Seminar
Parent Program: | |
---|---|
Location: | SLMath: Eisenbud Auditorium |
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification
No Primary AMS MSC
Secondary Mathematics Subject Classification
No Secondary AMS MSC
Whenever a deterministic system like an ODE or PDE does not possess an asymptotically stable constant solution but if noise is added then there exists a random attractor which consists of a single (random) point, then we call this phenomenon "synchronization by noise".
We first provide some specific examples and then present sufficient conditions for synchronization to occur. Our results can be applied to a large class of SDEs with additive noise and to rather general order-preserving random dynamical systems.
This is joint work with Franco Flandoli (Pisa) and Benjamin Gess (Leipzig).