Model-theoretic consequences of $MIP^* = RE$

Isaac Goldbring

University of California, Irvine

Hot Topics: MIP* = RE and the Connes' Embedding Problem SL Math October 19, 2023

 290

- From MIP^{$*$} = RE, we know that there is no algorithm such that, upon inputs the parameters for a nonlocal game \mathfrak{G} , enumerates a sequence of upper bounds to the quantum entangled value val $^*(\mathfrak{G}).$
- \blacksquare In this talk, we show how this fact can be used to derive other undecidability results in operator algebras.
- These results will be based on *first-order languages* used for expressing properties about these algebras.

1 Background in logic

2 A Gödelian refutation of CEP

3 QWEP C[∗]-algebras

4 Tsirelson pairs of C^{*}-algebras

4 0 8 1 \leftarrow \leftarrow \leftarrow 299

 \mathcal{A} . If \mathcal{B} and \mathcal{A} is 舌

n One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:

- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a *-polynomial. (Technically $\Re(\tau(\mathbf{p}(\vec{x})))$ and $\Im(\tau(\mathbf{p}(\vec{x})))$.)
- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 + \varphi_2$ are also formulae.
- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$

A sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押 トイラト イラト

- **n** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae. Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$
- **A** sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押 トイラト イラト

- **n** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae.
	- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$
- **A** sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押 トイラト イラト

- **n** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae.
	- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$
- **A** sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押 トイラト イラト

- **n** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae.
	- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$
- **A** sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押 トイラト イラト

- **n** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae.
	- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$
- **A** sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. (ロトイ部)→(理)→(理)→

- **n** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae.
	- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$

A sentence is **universal** if it is of the form sup_{\vec{v}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押 トイラト イラト

- **n.** One defines **formulae** in the language of tracial von Neumann algebras by recursion on "complexity" of formulae:
	- **Atomic formulae:** $\tau(p(\vec{x}))$, where $p(\vec{x})$ is a $*$ -polynomial. (Technically $\Re(\tau(p(\vec{x})))$ and $\Im(\tau(p(\vec{x})))$.)
	- Given formulae φ_1 and φ_2 , $\frac{\varphi_1}{2}$ and $\varphi_1 \varphi_2$ are also formulae.
	- Given a formula φ and a variable x, sup_x φ and inf_x φ are formulae. **"quantifiers"**
- Technically, we have different kinds of variables for different operator norm balls.
- If $\varphi(\vec{x})$ is a formula, (M, τ) is a tracial von Neumann algebra, and $\vec{a} \in M$, then we can **interpret** the formula, obtaining $\varphi^M(\vec{a}) \in \mathbb{R}$.
- A **sentence** is a formula without free variables. A **theory** is a $\text{collection of sentences. Write } M \models \mathcal{T} \text{ if } \sigma^M = 0 \text{ for all } \sigma \in \mathcal{T}.$

A sentence is **universal** if it is of the form sup_{\vec{x}} $\varphi(\vec{x})$ with $\varphi(\vec{x})$ quantifier-free. イロト イ押ト イヨト イヨ

- Note that if σ is a universal sentence, then $\sigma^{\textsf{M}}=\sigma^{\textsf{M}^{\textsf{U}}}$ for any ultrapower $M^{\mathcal{U}}$ of M. (Actually true for all sentences: Łos' theorem)
- In particular, if N embeds into $M^{\mathcal U}$, then $\sigma^{\mathcal N}\leq \sigma^{\mathcal M}.$
- Conversely: if $\sigma^{\mathsf{N}}\leq\sigma^{\mathsf{M}}$ for all universal sentences $\sigma,$ then $\mathsf{N}% _{\mathsf{M}}$ embeds into an ultrapower of *M*.
- In particular: CEP is the statement that $\sigma^{\textsf{M}}=\sigma^{\mathcal{R}}$ for all II₁ factors *M* and all universal sentences σ.

- Note that if σ is a universal sentence, then $\sigma^{\textsf{M}}=\sigma^{\textsf{M}^{\textsf{U}}}$ for any ultrapower $M^{\mathcal{U}}$ of M. (Actually true for all sentences: Łos' theorem)
- In particular, if N embeds into $M^{\mathcal{U}},$ then $\sigma^{\mathcal{N}}\leq\sigma^{\mathcal{M}}.$
- Conversely: if $\sigma^{\mathsf{N}}\leq\sigma^{\mathsf{M}}$ for all universal sentences $\sigma,$ then $\mathsf{N}% _{\sigma}$ embeds into an ultrapower of *M*.
- In particular: CEP is the statement that $\sigma^{\textsf{M}}=\sigma^{\mathcal{R}}$ for all II₁ factors *M* and all universal sentences σ.

- Note that if σ is a universal sentence, then $\sigma^{\textsf{M}}=\sigma^{\textsf{M}^{\textsf{U}}}$ for any ultrapower $M^{\mathcal{U}}$ of M. (Actually true for all sentences: Łos' theorem)
- In particular, if N embeds into $M^{\mathcal{U}},$ then $\sigma^{\mathcal{N}}\leq\sigma^{\mathcal{M}}.$
- Conversely: if $\sigma^{\mathsf{N}}\leq\sigma^{\mathsf{M}}$ for all universal sentences $\sigma,$ then N embeds into an ultrapower of *M*.
- In particular: CEP is the statement that $\sigma^{\textsf{M}}=\sigma^{\mathcal{R}}$ for all II₁ factors *M* and all universal sentences σ.

- Note that if σ is a universal sentence, then $\sigma^{\textsf{M}}=\sigma^{\textsf{M}^{\textsf{U}}}$ for any ultrapower $M^{\mathcal{U}}$ of M. (Actually true for all sentences: Łos' theorem)
- In particular, if N embeds into $M^{\mathcal{U}},$ then $\sigma^{\mathcal{N}}\leq\sigma^{\mathcal{M}}.$
- Conversely: if $\sigma^{\mathsf{N}}\leq\sigma^{\mathsf{M}}$ for all universal sentences $\sigma,$ then N embeds into an ultrapower of *M*.
- In particular: CEP is the statement that $\sigma^{\textsf{M}}=\sigma^{\mathcal{R}}$ for all II₁ factors *M* and all universal sentences σ .

- Occasionally we will want to quantify over closed sets besides operator norm balls.
- \blacksquare This is only possible if the set X we want to quantify over is a **definable set**.
- **This means that X** is the zeroset of a formula φ such that, given any $\epsilon > 0$, there is $\delta > 0$ such that, if $\varphi(\vec{a}) < \delta$, then there is $\vec{b} \in X$ such that $d(\vec{a}, \vec{b}) \leq \epsilon.$
- If X is a definable set, then quantifications over X can be approximated by official formulae and this approxiomation is effective if the modulus $\epsilon \mapsto \delta$ is effective.

For each n, the set of PVMs (*e*1, . . . , *en*) *in* R *of length n form a definable subset of* R*ⁿ with effective modulus.*

 Ω

(ロトイ部)→(理)→(理)→

- Occasionally we will want to quantify over closed sets besides operator norm balls.
- \blacksquare This is only possible if the set *X* we want to quantify over is a **definable set**.
- **This means that X** is the zeroset of a formula φ such that, given any $\epsilon > 0$, there is $\delta > 0$ such that, if $\varphi(\vec{a}) < \delta$, then there is $\vec{b} \in X$ such that $d(\vec{a}, \vec{b}) \leq \epsilon.$
- If X is a definable set, then quantifications over X can be approximated by official formulae and this approxiomation is effective if the modulus $\epsilon \mapsto \delta$ is effective.

For each n, the set of PVMs (*e*1, . . . , *en*) *in* R *of length n form a definable subset of* R*ⁿ with effective modulus.*

 Ω

K ロ K K 御 K K 君 K K 君 K L

- Occasionally we will want to quantify over closed sets besides operator norm balls.
- \blacksquare This is only possible if the set *X* we want to quantify over is a **definable set**.
- **This means that X** is the zeroset of a formula φ such that, given any $\epsilon > 0$, there is $\delta > 0$ such that, if $\varphi(\vec{a}) < \delta$, then there is $\vec{b} \in X$ such that $d(\vec{a},\vec{b}) \leq \epsilon.$
- If X is a definable set, then quantifications over X can be approximated by official formulae and this approxiomation is effective if the modulus $\epsilon \mapsto \delta$ is effective.

For each n, the set of PVMs (*e*1, . . . , *en*) *in* R *of length n form a definable subset of* R*ⁿ with effective modulus.*

 Ω

(ロトイ部)→(差)→(差)→

- Occasionally we will want to quantify over closed sets besides operator norm balls.
- \blacksquare This is only possible if the set *X* we want to quantify over is a **definable set**.
- **This means that X** is the zeroset of a formula φ such that, given any $\epsilon > 0$, there is $\delta > 0$ such that, if $\varphi(\vec{a}) < \delta$, then there is $\vec{b} \in X$ such that $d(\vec{a},\vec{b}) \leq \epsilon.$
- If X is a definable set, then quantifications over X can be approximated by official formulae and this approxiomation is effective if the modulus $\epsilon \mapsto \delta$ is effective.

For each n, the set of PVMs (*e*1, . . . , *en*) *in* R *of length n form a definable subset of* R*ⁿ with effective modulus.*

 Ω

イロトメ 御 トメ 君 トメ 君 トッ

- Occasionally we will want to quantify over closed sets besides operator norm balls.
- **This is only possible if the set X we want to quantify over is a definable set**.
- **This means that X** is the zeroset of a formula φ such that, given any $\epsilon > 0$, there is $\delta > 0$ such that, if $\varphi(\vec{a}) < \delta$, then there is $\vec{b} \in X$ such that $d(\vec{a},\vec{b}) \leq \epsilon.$
- If X is a definable set, then quantifications over X can be approximated by official formulae and this approxiomation is effective if the modulus $\epsilon \mapsto \delta$ is effective.

Lemma (Paulsen, Kim, and Schafhauser)

For each n, the set of PVMs (*e*1, . . . , *en*) *in* R *of length n form a definable subset of* R*ⁿ with effective modulus.*

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Other languages

- We will want to consider other languages besides the language of tracial von Neumann algebras.
- \blacksquare The only thing that changes is what is considered an atomic formula:
	- The language of C^{*}-algebras: $\Vert p(\vec{x})\Vert$
	- The language of tracial C*-algebras: $\|p(\vec{x})\|$ and $\tau(p(\vec{x}))$ ×
	- The language of pairs of C*-algebras: "two copies" of the language of C ∗ -algebras (two kinds of variables)

Other languages

- We will want to consider other languages besides the language of tracial von Neumann algebras.
- \blacksquare The only thing that changes is what is considered an atomic formula:
	- The language of C^{*}-algebras: $\Vert p(\vec{x})\Vert$
	- The language of tracial C*-algebras: $\|p(\vec{x})\|$ and $\tau(p(\vec{x}))$ ×
	- The language of pairs of C*-algebras: "two copies" of the language of C ∗ -algebras (two kinds of variables)

Other languages

- We will want to consider other languages besides the language of tracial von Neumann algebras.
- \blacksquare The only thing that changes is what is considered an atomic formula:
	- The language of C^{*}-algebras: $\Vert p(\vec{x})\Vert$
	- The language of tracial C*-algebras: $\|p(\vec{x})\|$ and $\tau(p(\vec{x}))$
	- The language of pairs of C*-algebras: "two copies" of the language of C ∗ -algebras (two kinds of variables)

- Gödel's classical completeness theorem relates the "semantic" notion of logical implication \models and the "syntactic" notion of provability \vdash .
- \blacksquare Here is the continuous logic version of this:

For any theory T and any sentence σ*, we have*

$$
\sup\{\sigma^M\,:\,M\models T\}=\inf\{r\in\mathbb{Q}^{>0}\,:\,T\models\sigma=r\}.
$$

Key point: if T is effectively enumerable, then so is the set of σ for which $T \vdash \sigma$.

- Gödel's classical completeness theorem relates the "semantic" notion of logical implication \models and the "syntactic" notion of provability \vdash .
- \blacksquare Here is the continuous logic version of this:

For any theory T and any sentence σ*, we have*

$$
\sup\{\sigma^M\,:\,M\models T\}=\inf\{r\in\mathbb{Q}^{>0}\,:\;T\models\sigma-r\}.
$$

Key point: if T is effectively enumerable, then so is the set of σ for which $T \vdash \sigma$.

- Gödel's classical completeness theorem relates the "semantic" notion of logical implication \models and the "syntactic" notion of provability \vdash .
- \blacksquare Here is the continuous logic version of this:

Theorem (Pavelka-style completeness)

For any theory T and any sentence σ*, we have*

$$
\sup\{\sigma^M\,:\,M\models T\}=\inf\{r\in\mathbb{Q}^{>0}\,:\;T\models\sigma-r\}.
$$

Key point: if T is effectively enumerable, then so is the set of σ for which $T \vdash \sigma$.

- Gödel's classical completeness theorem relates the "semantic" notion of logical implication \models and the "syntactic" notion of provability \vdash .
- \blacksquare Here is the continuous logic version of this:

Theorem (Pavelka-style completeness)

For any theory T and any sentence σ*, we have*

$$
\sup\{\sigma^M\,:\,M\models T\}=\inf\{r\in\mathbb{Q}^{>0}\,:\;T\models\sigma-r\}.
$$

Key point: if *T* is effectively enumerable, then so is the set of σ for which $T \vdash \sigma$.

1 Background in logic

2 A Gödelian refutation of CEP

3 QWEP C[∗]-algebras

4 Tsirelson pairs of C^{*}-algebras

э

 299

K ロ ト K 伺 ト K ヨ ト K

CEP and computability

Theorem (G. and Hart (2016))

If CEP holds, then there is an algorithm such that, upon input any universal sentence σ *in the language of tracial von Neumann algebras, enumerates a sequence of upper bounds for* $\sigma^\mathcal{R}$ *.*

-
- **By the completeness theorem,**

 $\sup\{\sigma^{\mathcal{M}}\;:\;\mathcal{M}\models \mathcal{T}_{\mathcal{U}_1}\}=\inf\{r\in \mathbb{Q}^{>0}\;:\;\mathcal{T}_{\mathcal{U}_1}\vdash \sigma-r\}.$

The LHS= $\sigma^\mathcal{R}$ by CEP and the RHS is effectively enumerable.

CEP and computability

Theorem (G. and Hart (2016))

If CEP holds, then there is an algorithm such that, upon input any universal sentence σ *in the language of tracial von Neumann algebras, enumerates a sequence of upper bounds for* $\sigma^\mathcal{R}$ *.*

Proof.

- There is an effectively enumerable theory $\mathcal{T}_{I\!I_1}$ in the language of tracial von Neumann algebras whose models are exactly the $II₁$ factors.
- **By the completeness theorem,**

 $\sup\{\sigma^{\mathcal{M}}\;:\;\mathcal{M}\models \mathcal{T}_{\mathcal{U}_1}\}=\inf\{r\in \mathbb{Q}^{>0}\;:\;\mathcal{T}_{\mathcal{U}_1}\vdash \sigma-r\}.$

The LHS= $\sigma^\mathcal{R}$ by CEP and the RHS is effectively enumerable.

CEP and computability

Theorem (G. and Hart (2016))

If CEP holds, then there is an algorithm such that, upon input any universal sentence σ *in the language of tracial von Neumann algebras, enumerates a sequence of upper bounds for* $\sigma^\mathcal{R}$ *.*

Proof.

- There is an effectively enumerable theory $\mathcal{T}_{I\!I_1}$ in the language of tracial von Neumann algebras whose models are exactly the $II₁$ factors.
- By the completeness theorem,

$$
\sup\{\sigma^M\ :\ M\models T_{ll_1}\}=\inf\{r\in\mathbb{Q}^{>0}\ :\ T_{ll_1}\vdash\sigma-r\}.
$$

The LHS $= \sigma^{\mathcal{R}}$ by CEP and the RHS is effectively enumerable.

s-val[∗](ぴ) as a universal sentence

Theorem (Kim, Paulsen, Schafhauser)

 $p \in C^\mathsf{s}_{\mathsf{q}\mathsf{a}}(k,n)$ *if and only if there are PVMs e* $^1,\ldots,$ *e^k of length n in* $\mathcal{R}^\mathcal{U}$ *such that p* $(a, b | x, y) = \tau(e^{\chi}_a e^{\gamma}_b)$ *b*)*.*

Given a nonlocal game \mathfrak{G} , let $\psi_{\mathfrak{G}}(X_{V,i})$ denote the formula

$$
\sum_{v,w}\mu(v,w)\sum_{i,j}D(v,w,i,j)\operatorname{tr}(x_{v,i}x_{w,j}).
$$

For any game G*, we have*

$$
\mathsf{s}\text{-}\mathsf{val}^*(\mathfrak{G}) = \left(\sup_{X_V, j \in X_{n,k}} \psi_{\mathfrak{G}}(X_{V,j})\right)^{\mathcal{R}}
$$

s-val[∗](ぴ) as a universal sentence

Theorem (Kim, Paulsen, Schafhauser)

 $p \in C^\mathsf{s}_{\mathsf{q}\mathsf{a}}(k,n)$ *if and only if there are PVMs e* $^1,\ldots,$ *e^k of length n in* $\mathcal{R}^\mathcal{U}$ *such that p* $(a, b | x, y) = \tau(e^{\chi}_a e^{\gamma}_b)$ *b*)*.*

Given a nonlocal game \mathfrak{G} , let $\psi_{\mathfrak{G}}(x_{v,i})$ denote the formula

$$
\sum_{v,w}\mu(v,w)\sum_{i,j}D(v,w,i,j)\operatorname{tr}(x_{v,i}x_{w,j}).
$$

For any game G*, we have*

$$
\mathsf{s}\text{-}\mathsf{val}^*(\mathfrak{G}) = \left(\sup_{X_{V,i} \in X_{n,k}} \psi_{\mathfrak{G}}(X_{V,i})\right)^{\mathcal{R}}
$$

s-val[∗](ぴ) as a universal sentence

Theorem (Kim, Paulsen, Schafhauser)

 $p \in C^\mathsf{s}_{\mathsf{q}\mathsf{a}}(k,n)$ *if and only if there are PVMs e* $^1,\ldots,$ *e^k of length n in* $\mathcal{R}^\mathcal{U}$ *such that p* $(a, b | x, y) = \tau(e^{\chi}_a e^{\gamma}_b)$ *b*)*.*

Given a nonlocal game \mathfrak{G} , let $\psi_{\mathfrak{G}}(x_{v,i})$ denote the formula

$$
\sum_{v,w}\mu(v,w)\sum_{i,j}D(v,w,i,j)\operatorname{tr}(x_{v,i}x_{w,j}).
$$

Corollary

For any game G*, we have*

$$
\mathsf{s}\text{-}\mathsf{val}^*(\mathfrak{G}) = \left(\sup_{X_{V,i} \in X_{n,k}} \psi_{\mathfrak{G}}(X_{V,i})\right)^{\mathcal{R}}.
$$

A Gödelian refutation of CEP

Corollary

CEP fails!

Proof.

If CEP held, then letting $\sigma_{\mathfrak{G}}$ denote the "universal sentence" from the previous slide (really effective approximations), we could effectively enumerate upper bounds for s-val^{*}(\mathfrak{G}), contradicting MIP^{*} = RE.

There is no effectively enumerable, satisfiable $T \supseteq T_{II_1}$ *such that all* models of T embed in \mathcal{R}^{U} .

 Ω

イロト イ押ト イヨト イヨトー

A Gödelian refutation of CEP

Corollary

CEP fails!

Proof.

If CEP held, then letting $\sigma_{\mathfrak{G}}$ denote the "universal sentence" from the previous slide (really effective approximations), we could effectively enumerate upper bounds for s-val^{*}(\mathfrak{G}), contradicting MIP^{*} = RE.

Corollary

There is no effectively enumerable, satisfiable $T \supseteq T_{II_1}$ *such that all* models of T embed in \mathcal{R}^{U} .

イロト イ押ト イヨト イヨト
Corollary

There is a sequence M_1, M_2, \ldots , *of separable II₁ factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

-
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$
- Let $T_1 := T_{II_1} \cup \{\sigma_1 \frac{r_1}{2}\}.$
- Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$
- Since $\sigma_1^{M_2}\leq \frac{r}{2}<\sigma_1^{M_1}$, we have that M_1 does not embed into $M_2^{\mathcal U}.$
- Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $M_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^{\mathcal{U}}...$

Corollary

*There is a sequence M*1, *M*2, . . . , *of separable II*¹ *factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

- \blacksquare Let M_1 be any counterexample to CEP.
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$
- Let $T_1 := T_{II_1} \cup \{\sigma_1 \frac{r_1}{2}\}.$
- Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$
- Since $\sigma_1^{M_2}\leq \frac{r}{2}<\sigma_1^{M_1}$, we have that M_1 does not embed into $M_2^{\mathcal U}.$
- Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $M_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^{\mathcal{U}}...$

Corollary

*There is a sequence M*1, *M*2, . . . , *of separable II*¹ *factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

- \blacksquare Let M_1 be any counterexample to CEP.
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$
- Let $T_1 := T_{II_1} \cup \{\sigma_1 \frac{r_1}{2}\}.$
- Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$
- Since $\sigma_1^{M_2}\leq \frac{r}{2}<\sigma_1^{M_1}$, we have that M_1 does not embed into $M_2^{\mathcal U}.$
- Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $M_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^{\mathcal{U}}...$

Corollary

*There is a sequence M*1, *M*2, . . . , *of separable II*¹ *factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

- \blacksquare Let M_1 be any counterexample to CEP.
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$
- Let $T_1 := T_{II_1} \cup \{\sigma_1 \frac{r_1}{2}\}.$
- Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$
- Since $\sigma_1^{M_2}\leq \frac{r}{2}<\sigma_1^{M_1}$, we have that M_1 does not embed into $M_2^{\mathcal U}.$ Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $M_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^{\mathcal{U}}...$

Corollary

There is a sequence M_1, M_2, \ldots , *of separable II*₁ *factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

- \blacksquare Let M_1 be any counterexample to CEP.
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$
- Let $T_1 := T_{II_1} \cup \{\sigma_1 \frac{r_1}{2}\}.$
- Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$
- Since $\sigma_1^{M_2}\leq \frac{r}{2}<\sigma_1^{M_1}$, we have that M_1 does not embed into $M_2^{\mathcal U}.$ Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $M_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^{\mathcal{U}}...$

Corollary

There is a sequence M_1, M_2, \ldots , *of separable II*₁ *factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

Proof.

- \blacksquare Let M_1 be any counterexample to CEP.
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$

Let
$$
T_1 := T_{II_1} \cup \{ \sigma_1 - \frac{r_1}{2} \}.
$$

Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$

Since $\sigma_1^{\mathcal{M}_2} \leq \frac{r}{2} < \sigma_1^{\mathcal{M}_1}$, we have that \mathcal{M}_1 does not embed into $\mathcal{M}_2^{\mathcal{U}}$. Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $M_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^{\mathcal{U}}...$

Corollary

There is a sequence M_1, M_2, \ldots , *of separable II*₁ *factors, none of which embed into an ultrapower of* R , and such that, for all $i < j$, M_i *does not embed into an ultrapower of M^j .*

- \blacksquare Let M_1 be any counterexample to CEP.
- Let σ_1 be a universal sentence such that $\sigma_1^{\mathcal{R}}=0$ but $r_1:=\sigma_1^{\mathcal{M}_1}>0.$

Let
$$
T_1 := T_{II_1} \cup \{ \sigma_1 - \frac{r_1}{2} \}.
$$

- Take $\mathit{M}_{2}\models\mathit{T}_{1}$ such that M_{2} does not embed into $\mathcal{R}^{ \mathcal{U}}.$
- Since $\sigma_1^{\mathcal{M}_2} \leq \frac{r}{2} < \sigma_1^{\mathcal{M}_1}$, we have that \mathcal{M}_1 does not embed into $\mathcal{M}_2^{\mathcal{U}}$.
- Let $\mathcal{T}_{2} := \mathcal{T}_{1} \cup \{ \sigma_{2} \doteq \frac{r_{2}}{2} \}$ and take $\mathcal{M}_{3} \models \mathcal{T}_{2}$ that does not embed into $\mathcal{R}^\mathcal{U}$...

Corollary

The class of counterexamples to CEP is not closed under ultraproducts.

-
- The assumption implies that there is a universal sentence σ and $r > 0$ such that $\sigma^\mathcal{R} = 0$ and $\sigma^\mathcal{M} \geq r$ for all counterexamples M to CEP.

Then $T := T_{II_1} \cup \{ \sigma - \frac{r}{2} \}$ is an effective axiomatization of the algebras that embed into $\mathcal{R}^{\mathcal{U}}.$

イロト イ押ト イヨト イヨ

Corollary

The class of counterexamples to CEP is not closed under ultraproducts.

Proof.

- Suppose, towards a contradiction, that the class of counterexamples to CEP is closed under ultraproducts.
- **The assumption implies that there is a universal sentence** σ **and** $r > 0$ such that $\sigma^\mathcal{R} = 0$ and $\sigma^\mathcal{M} \geq r$ for all counterexamples M to CEP.
- Then $T := T_{II_1} \cup \{ \sigma \frac{r}{2} \}$ is an effective axiomatization of the algebras that embed into $\mathcal{R}^{\mathcal{U}}.$

4 0 8 1

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Corollary

The class of counterexamples to CEP is not closed under ultraproducts.

Proof.

- Suppose, towards a contradiction, that the class of counterexamples to CEP is closed under ultraproducts.
- **The assumption implies that there is a universal sentence** σ **and** $r > 0$ such that $\sigma^\mathcal{R} = 0$ and $\sigma^\mathcal{M} \geq r$ for all counterexamples M to CEP.

Then $T := T_{II_1} \cup \{ \sigma - \frac{r}{2} \}$ is an effective axiomatization of the algebras that embed into $\mathcal{R}^{\mathcal{U}}.$

す 御 メ オ 重 メ オ 重 メ

Corollary

The class of counterexamples to CEP is not closed under ultraproducts.

Proof.

- Suppose, towards a contradiction, that the class of counterexamples to CEP is closed under ultraproducts.
- **The assumption implies that there is a universal sentence** σ **and** $r > 0$ such that $\sigma^\mathcal{R} = 0$ and $\sigma^\mathcal{M} \geq r$ for all counterexamples M to CEP.
- Then $T := T_{II_1} \cup \{ \sigma \frac{r}{2} \}$ is an effective axiomatization of the algebras that embed into $\mathcal{R}^\mathcal{U}.$

K 御 ⊁ K 君 ⊁ K 君 ⊁

■ There are type III versions of R: the hyperfinite type III₁ factor \mathcal{R}_{∞} and for each $\lambda \in (0, 1)$, the hyperfinite type III_{λ} factor \mathcal{R}_{λ} .

- \blacksquare To study them model theoretically, they need to be equipped with a (faithful, normal) state.
	- For \mathcal{R}_{∞} , the choice of state is irrelevant. (Connes-Stormer transitivity)
	- **R**_λ has a distinguished **Powers state** φ_{λ} .
- **By results of Ando, Haagerup, and Winslow, these algebras play** the role of R in a type III version of CEP.

The universal theory of \mathcal{R}_{∞} *is not computable. For any* $\lambda \in (0,1)$, the *universal theory of* $(R_\lambda, \varphi_\lambda)$ *is not computable.*

 Ω

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

- **■** There are type III versions of R: the hyperfinite type III₁ factor \mathcal{R}_{∞} and for each $\lambda \in (0,1)$, the hyperfinite type III_{λ} factor \mathcal{R}_{λ} .
- \blacksquare To study them model theoretically, they need to be equipped with a (faithful, normal) state.
	- For \mathcal{R}_{∞} , the choice of state is irrelevant. (Connes-Stormer transitivity)
	- **R**_λ has a distinguished **Powers state** φ_{λ} .
- **By results of Ando, Haagerup, and Winslow, these algebras play** the role of R in a type III version of CEP.

The universal theory of \mathcal{R}_{∞} *is not computable. For any* $\lambda \in (0,1)$, the *universal theory of* $(R_\lambda, \varphi_\lambda)$ *is not computable.*

 Ω

- **■** There are type III versions of R: the hyperfinite type III₁ factor \mathcal{R}_{∞} and for each $\lambda \in (0,1)$, the hyperfinite type III_{λ} factor \mathcal{R}_{λ} .
- \blacksquare To study them model theoretically, they need to be equipped with a (faithful, normal) state.
	- For \mathcal{R}_{∞} , the choice of state is irrelevant. (Connes-Stormer transitivity)
	- **R**_λ has a distinguished **Powers state** φ_{λ} .
- **By results of Ando, Haagerup, and Winslow, these algebras play** the role of R in a type III version of CEP.

The universal theory of \mathcal{R}_{∞} *is not computable. For any* $\lambda \in (0,1)$, the *universal theory of* $(R_\lambda, \varphi_\lambda)$ *is not computable.*

 Ω

- **■** There are type III versions of R: the hyperfinite type III₁ factor \mathcal{R}_{∞} and for each $\lambda \in (0,1)$, the hyperfinite type III_{λ} factor \mathcal{R}_{λ} .
- \blacksquare To study them model theoretically, they need to be equipped with a (faithful, normal) state.
	- For \mathcal{R}_{∞} , the choice of state is irrelevant. (Connes-Stormer transitivity)
	- **R**_λ has a distinguished **Powers state** φ_{λ} .

By results of Ando, Haagerup, and Winslow, these algebras play the role of R in a type III version of CEP.

The universal theory of \mathcal{R}_{∞} *is not computable. For any* $\lambda \in (0,1)$, the *universal theory of* $(R_\lambda, \varphi_\lambda)$ *is not computable.*

 Ω

- **■** There are type III versions of R: the hyperfinite type III₁ factor \mathcal{R}_{∞} and for each $\lambda \in (0,1)$, the hyperfinite type III_{λ} factor \mathcal{R}_{λ} .
- \blacksquare To study them model theoretically, they need to be equipped with a (faithful, normal) state.
	- For \mathcal{R}_{∞} , the choice of state is irrelevant. (Connes-Stormer transitivity)
	- **R**_λ has a distinguished **Powers state** φ_{λ} .
- By results of Ando, Haagerup, and Winslow, these algebras play the role of R in a type III version of CEP.

The universal theory of \mathcal{R}_{∞} *is not computable. For any* $\lambda \in (0,1)$, the *universal theory of* $(R_\lambda, \varphi_\lambda)$ *is not computable.*

 Ω

- **■** There are type III versions of R: the hyperfinite type III₁ factor \mathcal{R}_{∞} and for each $\lambda \in (0,1)$, the hyperfinite type III_{λ} factor \mathcal{R}_{λ} .
- \blacksquare To study them model theoretically, they need to be equipped with a (faithful, normal) state.
	- For \mathcal{R}_{∞} , the choice of state is irrelevant. (Connes-Stormer transitivity)
	- **R**_λ has a distinguished **Powers state** φ_{λ} .
- By results of Ando, Haagerup, and Winslow, these algebras play the role of R in a type III version of CEP.

Theorem (Arulseelan, G., and Hart)

The universal theory of \mathcal{R}_{∞} *is not computable. For any* $\lambda \in (0,1)$, the *universal theory of* $(R_\lambda, \varphi_\lambda)$ *is not computable.*

 Ω

イロト イ押ト イヨト イヨト ニヨ

- We could use the previous ideas to prove some results about C ∗ -algebras.
- For example, the negative resolution of CEP is known to imply a negative resolution to the MF problem: does every stably finite C^* -algebra embed into $\mathcal{Q}^{\mathcal{U}},$ where $\mathcal Q$ is the **universal UHF algebra**? We can give Gödelian refutations to the MF problem and other such problems...
- \blacksquare However, all of these applications use that these algebras have traces and we can "interpret" the WOT closure in the GNS to apply our tracial von Neumann algebra results.
- We would really like to resolve the following:

Does every C*-algebra embed into $\mathcal{O}_2^{\mathcal{U}},$ where \mathcal{O}_2 is the **Cuntz algebra**?

KOPPIKERKE

 $4.14.12$

- We could use the previous ideas to prove some results about C ∗ -algebras.
- For example, the negative resolution of CEP is known to imply a negative resolution to the MF problem: does every stably finite C * -algebra embed into $\mathcal{Q}^{\mathcal{U}},$ where $\mathcal Q$ is the **universal UHF algebra**? We can give Gödelian refutations to the MF problem and other such problems...
- \blacksquare However, all of these applications use that these algebras have traces and we can "interpret" the WOT closure in the GNS to apply our tracial von Neumann algebra results.
- We would really like to resolve the following:

Does every C*-algebra embed into $\mathcal{O}_2^{\mathcal{U}},$ where \mathcal{O}_2 is the **Cuntz algebra**?

KOPPIKERKE

 $4.14.12$

- We could use the previous ideas to prove some results about C ∗ -algebras.
- \blacksquare For example, the negative resolution of CEP is known to imply a negative resolution to the MF problem: does every stably finite C * -algebra embed into $\mathcal{Q}^{\mathcal{U}},$ where $\mathcal Q$ is the **universal UHF algebra**? We can give Gödelian refutations to the MF problem and other such problems...
- \blacksquare However, all of these applications use that these algebras have traces and we can "interpret" the WOT closure in the GNS to apply our tracial von Neumann algebra results.
- We would really like to resolve the following:

Does every C*-algebra embed into $\mathcal{O}_2^{\mathcal{U}},$ where \mathcal{O}_2 is the **Cuntz algebra**?

KOPPIKERKE

 $4.14.12$

- We could use the previous ideas to prove some results about C ∗ -algebras.
- \blacksquare For example, the negative resolution of CEP is known to imply a negative resolution to the MF problem: does every stably finite C * -algebra embed into $\mathcal{Q}^{\mathcal{U}},$ where $\mathcal Q$ is the **universal UHF algebra**? We can give Gödelian refutations to the MF problem and other such problems...
- \blacksquare However, all of these applications use that these algebras have traces and we can "interpret" the WOT closure in the GNS to apply our tracial von Neumann algebra results.
- We would really like to resolve the following:

Kirchberg's embedding problem

Does every C*-algebra embed into $\mathcal{O}_2^{\mathcal{U}},$ where \mathcal{O}_2 is the **Cuntz algebra**?

CONFIDENTIAL

 $\sqrt{2}$

1 Background in logic

2 A Gödelian refutation of CEP

3 QWEP C ∗ -algebras

4 Tsirelson pairs of C^{*}-algebras

4 0 8 1

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

 299

- We say that *A* has the **weak expectation property (WEP)** if, for any *B* \supset *A* and *C*, the natural map $A \otimes_{\text{max}} C \to B \otimes_{\text{max}} C$ is an isometric inclusion.
- *A* has the **QWEP property** if *A* is a quotient of a C ∗ -algebra with the WEP.
- Kirchberg proved that all C^{*}-algebras have the QWEP if and only if CEP holds.
- A key ingredient: a tracial von Neumann algebra has QWEP if and only if it satisfies CEP.

There is a theory T in the language of C^* -algebras such that $A \models T$ if *and only if A has QWEP.*

 Ω

イロトメ 倒 トメ 差 トメ 差

- We say that *A* has the **weak expectation property (WEP)** if, for any *B* \supset *A* and *C*, the natural map $A \otimes_{\text{max}} C \to B \otimes_{\text{max}} C$ is an isometric inclusion.
- *A* has the **QWEP property** if *A* is a quotient of a C ∗ -algebra with the WEP.
- Kirchberg proved that all C^{*}-algebras have the QWEP if and only if CEP holds.
- A key ingredient: a tracial von Neumann algebra has QWEP if and only if it satisfies CEP.

There is a theory T in the language of C^* -algebras such that $A \models T$ if *and only if A has QWEP.*

 Ω

イロトメ 倒 トメ 差 トメ 差

- We say that *A* has the **weak expectation property (WEP)** if, for any *B* \supset *A* and *C*, the natural map $A \otimes_{\text{max}} C \to B \otimes_{\text{max}} C$ is an isometric inclusion.
- *A* has the **QWEP property** if *A* is a quotient of a C ∗ -algebra with the WEP.
- Kirchberg proved that all C^* -algebras have the QWEP if and only if CEP holds.
- A key ingredient: a tracial von Neumann algebra has QWEP if and only if it satisfies CEP.

There is a theory T in the language of C^* -algebras such that $A \models T$ if *and only if A has QWEP.*

 Ω

イロトメ 倒 トメ 差 トメ 差

- We say that *A* has the **weak expectation property (WEP)** if, for any *B* \supset *A* and *C*, the natural map $A \otimes_{\text{max}} C \to B \otimes_{\text{max}} C$ is an isometric inclusion.
- *A* has the **QWEP property** if *A* is a quotient of a C ∗ -algebra with the WEP.
- Kirchberg proved that all C^* -algebras have the QWEP if and only if CEP holds.
- A key ingredient: a tracial von Neumann algebra has QWEP if and only if it satisfies CEP.

There is a theory T in the language of C^* -algebras such that $A \models T$ if *and only if A has QWEP.*

 Ω

K ロ ▶ K 御 ▶ K 君 ▶ K 君

- We say that *A* has the **weak expectation property (WEP)** if, for any *B* \supset *A* and *C*, the natural map $A \otimes_{\text{max}} C \to B \otimes_{\text{max}} C$ is an isometric inclusion.
- *A* has the **QWEP property** if *A* is a quotient of a C ∗ -algebra with the WEP.
- Kirchberg proved that all C^* -algebras have the QWEP if and only if CEP holds.
- A key ingredient: a tracial von Neumann algebra has QWEP if and only if it satisfies CEP.

Theorem (G.)

There is a theory T in the language of C^* -algebras such that $A \models T$ if *and only if A has QWEP.*

 QQQ

K ロ ▶ K 御 ▶ K 君 ▶ K 君

QWEP is not effectively axiomatizable

Theorem (Arulseelan, G., and Hart)

There is no effectively enumerable theory T in the language of C ∗ *-algebras with the following two properties:*

- **1** All models of T have QWEP.
- 2 *There is an infinite-dimensional, monotracial model A of T whose unique trace is faithful.*

In particular, there is no effective theory T in the language of C ∗ *-algebras that axiomatizes the QWEP* C ∗ *-algebras.*

 Ω

- Suppose, TAC, that such *T* existed. Take an infinite-dimensional, monotracial model *A* of *T* whose unique trace τ_A is faithful.
- Work now in the language of tracial C*-algebras and consider the theory \mathcal{T}' consisting of the axioms for tracial C * -algebras together with *T*. Note that \mathcal{T}' is effective and $(\mathcal{A}, \tau_\mathcal{A}) \models \mathcal{T}'.$
- Note that, for any universal sentence σ in the language of tracial von Neumann algebras, we have

$$
\sup\{\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}\ :\ (\mathcal{B},\tau_{\mathcal{B}})\models \mathcal{T}'\}=\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}.
$$

- \ge : If (M, τ_M) = GNS (A, τ_A) , then $A \subseteq M$ and (M, τ_M) is a II₁ factor, $\mathsf{SO} \; \sigma^{(\mathcal{A}, \tau_{\mathcal{A}})} = \sigma^{(\mathcal{M}, \tau_{\mathcal{M}})} \geq \sigma^{(\mathcal{R}, \tau_{\mathcal{R}})}.$
- \leq : If $(B, \tau_B) \models T'$ and $(N, \tau_N) =$ GNS (B, τ_B) , then *N* is QWEP, so satisfies CEP, and $\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}=\sigma^{(\mathcal{N},\tau_{\mathcal{N}})}\leq \sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$

By running proofs from T', we can find computable upper bounds to $\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$... イロト イ押ト イヨト イヨ ∍ QQ

- Suppose, TAC, that such *T* existed. Take an infinite-dimensional, monotracial model A of T whose unique trace τ_A is faithful.
- Work now in the language of tracial C*-algebras and consider the theory \mathcal{T}' consisting of the axioms for tracial C^* -algebras together with $\mathcal{T}.$ Note that \mathcal{T}' is effective and $(\mathcal{A},\tau_{\mathcal{A}}) \models \mathcal{T}'.$
- Note that, for any universal sentence σ in the language of tracial von Neumann algebras, we have

$$
\sup\{\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}\ :\ (\mathcal{B},\tau_{\mathcal{B}})\models \mathcal{T}'\}=\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}.
$$

- \ge : If (M, τ_M) = GNS (A, τ_A) , then $A \subseteq M$ and (M, τ_M) is a II₁ factor, $\mathsf{SO} \; \sigma^{(\mathcal{A}, \tau_{\mathcal{A}})} = \sigma^{(\mathcal{M}, \tau_{\mathcal{M}})} \geq \sigma^{(\mathcal{R}, \tau_{\mathcal{R}})}.$
- \leq : If $(B, \tau_B) \models T'$ and $(N, \tau_N) =$ GNS (B, τ_B) , then *N* is QWEP, so satisfies CEP, and $\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}=\sigma^{(\mathcal{N},\tau_{\mathcal{N}})}\leq \sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$

By running proofs from T', we can find computable upper bounds to $\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$... イロト イ押ト イヨト イヨ в QQ

- Suppose, TAC, that such *T* existed. Take an infinite-dimensional, monotracial model A of T whose unique trace τ_A is faithful.
- Work now in the language of tracial C*-algebras and consider the theory \mathcal{T}' consisting of the axioms for tracial C^* -algebras together with $\mathcal{T}.$ Note that \mathcal{T}' is effective and $(\mathcal{A},\tau_{\mathcal{A}}) \models \mathcal{T}'.$
- Note that, for any universal sentence σ in the language of tracial von Neumann algebras, we have

$$
\mathsf{sup}\{\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}\ :\ (\mathcal{B},\tau_{\mathcal{B}})\models \mathcal{T}'\}=\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}.
$$

- \geq : If (M, τ_M) = GNS(A, τ_A), then $A \subseteq M$ and (M, τ_M) is a II₁ factor, $\mathsf{SO} \; \sigma^{(\mathcal{A},\tau_\mathcal{A})} = \sigma^{(\mathcal{M},\tau_\mathcal{M})} \geq \sigma^{(\mathcal{R},\tau_\mathcal{R})}.$
- \leq : If $(B, \tau_B) \models T'$ and $(N, \tau_N) =$ GNS (B, τ_B) , then N is QWEP, so satisfies CEP, and $\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}=\sigma^{(\mathcal{N},\tau_{\mathcal{N}})}\leq \sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$

By running proofs from T', we can find computable upper bounds to $\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$... イロト イ押 トイラト イラト в QQQ

- Suppose, TAC, that such *T* existed. Take an infinite-dimensional, monotracial model A of T whose unique trace τ_A is faithful.
- Work now in the language of tracial C*-algebras and consider the theory \mathcal{T}' consisting of the axioms for tracial C^* -algebras together with $\mathcal{T}.$ Note that \mathcal{T}' is effective and $(\mathcal{A},\tau_{\mathcal{A}}) \models \mathcal{T}'.$
- Note that, for any universal sentence σ in the language of tracial von Neumann algebras, we have

$$
\mathsf{sup}\{\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}\ :\ (\mathcal{B},\tau_{\mathcal{B}})\models \mathcal{T}'\}=\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}.
$$

- \geq : If (M, τ_M) = GNS(A, τ_A), then $A \subseteq M$ and (M, τ_M) is a II₁ factor, $\mathsf{SO} \; \sigma^{(\mathcal{A},\tau_\mathcal{A})} = \sigma^{(\mathcal{M},\tau_\mathcal{M})} \geq \sigma^{(\mathcal{R},\tau_\mathcal{R})}.$
- \leq : If $(B, \tau_B) \models T'$ and $(N, \tau_N) =$ GNS (B, τ_B) , then N is QWEP, so satisfies CEP, and $\sigma^{(\mathcal{B},\tau_{\mathcal{B}})}=\sigma^{(\mathcal{N},\tau_{\mathcal{N}})}\leq \sigma^{(\mathcal{R},\tau_{\mathcal{R}})}$

By running proofs from T' , we can find computable upper bounds to $\sigma^{(\mathcal{R},\tau_{\mathcal{R}})}...$ E 299

1 Background in logic

2 A Gödelian refutation of CEP

3 QWEP C[∗]-algebras

4 Tsirelson pairs of C*-algebras

 299

イロト イ押ト イヨト イヨ

Motivating the definition of the Tsirelson property

Tsirelson's Problem

Does $C_{qa}(k, n) = C_{qc}(k, n)$?

 $p \in C_{qa}(k, n)$ (resp. $p \in C_{qc}(k, n)$) if and only if there are POVMs A^x f *and B^y in* C*($\mathbb{F}(k,n)$) *and a state* ϕ *on* C*($\mathbb{F}(k,n)$) \otimes_{\min} C*($\mathbb{F}(k,n)$) $(r \infty P.$ on $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n))$ such that

$$
p(a,b|x,y)=\phi(A^x_a\otimes B^y_b).
$$

 Ω

イロト イ押 トイラト イラト

Motivating the definition of the Tsirelson property

Tsirelson's Problem

Does $C_{qa}(k, n) = C_{qc}(k, n)$?

Theorem

 $p \in C_{qa}(k, n)$ (resp. $p \in C_{qc}(k, n)$) if and only if there are POVMs A^x and $B^{\dot y}$ in $C^*({\mathbb F}(k,n))$ and a state ϕ on $C^*({\mathbb F}(k,n))\otimes_{\min} C^*({\mathbb F}(k,n))$ $(r \infty p$. on $C^*(\mathbb{F}(k, n)) \otimes_{\max} C^*(\mathbb{F}(k, n))$ such that

$$
p(a,b|x,y)=\phi(A^x_a\otimes B^y_b).
$$

 Ω

Tsirelson pairs of C^{*}-algebras

Definition

Let $C_{\text{min}}(C, D, k, n)$ (respectively $C_{\text{max}}(C, D, k, n)$) denote the *closure* of the set of correlations of the form $\phi(\mathcal{A}_a^{\mathsf{x}}\otimes \mathcal{B}_b^{\mathsf{y}}),$ where $\mathcal{A}^1,\ldots,\mathcal{A}^k$ are POVMs of length *n* from *C*, B^1, \ldots, B^k are POVMs of length *n* from *D*, and ϕ is a state on $C \otimes_{\min} D$ (respectively a state on $C \otimes_{\max} D$).

$$
\blacksquare \; C_{\min}(C,D,k,n) \subseteq C_{\max}(C,D,k,n).
$$

$$
\blacksquare \ \ C_{\sf min}(C,D,k,n) \subseteq C_{\sf qa}(k,n).
$$

■ $C_{\text{max}}(k, n) \subseteq C_{\text{ac}}(k, n)$.

We say that (*C*, *D*) is a **(strong) Tsirelson pair** if $C_{\min}(C, D, k, n) = C_{\max}(C, D, k, n) (-C_{\text{val}}(k, n))$ for all (k, n) .

 Ω

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …
Tsirelson pairs of C^{*}-algebras

Definition

Let $C_{\text{min}}(C, D, k, n)$ (respectively $C_{\text{max}}(C, D, k, n)$) denote the *closure* of the set of correlations of the form $\phi(\mathcal{A}_a^{\mathsf{x}}\otimes \mathcal{B}_b^{\mathsf{y}})$ $\mathcal{A}^{(k)}_{b}$), where $\mathcal{A}^{1}, \ldots, \mathcal{A}^{k}$ are POVMs of length *n* from *C*, *B* 1 , . . . , *B ^k* are POVMs of length *n* from *D*, and ϕ is a state on $C \otimes_{\min} D$ (respectively a state on $C \otimes_{\max} D$).

\n- $$
C_{\min}(C, D, k, n) \subseteq C_{\max}(C, D, k, n)
$$
\n- $C_{\min}(C, D, k, n) \subseteq C_{qa}(k, n)$
\n

$$
\blacksquare \ C_{\max}(k,n) \subseteq C_{qc}(k,n).
$$

We say that (*C*, *D*) is a **(strong) Tsirelson pair** if $C_{\min}(C, D, k, n) = C_{\max}(C, D, k, n) (-C_{\text{val}}(k, n))$ for all (k, n) .

 Ω

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Tsirelson pairs of C^{*}-algebras

Definition

Let $C_{\text{min}}(C, D, k, n)$ (respectively $C_{\text{max}}(C, D, k, n)$) denote the *closure* of the set of correlations of the form $\phi(\mathcal{A}_a^{\mathsf{x}}\otimes \mathcal{B}_b^{\mathsf{y}})$ $\mathcal{A}^{(k)}_{b}$), where $\mathcal{A}^{1}, \ldots, \mathcal{A}^{k}$ are POVMs of length *n* from *C*, *B* 1 , . . . , *B ^k* are POVMs of length *n* from *D*, and ϕ is a state on $C \otimes_{\min} D$ (respectively a state on $C \otimes_{\max} D$).

$$
\blacksquare \ C_{\min}(C,D,k,n) \subseteq C_{\max}(C,D,k,n).
$$

$$
\blacksquare \ C_{\min}(C,D,k,n) \subseteq C_{qa}(k,n).
$$

$$
\blacksquare \ C_{\max}(k,n) \subseteq C_{qc}(k,n).
$$

Definition

We say that (*C*, *D*) is a **(strong) Tsirelson pair** if $C_{\min}(C, D, k, n) = C_{\max}(C, D, k, n) (-C_{\text{Gal}}(k, n))$ for all (k, n) .

 Ω

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

- Tsirelson's problem asks if $(C^*(\mathbb{F}_\infty),C^*(\mathbb{F}_\infty))$ is a Tsirelson pair. We now know that it is not.
- **■** If (C, D) is a **nuclear pair**, that is, if $C \otimes_{min} D \cong C \otimes_{max} D$, then (*C*, *D*) is a Tsirelson pair.
- Exactly one of the following happens:
	- (*C*, *D*) is not a Tsirelson pair.
	- One of *C* or *D* is **subhomogeneous** (whence (C, D) is a nuclear pair), but (*C*, *D*) is not a strong Tsirelson pair.
	- \blacksquare (*C*, *D*) is a strong Tsirelson pair.

The class of Tsirelson pairs is closed under taking quotients.

- Tsirelson's problem asks if $(C^*(\mathbb{F}_\infty),C^*(\mathbb{F}_\infty))$ is a Tsirelson pair. We now know that it is not.
- **■** If (C, D) is a **nuclear pair**, that is, if $C \otimes_{min} D \cong C \otimes_{max} D$, then (*C*, *D*) is a Tsirelson pair.
- Exactly one of the following happens:
	- (*C*, *D*) is not a Tsirelson pair.
	- One of *C* or *D* is **subhomogeneous** (whence (C, D) is a nuclear pair), but (*C*, *D*) is not a strong Tsirelson pair.
	- \blacksquare (*C*, *D*) is a strong Tsirelson pair.

The class of Tsirelson pairs is closed under taking quotients.

- Tsirelson's problem asks if $(C^*(\mathbb{F}_\infty),C^*(\mathbb{F}_\infty))$ is a Tsirelson pair. We now know that it is not.
- **■** If (C, D) is a **nuclear pair**, that is, if $C \otimes_{min} D \cong C \otimes_{max} D$, then (*C*, *D*) is a Tsirelson pair.
- \blacksquare Exactly one of the following happens:
	- (*C*, *D*) is not a Tsirelson pair.
	- One of *C* or *D* is **subhomogeneous** (whence (C, D) is a nuclear pair), but (*C*, *D*) is not a strong Tsirelson pair.
	- (C, D) is a strong Tsirelson pair.

The class of Tsirelson pairs is closed under taking quotients.

- Tsirelson's problem asks if $(C^*(\mathbb{F}_\infty),C^*(\mathbb{F}_\infty))$ is a Tsirelson pair. We now know that it is not.
- **■** If (C, D) is a **nuclear pair**, that is, if $C \otimes_{min} D \cong C \otimes_{max} D$, then (*C*, *D*) is a Tsirelson pair.
- \blacksquare Exactly one of the following happens:
	- (*C*, *D*) is not a Tsirelson pair.
	- One of *C* or *D* is **subhomogeneous** (whence (C, D) is a nuclear pair), but (*C*, *D*) is not a strong Tsirelson pair.
	- (C, D) is a strong Tsirelson pair.
- The class of Tsirelson pairs is closed under taking quotients.

Definition

C has the **Tsirelson property (TP)** if (*C*, *D*) is a Tsirelson pair for any C ∗ -algebra *D*.

- *C* has the TP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a Tsirelson pair.
- The class of C*-algebras with TP is closed under direct limits, quotients, **relatively weakly injective** subalgebras, and ultraproducts. In particular, it is an *axiomatizable* class.
- QWEP implies TP. (Proof: ETS WEP implies TP; but *C* has WEP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a nuclear pair.)

Does TP imply QWEP?

 Ω

イロト イ押ト イヨト イヨ

Definition

C has the **Tsirelson property (TP)** if (*C*, *D*) is a Tsirelson pair for any C ∗ -algebra *D*.

C has the TP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a Tsirelson pair.

The class of C*-algebras with TP is closed under direct limits, quotients, **relatively weakly injective** subalgebras, and ultraproducts. In particular, it is an *axiomatizable* class.

QWEP implies TP. (Proof: ETS WEP implies TP; but *C* has WEP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a nuclear pair.)

Does TP imply QWEP?

 Ω

イロト イ押ト イヨト イヨ

Definition

C has the **Tsirelson property (TP)** if (*C*, *D*) is a Tsirelson pair for any C ∗ -algebra *D*.

- *C* has the TP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a Tsirelson pair.
- The class of C^* -algebras with TP is closed under direct limits, quotients, **relatively weakly injective** subalgebras, and ultraproducts. In particular, it is an *axiomatizable* class.
- QWEP implies TP. (Proof: ETS WEP implies TP; but *C* has WEP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a nuclear pair.)

Does TP imply QWEP?

 Ω

イロト イ押ト イヨト イヨ

Definition

C has the **Tsirelson property (TP)** if (*C*, *D*) is a Tsirelson pair for any C ∗ -algebra *D*.

- *C* has the TP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a Tsirelson pair.
- The class of C^* -algebras with TP is closed under direct limits, quotients, **relatively weakly injective** subalgebras, and ultraproducts. In particular, it is an *axiomatizable* class.
- QWEP implies TP. (Proof: ETS WEP implies TP; but *C* has WEP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a nuclear pair.)

Definition

C has the **Tsirelson property (TP)** if (*C*, *D*) is a Tsirelson pair for any C ∗ -algebra *D*.

- *C* has the TP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a Tsirelson pair.
- The class of C^* -algebras with TP is closed under direct limits, quotients, **relatively weakly injective** subalgebras, and ultraproducts. In particular, it is an *axiomatizable* class.
- QWEP implies TP. (Proof: ETS WEP implies TP; but *C* has WEP if and only if $(C, C^*(\mathbb{F}_{\infty}))$ is a nuclear pair.)

Definition

C has the **strong Tsirelson property (STP)** if and only if it has the TP and is not subhomogeneous.

■ *C* has the STP if and only if (C, D) is a strong Tsirelson pair for every non-subhomogeneous *D*.

 \blacksquare The STP is an axiomatizable property.

Are there explicit axioms for the class of C*-algebras with the (S)TP?

 Ω

Definition

C has the **strong Tsirelson property (STP)** if and only if it has the TP and is not subhomogeneous.

■ *C* has the STP if and only if (C, D) is a strong Tsirelson pair for every non-subhomogeneous *D*.

 \blacksquare The STP is an axiomatizable property.

Are there explicit axioms for the class of C*-algebras with the (S)TP?

 Ω

Definition

C has the **strong Tsirelson property (STP)** if and only if it has the TP and is not subhomogeneous.

- *C* has the STP if and only if (C, D) is a strong Tsirelson pair for every non-subhomogeneous *D*.
- \blacksquare The STP is an axiomatizable property.

Are there explicit axioms for the class of C*-algebras with the (S)TP?

 Ω

Definition

C has the **strong Tsirelson property (STP)** if and only if it has the TP and is not subhomogeneous.

- *C* has the STP if and only if (C, D) is a strong Tsirelson pair for every non-subhomogeneous *D*.
- \blacksquare The STP is an axiomatizable property.

Question

Are there explicit axioms for the class of C^* -algebras with the $(S)TP?$

 Ω

Another undecidability result

Theorem (G. and Hart)

There is no effective theory T in the language of pairs of C ∗ *-algebras such that all models of T are Tsirelson pairs and at least one model of T is a strong Tsirelson pair.*

There is no effective theory T in the language of C ∗ *-algebras such that all models have the TP and at least one model has the STP.*

There is no effective theory T in the language of C ∗ *-algebras such that all models have the QWEP and at least one model is not subhomogeneous.*

 Ω

メロメメ 御き メミメメ 急ず 一番

Another undecidability result

Theorem (G. and Hart)

There is no effective theory T in the language of pairs of C ∗ *-algebras such that all models of T are Tsirelson pairs and at least one model of T is a strong Tsirelson pair.*

Corollary

There is no effective theory T in the language of C ∗ *-algebras such that all models have the TP and at least one model has the STP.*

There is no effective theory T in the language of C ∗ *-algebras such that all models have the QWEP and at least one model is not subhomogeneous.*

 Ω

K ロ ト K 個 ト K 君 ト K 君 ト 一君

Another undecidability result

Theorem (G. and Hart)

There is no effective theory T in the language of pairs of C ∗ *-algebras such that all models of T are Tsirelson pairs and at least one model of T is a strong Tsirelson pair.*

Corollary

There is no effective theory T in the language of C ∗ *-algebras such that all models have the TP and at least one model has the STP.*

Corollary

There is no effective theory T in the language of C ∗ *-algebras such that all models have the QWEP and at least one model is not subhomogeneous.*

 \Rightarrow

 QQQ

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

■ Suppose such *T* exists.

- Let T' be the effective extension of T whose models are of the form (C, D, P) , where $P(c, d) = \phi(c \otimes d)$ for some state ϕ on *C* ⊗max *D*.
	- States on *C* ⊗_{max} *D* "are" just extensions of unital linear functionals on $C \odot D$ that are positive on $C \odot D$.

Given a nonlocal game G, have the universal sentence $\sigma_{\mathfrak{G}}$ **in this** extended language given by

$$
\sup_{A} \sup_{B} \sum_{(x,y)\in[k]} \pi(x,y) \sum_{(a,b)\in[n]} D(x,y,a,b) P(A_a^x, B_b^y).
$$

■ The quantifications over POVMs here is legitimate (and effective) since they can be shown to form a definable set.

 Ω

4 ロ ト ィ *同* ト

- Suppose such *T* exists.
- Let T' be the effective extension of T whose models are of the form (C, D, P) , where $P(c, d) = \phi(c \otimes d)$ for some state ϕ on *C* ⊗max *D*.
	- States on *C* ⊗_{max} *D* "are" just extensions of unital linear functionals on $C \odot D$ that are positive on $C \odot D$.
- **Given a nonlocal game G, have the universal sentence** $\sigma_{\mathfrak{G}}$ **in this** extended language given by

$$
\sup_{A} \sup_{B} \sum_{(x,y)\in[k]} \pi(x,y) \sum_{(a,b)\in[n]} D(x,y,a,b) P(A^x_a, B^y_b).
$$

The quantifications over POVMs here is legitimate (and effective) since they can be shown to form a definable set.

■ Suppose such *T* exists.

- Let T' be the effective extension of T whose models are of the form (C, D, P) , where $P(c, d) = \phi(c \otimes d)$ for some state ϕ on *C* ⊗max *D*.
	- States on *C* ⊗_{max} *D* "are" just extensions of unital linear functionals on $C \odot D$ that are positive on $C \odot D$.

Given a nonlocal game G, have the universal sentence $\sigma_{\mathfrak{G}}$ **in this** extended language given by

$$
\sup_{A} \sup_{B} \sum_{(x,y)\in[k]} \pi(x,y) \sum_{(a,b)\in[n]} D(x,y,a,b) P(A_a^x, B_b^y).
$$

The quantifications over POVMs here is legitimate (and effective) since they can be shown to form a definable set.

- Suppose such *T* exists.
- Let T' be the effective extension of T whose models are of the form (C, D, P) , where $P(c, d) = \phi(c \otimes d)$ for some state ϕ on *C* ⊗max *D*.
	- States on $C \otimes_{\text{max}} D$ "are" just extensions of unital linear functionals on $C \odot D$ that are positive on $C \odot D$.
- Given a nonlocal game \mathfrak{G} , have the universal sentence $\sigma_{\mathfrak{G}}$ in this extended language given by

$$
\sup_{A} \sup_{B} \sum_{(x,y)\in[k]} \pi(x,y) \sum_{(a,b)\in[n]} D(x,y,a,b) P(A_a^x, B_b^y).
$$

The quantifications over POVMs here is legitimate (and effective) since they can be shown to form a definable set.

- Suppose such *T* exists.
- Let T' be the effective extension of T whose models are of the form (C, D, P) , where $P(c, d) = \phi(c \otimes d)$ for some state ϕ on *C* ⊗max *D*.
	- States on $C \otimes_{\text{max}} D$ "are" just extensions of unital linear functionals on $C \odot D$ that are positive on $C \odot D$.
- Given a nonlocal game \mathfrak{G} , have the universal sentence $\sigma_{\mathfrak{G}}$ in this extended language given by

$$
\sup_{A} \sup_{B} \sum_{(x,y)\in[k]} \pi(x,y) \sum_{(a,b)\in[n]} D(x,y,a,b) P(A_a^x, B_b^y).
$$

■ The quantifications over POVMs here is legitimate (and effective) since they can be shown to form a definable set.

\blacksquare The assumptions on the theory show that

$$
\sup \{ \sigma_{\mathfrak{G}}^{(C,D,P)} \, : \, (C,D,P) \models \mathcal{T}' \} = \mathsf{val}^*(\mathfrak{G}).
$$

- \blacksquare \leq uses that all models of *T* are Tsirelson pairs.
- \blacksquare $>$ uses that at least one model is a strong Tsirelson pair.
- Now run proofs from T' to get computable upper bounds to val[∗] (G).
- This contradicts MIP^{*} =RE.

\blacksquare The assumptions on the theory show that

$$
\sup \{ \sigma_{\mathfrak{G}}^{(C,D,P)} \, : \, (C,D,P) \models \mathcal{T}' \} = \mathsf{val}^*(\mathfrak{G}).
$$

- \blacksquare \lt uses that all models of *T* are Tsirelson pairs.
- \blacksquare > uses that at least one model is a strong Tsirelson pair.
- Now run proofs from T' to get computable upper bounds to val[∗] (G).
- This contradicts MIP[∗] =RE.

\blacksquare The assumptions on the theory show that

$$
\sup \{ \sigma_{\mathfrak{G}}^{(C,D,P)} \, : \, (C,D,P) \models \mathcal{T}' \} = \mathsf{val}^*(\mathfrak{G}).
$$

- \blacksquare \lt uses that all models of *T* are Tsirelson pairs.
- \blacksquare > uses that at least one model is a strong Tsirelson pair.
- Now run proofs from T' to get computable upper bounds to val[∗] (G).

■ This contradicts MIP[∗] =RE.

\blacksquare The assumptions on the theory show that

$$
\sup \{ \sigma_{\mathfrak{G}}^{(C,D,P)} \, : \, (C,D,P) \models \mathcal{T}' \} = \mathsf{val}^*(\mathfrak{G}).
$$

- \blacksquare \lt uses that all models of *T* are Tsirelson pairs.
- \blacksquare > uses that at least one model is a strong Tsirelson pair.
- Now run proofs from T' to get computable upper bounds to val[∗] (G).
- \blacksquare This contradicts MIP[∗] =RE.

References

- ISAAC GOLDBRING, *The Connes Embedding Problem: a guided tour*, Bulletin of the American Mathematical Society, Volume 59 (2022), 503-560.
- **I** ISAAC GOLDBRING AND BRADD HART, *The universal theory of the hyperfinite II*¹ *factor is not computable*, arXiv 2006.05629.
- **I** ISAAC GOLDBRING AND BRADD HART, On Tsirelson pairs of C ∗ *-algebras*, to appear in Reviews of Mathematical Physics.
- **IN ISAAC GOLDBRING AND BRADD HART AND JANANAN** ARULSEELAN, *On the undecidability of QWEP*, to appear in the Journal of Operator Theory.