1 1

1 −1

)
.
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Getting more qubits

2-out-of-n Magic Square:

1. Sample random distinct pair 1 ≤ i < j ≤ n.

2. Sample Magic Square questions (xi , yi ) and (xj , yj).

3. Send Alice (i , xi ) and (j , xj). Get answers (ai , aj).

4. Sample k ∈ {i , j} uniformly at random. Send Bob (k , yk)

and get answer b.

5. Players win iff (xk , yk , ak , bk) wins Magic Square and

b = bk .

Question length: O(log n) Answer length: O(1)
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Theorem (CRSV17, MNY17)

Any value-(1− ϵ) strategy for 2-of-n Magic Square must be

O(poly(n) ·
√
ϵ)-close to the honest strategy where

• Hilbert space: (C2)⊗2n

• Measurement for question (k ,Z ) is standard basis

measurement on qubit 2k

• Measurement for question (k ,X ) is Hadamard basis

measurement on qubit 2k
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Back to the Rigidity game



Pauli game

Question set includes {SampleA,EraseA,SampleB ,EraseB}.

The honest strategy:

• Hilbert space: (C2)⊗n︸ ︷︷ ︸
HA

⊗ (C2)⊗n︸ ︷︷ ︸
HB

• SampleA (resp. SampleB) measures the first (resp. second)

block of n qubits in standard basis.

• EraseA (resp. EraseB) measures the first (resp. second)

block of n qubits in the Hadamard basis.
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Pauli game

POVMs for the honest strategy: for every a ∈ {0, 1}n,

FSampleA,a = |a⟩⟨a| ⊗ In,

FSampleB ,a = In ⊗ |a⟩⟨a|

FEraseA,a = (H⊗n|a⟩⟨a|H⊗n)⊗ In

FEraseB ,a = In ⊗ (H⊗n|a⟩⟨a|H⊗n).
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Properties of the Pauli game

Pauli game consists of

• 2-of-n Magic Square

• Consistency checks between Magic Square questions and

Sample,Erase questions.

Theorem

Any strategy with value 1− ϵ in the Pauli game must be

poly(n) ·
√
ϵ-close to the honest Pauli game strategy.
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Sampling game

Goal of Sampling game: test consistency between Introspect

with Sample.

To test consistency between IntrospectA and SampleA:

• Send IntrospectA to Alice, get (x , a) ∈ {0, 1}2n.
• Send SampleA to Bob, get x ′ ∈ {0, 1}n.
• Accept iff x = x ′.

Passing Sampling game whp means

FIntroA,(x ,a) ≈ |x⟩⟨x |︸ ︷︷ ︸
Alice’s question

⊗Mx ,a

for some other POVM {Mx ,a}a that could act on Bob’s question

register.
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Don’t Peek game

Goal of Don’t Peek game: test that Mx ,a does not act on Bob’s

question register.

Idea: Test that IntrospectA (approx.) commutes with

SampleB and EraseB .

This implies that in fact

FIntroA,(x ,a) ≈ |x⟩⟨x |︸ ︷︷ ︸
Alice’s question

⊗ In︸︷︷︸
Bob’s question

⊗Ax ,a

for some POVM {Ax ,a}a.
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Don’t Peek game

Testing that IntrospectA (approx.) commutes with EraseB .

• Send to Alice either IntrospectA (getting (x , a)) or

EraseB (getting z).

• Send (IntrospectA,EraseB) to Bob, get

(x ′, a′, z ′) ∈ {0, 1}3n.
• Perform consistency check between Alice and Bob.
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Putting everything together



Question Reduction

Theorem

There exists poly-time computable QuestionReduce where if D

is decider for UGS G = (Gn)n with complexity nλ then

QuestionReduce(D, λ) outputs a decider D ′ for UGS

G ′ = (G ′
n)n where

1. (Complexity) For β = poly(λ),

complexity(D ′) ≤ nβ

question lengths of G ′
n ≤ logβ n

2. (Value) ω(G ′
n) = 1 iff ω(Gn) = 1
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QuestionReduce

QuestionReduce(D, λ):

Output following TM code of D ′(n, x ′, y ′, a′, b′):

If x ′ = IntrospectA, y
′ = IntrospectB :

1. Parse a′, b′ as (x , a) and (y , b), respectively.

2. Output D(n, x , y , a, b).

If x ′ = IntrospectA, y
′ = SampleA:

...

20



QuestionReduce

QuestionReduce(D, λ) clearly runs in polynomial time, because it

is outputs a string representing the Turing machine D ′, and

QuestionReduce just has to “paste” the description of D as well

as λ into the description of D ′.
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Question Reduction

The complexity of the question-reduced game G ′ satisfies:

• complexity(D ′) = nO(λ), because D ′ has to run

1. The original decider D which has complexity nλ, and

2. The Rigidity game, which has complexity nO(λ).

• Question lengths: there are O(1) questions like

Introspect,Sample,Erase, and there are Pauli game

questions of length O(log nλ).
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Question Reduction

If ω(G ) = 1, then ω(G ′) = 1 due to honest Introspection and

Rigidity strategy.

If ω(G ′) = 1, then

• Rigidity game is passed with probability 1, implying that

Introspection POVMs are, up to isometry, equal to

FIntroA,(x ,a) ≡ |x⟩⟨x | ⊗ In ⊗ Ax ,a

FIntroB ,(y ,b) ≡ In ⊗ |y⟩⟨y | ⊗ Ay ,b

• Introspection game is passed with probability 1, implying that

(Ax ,a) is value-1 strategy for G .
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Getting a gap



For MIP∗ = RE we need a gapped Compression procedure: in

addition to compressing game complexity, the procedure also

preserves a gap in the game values:

• If ω(G ) = 1, then ω(G ′) = 1.

• If ω(G ) ≤ 1
2 , then ω(G ′) ≤ 1

2 .

This requires Question Reduction to preserve the gap also! (Or at

least, not ruin it so much).
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The non-gap-preserving Question Reduction procedure has the

following effect on game value:

ω(G ) = 1− ϵ =⇒ ω(G ′) ≤ 1− ϵ

exp(nc)
.
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There are two main sources of “gaplessness” in today’s Question

Reduction procedure:

1. The rigidity of the Pauli game gets worse as n grows large.

• Solution: Rigidity games for many qubits with better

robustness.

2. The question-reduced game G ′ automatically wins if Alice and
Bob introspect a pair of questions (x , y) not in the support of
G (and support may be a vanishing fraction of X × X ).

• Solution: Design Introspection games to sample from larger

class of question distributions.
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Next time

Tomorrow (Anand): Getting a better gap for Question Reduction.

Thursday (Part 3): Answer Reduction.

Thank you
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Better Rigidity

Recall: Today’s Rigidity game has guarantee that any value-(1− ϵ)

strategy must be poly(n) ·
√
ϵ-close to an n-qubit strategy.

• We only get nontrivial guarantees when the success

probability is at least 1− 1
poly(n) .

To get a gap, we need a better Rigidity game.
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Better Rigidity

Dream Rigidity Game:

• Low complexity: logβ n

• High robustness: any value-(1− ϵ) strategy must be

δ(ϵ)-close to an n-qubit strategy, where δ(·) does not depend
on n!

Unfortunately, don’t know (yet) whether this is possible!
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Better Rigidity

Theorem (Ji-Natarajan-Vidick-Wright-Y. ’22)

There exists a UGS R = (Rn)n where

• Low complexity: complexity(Rn) = logβ n.

• High robustness: any value-(1− ϵ) strategy for Rn must be

δ(ϵ, n)-close to an honest n-qubit strategy involving Pauli

measurements, where

δ(ϵ, n) = poly log(n) · ϵc .

Milder dependence on n, and sufficient to get Question

Reduction with better gap!
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Introspecting complex distributions

Today’s Introspection game is a way to force Alice and Bob to

sample uniform, independent strings.

However, the question distributions in games arising from Question

and Answer Reduction are far from uniform!

Goal: Design Introspection game to force Alice and Bob to sample

correlated questions (x , y) from those distributions?

Alternate perspective: design games with “introspectable”

question distributions!
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The proof of MIP∗ = RE identifies a class of distributions called

conditionally linear distributions, and shows:

• Such distributions can be robustly introspected with few

questions.

• All games from Question and Answer Reduction procedures

can be designed to use conditionally linear distributions.

32


