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Reminder: (Gapless) Compression Theorem

Theorem

There exists poly-time computable GaplessCompress where if D
is decider for UGS 4 = (G,), with complexity n* then

GaplessCompress(D, \) outputs a decider D' for 9" = (G})n
where

1. (Complexity) D’ has complexity log® n where 5 = poly(\),
2. (Value) w(G)) =1 iffw(G,) =1

Compression = Question Reduction + Answer Reduction



Question Reduction
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Question Reduction: High-level idea

Super High level idea: Suppose ¥ = (G,), has complexity n (i.e.
A=1).

Instead of sampling questions (x, y) ~ u,, the game G, plays a
random subgame:

1. (Introspection game) Ask Alice to sample x herself and
respond with answer a, ask Bob to sample y himself and
respond with answer b, and compute D,(x, y, a, b); or

2. (Rigidity game) Verify that Alice/Bob sample uniformly

random questions, and Alice does not know Bob’s
question and vice versa.
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Question Reduction: High-level idea

Fix n. Let G = G, and let G’ = G].
First, we design an honest strategy S’ for the Introspection

subgame.

Then, we design the Rigidity game to “force” near-optimal
strategies for G’ to be close to S’.



Introspection game

Introspection game is played as follows:

e Send Alice question label “INTROSPECT," and get
(x,a) € {0,1}°".

e Send Bob question label "INTROSPECT'
(v,b) € {0,1}2".

e Compute D(n,x,y,a,b). If output is 1 or L, players win. If

and get

output is 0, players lose.



Honest strategy: Introspection game

Let S = (Ax,a) be optimal strategy for G with dimension d.
Honest strategy S’ = (Fy.c) for the Introspection game:
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Honest strategy: Introspection game

Let S = (Ax,a) be optimal strategy for G with dimension d.
Honest strategy S’ = (Fy.c) for the Introspection game:

1. Hilbert space: (C?)®" @ (C?)®*" ® C¢
N~—— ——

Alice questions Bob questions Answers

2. FINTR,OA,(X,a) = ’X><X‘ ® Il ® Ax,a
3. FINTR,OB,(y,b) =l ®yXyl® Ay,b

Claim: Success probability of honest strategy S’ in Introspection
game

(I1-a)+a-w(G)
where o = 2727 - |supp(pn)|.

In particular: w(G) =1 iff S’ wins Introspection game with
probability 1.
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That's nice, but why would Alice and Bob follow the honest
Introspection strategy?

Consider the following cheating strategy: suppose for every
question pair (x,y) there is a canonical answer pair (ayy, bxy)
where D(n, x,y,a,b) = 1.

In the Introspection Game, Alice and Bob measure both question
registers to sample (x, y). Alice outputs a,, and Bob outputs by .

This evil strategy always wins!
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Rigidity game: High level

Goal of Rigidity game: Force (near-)optimal strategies of G’ to
be (close to) the the honest strategy for the Introspection game.

Rigidity game consists of three subgames:

e (Pauli game) Test for Pauli measurements on 2n qubits

e (Sampling game) Test INTROSPECT is consistent with
standard basis measurements on Alice's question register.

e (Don’t Peek game) Test INTROSPECT4 does not “peek” at
Bob's question register.



Interlude: rigidity for many qubits
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Magic Square

Yesterday: rigidity/self-testing for CHSH game.

It will be more convenient to use the Magic Square game. The
relevant properties:

e Synchronous game
e Has perfect quantum strategy
e Question set includes two questions labelled X and Z.

e Answers for questions X, Z are binary {0,1}.



Theorem (Magic Square rigidity)

Any value-(1 — €) strategy for Magic Square must be
O(+/€)-close to the honest strategy where

e (Two qubits) Hilbert space: C? ® C2
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Theorem (Magic Square rigidity)
Any value-(1 — €) strategy for Magic Square must be
O(y/¢€)-close to the honest strategy where

e (Two qubits) Hilbert space: C? ® C?
e (Standard basis) The POVM for question Z

Mzo:=0X0|® [,  Mzy:=|1X1|®

e (Hadamard basis) The POVM for question X are

Mx o = (H[O)XO[H) ® I , Mx 1= (H[1X1|H) @I

1 1
_ 1
where H = 7 (1 _1>.
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Getting more qubits

2-out-of-n Magic Square:

1. Sample random distinct pair 1 </ < j < n.

11



Getting more qubits

2-out-of-n Magic Square:

1. Sample random distinct pair 1 </ < j < n.

2. Sample Magic Square questions (x;, y;) and (xj, y;).
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Getting more qubits

2-out-of-n Magic Square:

Sample random distinct pair 1 < < j < n.
Sample Magic Square questions (x;, ;) and (x;, y;).

Send Alice (i, x;) and (j, x;). Get answers (a;, a;).

= W=

Sample k € {i,j} uniformly at random. Send Bob (k, yx)
and get answer b.

5. Players win iff (xk, yk, ak, bx) wins Magic Square and
b = by.

Question length: O(log n) Answer length: O(1)

11



Theorem (CRSV17, MNY17)

Any value-(1 — €) strategy for 2-of-n Magic Square must be
O(poly(n) - v/€)-close to the honest strategy where
e Hilbert space: (C2)®2n

e Measurement for question (k, Z) is standard basis
measurement on qubit 2k

e Measurement for question (k,X) is Hadamard basis
measurement on qubit 2k

12



Back to the Rigidity game




Question set includes {SAMPLE s, ERASE, SAMPLER, ERASEg}.

The honest strategy:

e Hilbert space: (C2)®"® (C2)®"
—— N —
Ha Hg
e SAMPLE4 (resp. SAMPLEg) measures the first (resp. second)

block of n qubits in standard basis.

e ERASE4 (resp. ERASEg) measures the first (resp. second)
block of n qubits in the Hadamard basis.

13



POVMs for the honest strategy: for every a € {0,1}",

FSAMPLEA,a = |a><a| ® l"’

FSAMPLEB,a =1 ® ‘3><3‘

FER,ASEA,a = (H®n|a><a|H®n) ® Iy
FERASEB,a = In & (H®n’a><a’H®n)'

14



Properties of the Pauli game

Pauli game consists of

e 2-of-n Magic Square
e Consistency checks between Magic Square questions and
SAMPLE, ERASE questions.

Any strategy with value 1 — ¢ in the Pauli game must be
poly(n) - \/e-close to the honest Pauli game strategy.



Sampling game

Goal of Sampling game: test consistency between INTROSPECT
with SAMPLE.
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Sampling game

Goal of Sampling game: test consistency between INTROSPECT
with SAMPLE.

To test consistency between INTROSPECT, and SAMPLE4:
e Send INTROSPECT4 to Alice, get (x,a) € {0,1}2".

e Send SAMPLE4 to Bob, get x’ € {0,1}".

e Accept iff x = x'.
Passing Sampling game whp means
FINTR,OA,(x,a) o= |X><X‘ ®MX73
N——
Alice’s question

for some other POVM {Mj ,}, that could act on Bob's question
register.
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Don’t Peek game

Goal of Don’t Peek game: test that M, , does not act on Bob's
question register.
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Don’t Peek game

Goal of Don’t Peek game: test that M, , does not act on Bob's

question register.

Idea: Test that INTROSPECT, (approx.) commutes with
SAMPLEg and ERASEg.

This implies that in fact

~— ’
Alice’s question ~ Bob's question

FINTROA,(x,a) ~ ’X><X‘ ® In ®Ax 2

for some POVM {A, 5}a.

17



Don’t Peek game

Testing that INTROSPECT,4 (approx.) commutes with ERASEg.
e Send to Alice either INTROSPECT4 (getting (x, a)) or
ERASEp (getting z).

e Send (INTROSPECTA, ERASEgR) to Bob, get
(x',a,7) € {0,1}3".

e Perform consistency check between Alice and Bob.

18



Putting everything together




Question Reduction

Theorem
There exists poly-time computable QuestionReduce where if D
is decider for UGS 9 = (G,), with complexity n* then

QuestionReduce(D, \) outputs a decider D' for UGS
4" = (G})n where

1. (Complexity) For § = poly()),

N
S
™

complexity(D’) <
question lengths of G}, < log” n

2. (Value) w(G!) =1 iffw(G,) = 1



QuestionReduce

QuestionReduce(D, \):

Output following TM code of D'(n,x’,y’,a', b'):

If X = INTROSPECT4, ¥y’ = INTROSPECTg:

1. Parse &', b’ as (x,a) and (y, b), respectively.
2. Output D(n, x,y, a, b).

If X' = INTROSPECTp, Yy’ = SAMPLE4:

20



QuestionReduce

QuestionReduce(D, \) clearly runs in polynomial time, because it
is outputs a string representing the Turing machine D’, and
QuestionReduce just has to “paste” the description of D as well

as \ into the description of D’.

21



Question Reduction

The complexity of the question-reduced game G’ satisfies:

e complexity(D’) = n®M), because D’ has to run
1. The original decider D which has complexity n*, and

2. The Rigidity game, which has complexity n®*).
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Question Reduction

The complexity of the question-reduced game G’ satisfies:

e complexity(D’) = n®M), because D’ has to run
1. The original decider D which has complexity n*, and

2. The Rigidity game, which has complexity n®*).

e Question lengths: there are O(1) questions like
INTROSPECT, SAMPLE, ERASE, and there are Pauli game
questions of length O(log n*).
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Question Reduction

If w(G) =1, then w(G’) =1 due to honest Introspection and
Rigidity strategy.
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Question Reduction

If w(G) =1, then w(G’) =1 due to honest Introspection and
Rigidity strategy.

If w(G') =1, then

e Rigidity game is passed with probability 1, implying that
Introspection POVMs are, up to isometry, equal to

FINTR,OA,(x,a) = [x}x| ® I, ® Ax
FINTROB,(y,b) =hL®|yXyl® Ay b
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Question Reduction

If w(G) =1, then w(G’) =1 due to honest Introspection and
Rigidity strategy.

If w(G’) =1, then

e Rigidity game is passed with probability 1, implying that
Introspection POVMs are, up to isometry, equal to

FINTR,OA,(x,a) = |x}x| ® [, ® Ax
FINTROB,(y,b) =hL®|yXyl® Ay b

e Introspection game is passed with probability 1, implying that
(Ax.a) is value-1 strategy for G.

23



Getting a gap




For MIP* = RE we need a gapped Compression procedure: in
addition to compressing game complexity, the procedure also
preserves a gap in the game values:

o If w(G) =1, then w(G') =1.
e If w(G) < 3, then w(G') < 1.
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For MIP* = RE we need a gapped Compression procedure: in
addition to compressing game complexity, the procedure also

preserves a gap in the game values:
o If w(G) =1, then w(G') =1.
e If w(G) < 3, then w(G') < 1.

This requires Question Reduction to preserve the gap also! (Or at
least, not ruin it so much).

24



The non-gap-preserving Question Reduction procedure has the
following effect on game value:

€
exp(n©) -

wG)=1-¢ = w(G)<1

25



There are two main sources of “gaplessness” in today's Question
Reduction procedure:

1. The rigidity of the Pauli game gets worse as n grows large.
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1. The rigidity of the Pauli game gets worse as n grows large.
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2. The question-reduced game G’ automatically wins if Alice and

Bob introspect a pair of questions (x, y) not in the support of
G (and support may be a vanishing fraction of X x X).
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There are two main sources of “gaplessness” in today's Question
Reduction procedure:

1. The rigidity of the Pauli game gets worse as n grows large.
e Solution: Rigidity games for many qubits with better
robustness.
2. The question-reduced game G’ automatically wins if Alice and
Bob introspect a pair of questions (x, y) not in the support of
G (and support may be a vanishing fraction of X x X).
e Solution: Design Introspection games to sample from larger
class of question distributions.

26



Tomorrow (Anand): Getting a better gap for Question Reduction.

Thursday (Part 3): Answer Reduction.
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Tomorrow (Anand): Getting a better gap for Question Reduction.

Thursday (Part 3): Answer Reduction.

Thank you
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Better Rigidity

Recall: Today's Rigidity game has guarantee that any value-(1 —¢)
strategy must be poly(n) - /e-close to an n-qubit strategy.

e We only get nontrivial guarantees when the success

probability is at least 1 — SOy ()
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Better Rigidity

Recall: Today's Rigidity game has guarantee that any value-(1 —¢)
strategy must be poly(n) - /e-close to an n-qubit strategy.

e We only get nontrivial guarantees when the success

probability is at least 1 — SOy ()

To get a gap, we need a better Rigidity game.
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Better Rigidity

Dream Rigidity Game:

e Low complexity: log® n

e High robustness: any value-(1 — ¢) strategy must be
d(€)-close to an n-qubit strategy, where §(-) does not depend

on n!
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Better Rigidity

Dream Rigidity Game:

e Low complexity: log® n

e High robustness: any value-(1 — ¢) strategy must be
d(€)-close to an n-qubit strategy, where §(-) does not depend

on n!

Unfortunately, don't know (yet) whether this is possible!
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Better Rigidity

Theorem (Ji-Natarajan-Vidick-Wright-Y. '22)

There exists a UGS # = (Ry)n where

e Low complexity: complexity(R,) = log” n.
e High robustness: any value-(1 — €) strategy for R, must be
(e, n)-close to an honest n-qubit strategy involving Pauli

measurements, where

d(e, n) = poly log(n) - € .
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Better Rigidity

Theorem (Ji-Natarajan-Vidick-Wright-Y. '22)

There exists a UGS # = (Ry)n where

e Low complexity: complexity(R,) = log” n.
e High robustness: any value-(1 — €) strategy for R, must be
(e, n)-close to an honest n-qubit strategy involving Pauli

measurements, where

@

d(e, n) = poly log(n) - €

Milder dependence on n, and sufficient to get Question
Reduction with better gap!
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Introspecting complex distributions

Today's Introspection game is a way to force Alice and Bob to
sample uniform, independent strings.

However, the question distributions in games arising from Question
and Answer Reduction are far from uniform!
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Introspecting complex distributions

Today's Introspection game is a way to force Alice and Bob to
sample uniform, independent strings.

However, the question distributions in games arising from Question
and Answer Reduction are far from uniform!

Goal: Design Introspection game to force Alice and Bob to sample
correlated questions (x, y) from those distributions?

Alternate perspective: design games with “introspectable”
question distributions!
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The proof of MIP* = RE identifies a class of distributions called
conditionally linear distributions, and shows:

e Such distributions can be robustly introspected with few
questions.

e All games from Question and Answer Reduction procedures
can be designed to use conditionally linear distributions.
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