Home /  Research Seminar: The Atlas model, in and out of equilibrium

Seminar

Research Seminar: The Atlas model, in and out of equilibrium December 02, 2015 (10:00 AM PST - 11:00 AM PST)
Parent Program:
Location: SLMath: Eisenbud Auditorium
Speaker(s) Amir Dembo (Stanford University)
Description No Description
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Video
No Video Uploaded
Abstract/Media

Consider a one-dimensional semi-infinite system of Brownian particles, starting at Poisson(L) point process on the positive half-line, with the left-most (Atlas) particle endowed a unit drift to the right. We show that for the equilibrium density (L=2), the asymptotic Gaussian space-time particle fluctuations are governed by the stochastic heat equation with Neumann boundary condition at zero. As a by product we resolve a conjecture of Pal and Pitman (2008) about the asympotic (random) fBM trajectory of the Atlas particle.

In a complementary work, we derive and explicitly solve the Stefan (free-boundary) equations for the limiting particle-profile when starting at out of equilibrium density (L other than 2). We thus determine the corresponding (non-random) asymptotic trajectory of the Atlas particle.

This talk is based on joint works with Li-Cheng Tsai, Manuel Cabezas, Andrey Sarantsev and Vladas Sidoravicius.

No Notes/Supplements Uploaded No Video Files Uploaded