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Summary

1. The idea to reduce the halting problem to a language by using a
recursive compression has appeared in the mathematics literature.
E.g. Durand-Romashchenko-Shen used this idea is 2008 to prove an
undecidability result about tiling. This analogy was helpful for me to
understand the proof of MIP∗ = RE.

2. One can write down a general recursive compression lemma which
abstracts the idea. The lemma also applies to the types of
compressions introduced by Fitzsimons-Ji-Vidick-Yuen in quantum
information, including those in MIP∗ = RE. So one just needs to
prove the compression exists and then quote the general lemma. The
compression also only needs to operate on succinct representations
of single games instead of computable infinite sequences of games.

▶ Nothing here is due to me, except any errors are mine.



Wang tiles

A Wang tile is a square tile with a color on each side.

We arrange copies of the tiles side by side with matching colors on the
sides of adjacent tiles.

Q: Given a finite set of Wang tiles, if we are allowed infinitely many
copies of them, can they tile the infinite plane?



Another example
Tileset T :

A tiling of the plane:



Wang tiling is undecidable

Theorem (Berger, 1966)

There is a computable function mapping each Turing machine M to a
finite set of tiles TM so that M halts ⇐⇒ there is no tiling of the plane
using TM . So the Wang tiling problem is undecidable.

Proof sketch (Durand, Romashchenko, Shen, 2008):

Exercise: A tileset T tiles the plane iff T tiles every n × n square.

Given a tileset T , let f (T ) be the smallest n so that T cannot tile an
n × n square. So f (T ) = ∞ iff T tiles the plane.

Show there is a polynomial time program “Compress” so that given a
Turing machine M that computes a tileset T of size ≤ 2n in time
poly(n), we can compute a tileset T ′ = Compress(M, n) of poly(n) size
so that
▶ T tiles the plane ⇐⇒ T ′ tiles the plane. .
▶ f (T ′) ≥ max(f (T ), n).

Finish using the recursive compression lemma.



The idea of the compression procedure

The tiles T ′ force a “grid” pattern of size poly(n). Inside each grid
square is a “cpu” that runs the Turing machine M for poly(n) steps to
check its inputs are valid colors from a tile in T . If not, then the tiling
can’t be continued. Otherwise, the tiles propagate the input colors to the
edge of the grid square. In this way, each grid square is a “macrotile”,
and there is a bijection between these macrotiles and tiles in T .



Succinct representations of strings
Suppose M is a Turing machine and n, t ∈ N. (M, n, t) is a succinct
representation of a string x of length ≤ 2n if for all m < 2n, M(m) halts
in time ≤ t and

M(m) =


0 if x(m) = 0

1 if x(m) = 1

2 if m ≥ length(x)

This is the usual type of succinct representation in complexity theory. It
is (polytime) equivalent to representing a string of length ≤ 2n using a
circuit with n input bits. (We regard natural numbers in our succinct
representations as being coded in unary)

By coding other objects (e.g. games, tilesets, etc.) by strings we can also
reasonably talk about succinct representations of them.

E.g. SUCCINCT-3COLOR is NEXP-complete (Papadimitriou-Yannakakis
1986), as used by Ito-Vidick (2012).



Lemma (Compression lemma)

Suppose f : {0, 1}∗ → [0,∞], A ⊆ {x ∈ {0, 1}∗ : f (x) < ∞} is nonempty,
and there is a polynomial time computable function Compress so that if
x̂ is a succinct description of x and Compress(x̂ , n) = y , then:

1. f (y) ≥ max(f (x), n)

2. If x ∈ A, then y ∈ A.

Then there is a polynomial time reduction g from the halting problem to
A that maps each Turing machine M, to g(M) ∈ {0, 1}∗ so if M halts,
then g(M) ∈ A, and if M does not halt, then g(M) ∈ {x : f (x) = ∞}.

E.g. A = {G : val∗(G ) = 1}, f (G ) = log E (G , 1/2).

A = {T : T can tile the plane}, f (T ) is the least n so T cannot tile an
n × n square.

▶ There is no assumption f is computable.
▶ If the input to Compress is not a succinct description, there are no

assumptions on how it behaves.
▶ Generalizes beyond polytime compressions provided the amount of

succinctness is large compared to the complexity of compression.



Proof
Fix a0 ∈ A. Consider the following polynomial-time computable function
h(M, n). h(M, n) first runs M for n steps. If M halts in ≤ n steps, then
h(M, n) outputs a0. If M does not halt in n steps, then h(M, n) outputs

Compress(¤�h(M, n + 1), n), where ¤�h(M, n + 1) is a succinct description of
h(M, n + 1).

Note: justifying the self-referential call of h uses the polynomial-time
version of Kleene’s recursion theorem (see e.g. Westrick, 2017), and a
careful calculation of the runtime of h(M, n). (There is a recursive
relationship between the runtime of h(M, n) and the runtime of
h(M, n + 1)).

If M does not halt in n steps, then f (h(M, n)) ≥ max{f (h(M, n + 1), n}
by assumption (1). So inductively, f (h(M, 0)) = ∞.

If M halts in n steps, then h(M, n) = a0, so by assumption (2) and
induction h(M, n) ∈ A, so h(M, n − 1) ∈ A, . . . , so h(M, 0) ∈ A.

Define the polynomial time reduction g by g(M) = h(M, 0). So if M
does not halt, f (g(M)) = ∞. If M does halt, then g(M) ∈ A.



Open problems/requests

▶ Tell me any instances of compression in the literature that I might
not know, and check this abstract compression lemma applies to all
of them. (Find the right general compression lemma if it doesn’t).

▶ Find compression proofs of some classical undecidability proofs in
mathematics e.g. the undecidability of the word problem for groups.

▶ Find compression proofs of some new undecidability results e.g.
computing the operator norm (see Fritz-Netzer-Thom).
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Being careful – the complexity really is important

If we do not ensure the amount of succinctness is more than the
complexity of the compression procedure, the compression lemma is false.

Here is a good example to keep in mind. Let f (x) = length(x). If x̂ is a
succinct description of x , let Compress(x̂ , n) = x0n, i.e. x with n zeroes
appended. Note Compress takes exponential time to compute. Let
A = {0, 1}∗. The hypotheses of the compression lemma are satisfied
(except for Compress being polynomial time computable), but clearly
there cannot be a polynomial time reduction of the halting problem to A.

With a little more work it is possible to construct counterexamples where
Compress outputs strings of polynomial length (but runs in exponential
time).


