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Overview

From MIP∗ = RE , we know that there is no algorithm such that,
upon inputs the parameters for a nonlocal game G, enumerates a
sequence of upper bounds to the quantum entangled value
val∗(G).
In this talk, we show how this fact can be used to derive other
undecidability results in operator algebras.
These results will be based on first-order languages used for
expressing properties about these algebras.
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Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

The language for tracial von Neumann algebras

One defines formulae in the language of tracial von Neumann
algebras by recursion on “complexity” of formulae:

Atomic formulae: τ(p(~x)), where p(~x) is a ∗-polynomial.
(Technically <(τ(p(~x))) and =(τ(p(~x))).)
Given formulae ϕ1 and ϕ2, ϕ1

2 and ϕ1 −. ϕ2 are also formulae.
Given a formula ϕ and a variable x , supx ϕ and infx ϕ are formulae.
“quantifiers”

Technically, we have different kinds of variables for different
operator norm balls.
If ϕ(~x) is a formula, (M, τ) is a tracial von Neumann algebra, and
~a ∈ M, then we can interpret the formula, obtaining ϕM(~a) ∈ R.
A sentence is a formula without free variables. A theory is a
collection of sentences. Write M |= T if σM = 0 for all σ ∈ T .
A sentence is universal if it is of the form sup~x ϕ(~x) with ϕ(~x)
quantifier-free.

Isaac Goldbring (UCI) Model theory and MIP∗ = RE October 2023 4 / 30



Background in logic

Universal theories

Note that if σ is a universal sentence, then σM = σMU
for any

ultrapower MU of M. (Actually true for all sentences: Łos’ theorem)
In particular, if N embeds into MU , then σN ≤ σM .
Conversely: if σN ≤ σM for all universal sentences σ, then N
embeds into an ultrapower of M.
In particular: CEP is the statement that σM = σR for all II1 factors
M and all universal sentences σ.
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Background in logic

Definable sets

Occasionally we will want to quantify over closed sets besides
operator norm balls.
This is only possible if the set X we want to quantify over is a
definable set.
This means that X is the zeroset of a formula ϕ such that, given
any ε > 0, there is δ > 0 such that, if ϕ(~a) < δ, then there is ~b ∈ X
such that d(~a, ~b) ≤ ε.
If X is a definable set, then quantifications over X can be
approximated by official formulae and this approxiomation is
effective if the modulus ε 7→ δ is effective.

Lemma (Paulsen, Kim, and Schafhauser)

For each n, the set of PVMs (e1, . . . ,en) in R of length n form a
definable subset of Rn with effective modulus.
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Background in logic

Other languages

We will want to consider other languages besides the language of
tracial von Neumann algebras.
The only thing that changes is what is considered an atomic
formula:

The language of C∗-algebras: ‖p(~x)‖
The language of tracial C∗-algebras: ‖p(~x)‖ and τ(p(~x))
The language of pairs of C∗-algebras: “two copies” of the language
of C∗-algebras (two kinds of variables)
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Background in logic

The completeness theorem

Gödel’s classical completeness theorem relates the “semantic”
notion of logical implication |= and the “syntactic” notion of
provability `.
Here is the continuous logic version of this:

Theorem (Pavelka-style completeness)

For any theory T and any sentence σ, we have

sup{σM : M |= T} = inf{r ∈ Q>0 : T ` σ −. r}.

Key point: if T is effectively enumerable, then so is the set of σ for
which T ` σ.
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A Gödelian refutation of CEP

CEP and computability

Theorem (G. and Hart (2016))

If CEP holds, then there is an algorithm such that, upon input any
universal sentence σ in the language of tracial von Neumann algebras,
enumerates a sequence of upper bounds for σR.

Proof.

There is an effectively enumerable theory TII1 in the language of
tracial von Neumann algebras whose models are exactly the II1
factors.
By the completeness theorem,

sup{σM : M |= TII1} = inf{r ∈ Q>0 : TII1 ` σ −. r}.

The LHS= σR by CEP and the RHS is effectively enumerable.
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A Gödelian refutation of CEP

s-val∗(G) as a universal sentence

Theorem (Kim, Paulsen, Schafhauser)

p ∈ Cs
qa(k ,n) if and only if there are PVMs e1, . . . ,ek of length n in RU

such that p(a,b|x , y) = τ(ex
aey

b).

Given a nonlocal game G, let ψG(xv ,i) denote the formula∑
v ,w

µ(v ,w)
∑
i,j

D(v ,w , i , j) tr(xv ,ixw ,j).

Corollary

For any game G, we have

s-val∗(G) =

(
sup

xv,i∈Xn,k

ψG(xv ,i)

)R
.
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A Gödelian refutation of CEP

A Gödelian refutation of CEP

Corollary

CEP fails!

Proof.

If CEP held, then letting σG denote the “universal sentence” from the
previous slide (really effective approximations), we could effectively
enumerate upper bounds for s-val∗(G), contradicting MIP∗ = RE .

Corollary

There is no effectively enumerable, satisfiable T ⊇ TII1 such that all
models of T embed in RU .
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A Gödelian refutation of CEP

Applications: I

Corollary

There is a sequence M1,M2, . . . , of separable II1 factors, none of
which embed into an ultrapower of R, and such that, for all i < j , Mi
does not embed into an ultrapower of Mj .

Proof.

Let M1 be any counterexample to CEP.
Let σ1 be a universal sentence such that σR1 = 0 but r1 := σM1

1 > 0.
Let T1 := TII1 ∪ {σ1 −. r1

2 }.
Take M2 |= T1 such that M2 does not embed into RU .

Since σM2
1 ≤ r

2 < σM1
1 , we have that M1 does not embed into MU2 .

Let T2 := T1 ∪ {σ2 −. r2
2 } and take M3 |= T2 that does not embed

into RU ...
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A Gödelian refutation of CEP

Applications: II

Corollary

The class of counterexamples to CEP is not closed under
ultraproducts.

Proof.

Suppose, towards a contradiction, that the class of
counterexamples to CEP is closed under ultraproducts.
The assumption implies that there is a universal sentence σ and
r > 0 such that σR = 0 and σM ≥ r for all counterexamples M to
CEP.
Then T := TII1 ∪ {σ −.

r
2} is an effective axiomatization of the

algebras that embed into RU .
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A Gödelian refutation of CEP

Applications: III

There are type III versions of R: the hyperfinite type III1 factor R∞
and for each λ ∈ (0,1), the hyperfinite type IIIλ factor Rλ.
To study them model theoretically, they need to be equipped with
a (faithful, normal) state.

For R∞, the choice of state is irrelevant. (Connes-Stormer
transitivity)
Rλ has a distinguished Powers state ϕλ.

By results of Ando, Haagerup, and Winslow, these algebras play
the role of R in a type III version of CEP.

Theorem (Arulseelan, G., and Hart)

The universal theory of R∞ is not computable. For any λ ∈ (0,1), the
universal theory of (Rλ, ϕλ) is not computable.
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A Gödelian refutation of CEP

An open problem

We could use the previous ideas to prove some results about
C∗-algebras.
For example, the negative resolution of CEP is known to imply a
negative resolution to the MF problem: does every stably finite
C∗-algebra embed into QU , where Q is the universal UHF
algebra? We can give Gödelian refutations to the MF problem
and other such problems...
However, all of these applications use that these algebras have
traces and we can “interpret” the WOT closure in the GNS to
apply our tracial von Neumann algebra results.
We would really like to resolve the following:

Kirchberg’s embedding problem

Does every C∗-algebra embed into OU2 , where O2 is the Cuntz
algebra?
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QWEP C∗-algebras
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QWEP C∗-algebras

Introducing QWEP

We say that A has the weak expectation property (WEP) if, for
any B ⊇ A and C, the natural map A⊗max C → B ⊗max C is an
isometric inclusion.
A has the QWEP property if A is a quotient of a C∗-algebra with
the WEP.
Kirchberg proved that all C∗-algebras have the QWEP if and only if
CEP holds.
A key ingredient: a tracial von Neumann algebra has QWEP if and
only if it satisfies CEP.

Theorem (G.)

There is a theory T in the language of C∗-algebras such that A |= T if
and only if A has QWEP.
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QWEP C∗-algebras

QWEP is not effectively axiomatizable

Theorem (Arulseelan, G., and Hart)

There is no effectively enumerable theory T in the language of
C∗-algebras with the following two properties:

1 All models of T have QWEP.
2 There is an infinite-dimensional, monotracial model A of T whose

unique trace is faithful.
In particular, there is no effective theory T in the language of
C∗-algebras that axiomatizes the QWEP C∗-algebras.
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QWEP C∗-algebras

Proof of the theorem

Suppose, TAC, that such T existed. Take an infinite-dimensional,
monotracial model A of T whose unique trace τA is faithful.
Work now in the language of tracial C∗-algebras and consider the
theory T ′ consisting of the axioms for tracial C∗-algebras together
with T . Note that T ′ is effective and (A, τA) |= T ′.
Note that, for any universal sentence σ in the language of tracial
von Neumann algebras, we have

sup{σ(B,τB) : (B, τB) |= T ′} = σ(R,τR).

≥: If (M, τM) = GNS(A, τA), then A ⊆ M and (M, τM) is a II1 factor,
so σ(A,τA) = σ(M,τM ) ≥ σ(R,τR).
≤: If (B, τB) |= T ′ and (N, τN) = GNS(B, τB), then N is QWEP, so
satisfies CEP, and σ(B,τB) = σ(N,τN ) ≤ σ(R,τR)

By running proofs from T ′, we can find computable upper bounds
to σ(R,τR)...
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Tsirelson pairs of C∗-algebras

Motivating the definition of the Tsirelson property

Tsirelson’s Problem

Does Cqa(k ,n) = Cqc(k ,n)?

Theorem

p ∈ Cqa(k ,n) (resp. p ∈ Cqc(k ,n)) if and only if there are POVMs Ax

and By in C∗(F(k ,n)) and a state φ on C∗(F(k ,n))⊗min C∗(F(k ,n))
(resp. on C∗(F(k ,n))⊗maxC∗(F(k ,n)) such that

p(a,b|x , y) = φ(Ax
a ⊗ By

b ).
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Tsirelson pairs of C∗-algebras

Tsirelson pairs of C∗-algebras

Definition

Let Cmin(C,D, k ,n) (respectively Cmax(C,D, k ,n)) denote the closure
of the set of correlations of the form φ(Ax

a ⊗ By
b ), where A1, . . . ,Ak are

POVMs of length n from C, B1, . . . ,Bk are POVMs of length n from D,
and φ is a state on C ⊗min D (respectively a state on C ⊗max D).

Cmin(C,D, k ,n) ⊆ Cmax(C,D, k ,n).
Cmin(C,D, k ,n) ⊆ Cqa(k ,n).
Cmax(k ,n) ⊆ Cqc(k ,n).

Definition

We say that (C,D) is a (strong) Tsirelson pair if
Cmin(C,D, k ,n) = Cmax(C,D, k ,n) (=Cqa(k ,n)) for all (k ,n).
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About Tsirelson pairs

Tsirelson’s problem asks if (C∗(F∞),C∗(F∞)) is a Tsirelson pair.
We now know that it is not.
If (C,D) is a nuclear pair, that is, if C ⊗min D ∼= C ⊗max D, then
(C,D) is a Tsirelson pair.
Exactly one of the following happens:

(C,D) is not a Tsirelson pair.
One of C or D is subhomogeneous (whence (C,D) is a nuclear
pair), but (C,D) is not a strong Tsirelson pair.
(C,D) is a strong Tsirelson pair.

The class of Tsirelson pairs is closed under taking quotients.
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C∗-algebras with the Tsirelson property

Definition

C has the Tsirelson property (TP) if (C,D) is a Tsirelson pair for any
C∗-algebra D.

C has the TP if and only if (C,C∗(F∞)) is a Tsirelson pair.
The class of C∗-algebras with TP is closed under direct limits,
quotients, relatively weakly injective subalgebras, and
ultraproducts. In particular, it is an axiomatizable class.
QWEP implies TP. (Proof: ETS WEP implies TP; but C has WEP if
and only if (C,C∗(F∞)) is a nuclear pair.)

Question

Does TP imply QWEP?
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Tsirelson pairs of C∗-algebras

C∗-algebras with the strong Tsirelson property

Definition

C has the strong Tsirelson property (STP) if and only if it has the TP
and is not subhomogeneous.

C has the STP if and only if (C,D) is a strong Tsirelson pair for
every non-subhomogeneous D.
The STP is an axiomatizable property.

Question

Are there explicit axioms for the class of C∗-algebras with the (S)TP?
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Another undecidability result

Theorem (G. and Hart)

There is no effective theory T in the language of pairs of C∗-algebras
such that all models of T are Tsirelson pairs and at least one model of
T is a strong Tsirelson pair.

Corollary

There is no effective theory T in the language of C∗-algebras such that
all models have the TP and at least one model has the STP.

Corollary

There is no effective theory T in the language of C∗-algebras such that
all models have the QWEP and at least one model is not
subhomogeneous.
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Proof of the previous theorem

Suppose such T exists.
Let T ′ be the effective extension of T whose models are of the
form (C,D,P), where P(c,d) = φ(c ⊗ d) for some state φ on
C ⊗max D.

States on C ⊗max D “are” just extensions of unital linear functionals
on C � D that are positive on C � D.

Given a nonlocal game G, have the universal sentence σG in this
extended language given by

sup
A

sup
B

∑
(x ,y)∈[k ]

π(x , y)
∑

(a,b)∈[n]

D(x , y ,a,b)P(Ax
a,B

y
b ).

The quantifications over POVMs here is legitimate (and effective)
since they can be shown to form a definable set.
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Proof of the previous theorem (cont’d)

The assumptions on the theory show that

sup{σ(C,D,P)
G : (C,D,P) |= T ′} = val∗(G).

≤ uses that all models of T are Tsirelson pairs.
≥ uses that at least one model is a strong Tsirelson pair.

Now run proofs from T ′ to get computable upper bounds to
val∗(G).
This contradicts MIP∗ =RE.
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