Home /  SummerSchool /  Schedules /  Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications

Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications

Metric Geometry and Geometric Analysis (Oxford, United Kingdom) July 11, 2022 - July 22, 2022

July 21, 2022 (09:30 AM PDT - 10:30 AM PDT)
Speaker(s): Bruce Kleiner (New York University, Courant Institute)
Video

Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications 4

Abstract

The minicourse will cover some aspects of metric and analytical structure on boundaries of Gromov hyperbolic spaces, applications to rigidity, and open problem.

Recommended preparatory reading:
(1) Quasi-isometries and the Milnor-Svarc lemma.  Bridson-Haefliger I.8; Drutu-Kapovich
8.1-8.3.
(2) Gromov hyperbolic spaces: definitions, examples, Morse lemma on stability of
quasigeodesics, definition of the boundary.  Bridson-Haefliger.  III.H.1, III.H.3; Drutu-
Kapovich 11.1, 11.10, 11.11, 11.13.
(3) The theorems of Rademacher and Stepanov, Section 3 in Lectures on Lipschitz analysis,
Heinonen, available here: 
http://www.math.jyu.fi/research/reports/rep100.pdf#page=18

Supplements No Notes/Supplements Uploaded
Video/Audio Files

Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications 4

Troubles with video?

Please report video problems to itsupport@slmath.org.

See more of our Streaming videos on our main VMath Videos page.