

Linearity Testing and Low Degree Testing

Dana Moshkovitz

UT Austin

Linear Functions

 h :{0,1}ⁿ \rightarrow {0,1} is **linear** if h(x)≡Σa_ix_i \mathbf{r}_i for \mathbf{a}_{1} …a \mathbf{a}_{n} ∈{0,1}. Equivalently, $h(x+y) = h(x)+h(y)$ for all $x,y \in \{0,1\}^n$.

Linearity Tester

Given access to $f: \{0,1\}^n \rightarrow \{0,1\}$:

- 1. Pick $x,y \in \{0,1\}^n$ uniformly at random.
- 2. Accept if $f(x+y) = f(x) + f(y)$.

Locally-Linear Non-Linear Functions

Take linear h and f(x)=h(x) on exactly 1- $\delta/3$ fraction of $x \in \{0,1\}^n$. Then, f is not linear but $f(x+y)=f(x)+f(y)$ with prob $\geq 1-\delta$ over $x,y \in \{0,1\}^n$.

Linearity Testing Theorem (Blum-Luby-Rubinfeld)

If $f(x+y) = f(x)+f(y)$ with probability 1- δ over $x,y \in \{0,1\}^n$, then there exists a linear function $h:\{0,1\}^n\rightarrow\{0,1\}$, such that $f(x) = h(x)$ for at least $1-(9/2)\delta$ fraction of $x \in \{0,1\}^n$.

Majority Decoding^{Assume} *f*(x+y) = *f*(x)+ *f*(y) with probability 1-8 over x,y ∈ {0,1}ⁿ.

- Let $x \in \{0,1\}^n$. Every $y \in \{0,1\}^n$ has an "opinion" about $f(x)$, namely, $f(y)+f(x+y)$.
- Define h(x)=majority y ^l ${f(y)+f(x+y)}.$
- •We will show:
	- 1. h is linear.
	- 2. $f(x)=h(x)$ for at least 1-2δ fraction of $x \in \{0,1\}^n$.

If $f(x) \neq h(x)$, then $P_y(f(x+y) \neq f(x) + f(y)) > 1/2$.

 ${0,1}^n$ ${0,1}^n$

From Majority to Super Majority Assume $f(x+y) = f(x)+f(y)$ with probability $1-\delta > 7/9$ over $x,y \in \{0,1\}^n$.

Claim: For all $x \in \{0,1\}^n$, P x^{\bullet} $:= P$ y ¹ (h(x)=f(y)+f(x+y)) **> 2/3**. **Proof:** Pick independent $y, y' \in \{0, 1\}^n$. $P(f(x+y)+f(y)) = f(x+y') + f(y')$ $= P$ x $^{2}+(1-P_{x})^{2}$. $= P(f(x+y)+f(y')) = f(x+y') + f(y)$ $\geq 1-2\delta$

x x+y $x+y'$ y y' y+y' y y' **x** h(x)=majority_y ${f(y)+f(x+y)}$ P x 1-P x

 ${0,1}^n$

Majority Decoding is Linear

Low Degree Tester

Given access to $f: F^n \rightarrow F$, $|F| > d+1$:

- 1. Pick $x,y \in F^n$ uniformly at random.
- 2. Pick $d+1$ random points on the line $x+ty$ to query.
- 3. Accept iff queries satisfy interpolation condition.

Low Degree Testing Theorem (Gemmell-Lipton-Rubinfeld-Sudan-Wigderson)

For sufficiently small $0 < \delta < 1/d^2$ and $|F| > d+1$:

If Low Degree Tester accepts with probability $\geq 1-\delta$,

then there exists a polynomial $h: F^n \rightarrow F$ of degree $\leq d$, such that $f(x) =$ $h(x)$ for at least 1-O(δ) fraction of $x \in F^n$.

Randomized Decoding

Assume Low Degree Tester accepts with probability 1-δ for δ<<1/d² .

- Pick uniformly at random $y \in F^n$ and distinct non-zero field elements $t=t_1..t_d$. For every $x \in F^n$, let $h_{y,t}(x) :=$ interpolation of $f(x+t_1y),...,f(x+t_dy).$
- •We will show:
	- **1. Degree d:** With prob 1-o(1) over y, \underline{t} ; $h_{y,\underline{t}}$ of deg d.
	- **2. Agreement:** With prob 1-o(1) over y, \underline{t} , $f(x)=h_{y,\underline{t}}(x)$ for at least $1-O(\delta)$ fraction of $x \in F^n$.

Immediately follows

Low Degree

Assume Low degree tester accepts with prob ≥ 1 *-δ for δ<<* $1/d^2$ *.*

Claim: For any $x, x', s_1...s_{d+1}$ with prob 1-o(1) over y, \underline{t} ; $h_{y,t}(x+s_1x'),..., h_{y,t}(x+s_{d+1}x')$ of degree d. **Proof:**

Line vs. Line Low Degree Tester

Given access to *A*:lines→univariate deg-d polynomials:

- 1. Pick $x, y, y' \in F^n$ uniformly at random.
- 2. Query poly for $x+ty$ and for $x+ty'$.
- 3. Accept iff polynomials agree on x.

Low Degree Testing Theorem (Rubinfeld-Sudan, Arora-Lund-Motwani-Sudan-Szegedy, Friedl-Sudan)

For sufficiently small $0 < \delta < 1/8$ and $|F| >>d$:

If Low Degree Tester accepts with probability ≥1-δ,

then there exists a polynomial $h: F^n \rightarrow F$ of degree $\leq d$, such that $f(l) = h_{l}$ for at least $1-O(\delta)$ fraction of the lines *l* in F^n .

