Home /  Postdoc Symposium (Part I) - Initial and boundary value problems for the deterministic and stochastic Zakharov-Kuznetsov equation in a bounded domain

Seminar

Postdoc Symposium (Part I) - Initial and boundary value problems for the deterministic and stochastic Zakharov-Kuznetsov equation in a bounded domain September 04, 2015 (11:30 AM PDT - 12:15 PM PDT)
Parent Program:
Location: SLMath: Eisenbud Auditorium
Speaker(s) Chuntian Wang (University of California, Los Angeles)
Description No Description
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video
No Video Uploaded
Abstract/Media

In this talk I will focus on the well-posedness and regularity of the Zakharov- Kuznetsov (ZK) equation in the deterministic and stochastic cases, subjected to a rectangular domain in space dimensions 2 and 3. ZK equation is a multi-dimensional extension of the KdV equation.  

 

Mainly we have established the existence, in 3D, and uniqueness, in 2D, of the weak solutions, and the local and global existence of strong solutions in 3D. Then we extend the results to the stochastic case and obtain in 3the existence of martingale solutions, and in 2the pathwise uniqueness and existence of pathwise solutions. The main focus is on the mixed features of the partial hyperbolicity, nonlinearity, nonconventional boundary conditions,anisotropicity and stochasticity, which requires methods quite different than those of the classical models in fluid dynamics, such as the Navier-Stokes equation, Primitive Equation and related equations.

No Notes/Supplements Uploaded No Video Files Uploaded