Home /  Tenth Seminar on Analysis of Algorithms

Workshop

Tenth Seminar on Analysis of Algorithms June 14, 2004 - June 18, 2004
Registration Deadline: May 23, 2004 almost 21 years ago
To apply for Funding you must register by: March 14, 2004 about 21 years ago
Parent Program: --
Organizers P. Flajolet, P. Jacquet, H. Prodinger, G. Seroussi, R. Sedgewick, W. Szpankowski, B. Vallée, and M. Weinberger
Speaker(s)

Show List of Speakers

Description
The electronic journal Discrete Mathematics and Theoretical Computer Science defines the field of Analysis of Algorithms as follows: Analysis of algorithms is concerned with accurate estimates of complexity parameters of algorithms and aims at predicting the behavior of a given algorithm run in a given environment. It develops general methods for obtaining closed-form formulae, asymptotic estimates, and probability distributions for combinatorial or probabilistic quantities, that are of interest in the optimization of algorithms. Interest is also placed on the methods themselves, whether combinatorial, probabilistic, or analytic. Combinatorial and statistical properties of discrete structures (strings, trees, tries, dags, graphs, and so on) as well as mathematical objects (e.g., continued fractions, polynomials, operators) that are relevant to the design of efficient algorithms are investigated. Since its inception in 1963, the field has undergone substantial changes. We see now the emergence of combinatorial and asymptotic methods that allow the classification of data structures into broad categories that are amenable to a unified treatment. In recent years, probabilistic methods, which have been so successful in the study of random graphs and hard combinatorial optimization problems, have also been shown to play an important role in this field. These developments have two important consequences for the analysis of algorithms: it becomes possible to predict average behavior under more general probabilistic models than before; at the same time it becomes possible to analyze algorithms that are more structurally complex than before. To achieve these goals, the analysis of algorithms draws on a number of branches of mathematics: combinatorics, probability theory, graph theory, real and complex analysis, number theory, and occasionally algebra, geometry, operations research, and others. Information theory appears to be an area of strong synergy with analysis of algorithms. This synergy has already yielded very interesting results, such as the characterization of structural properties of the Lempel-Ziv parsing tree and a precise asymptotic characterization of the redundancy of the Lempel-Ziv data compression scheme. Thus, techniques from analysis of algorithms have given new insights into the structure of the algorithms used in information theory, as well as their information-theoretic performance. One of the goals of this workshop will be to explore this inter-disciplinary connection further. We anticipate that the workshop will include about 30 lectures and 5 plenary speakers.
Keywords and Mathematics Subject Classification (MSC)
Primary Mathematics Subject Classification No Primary AMS MSC
Secondary Mathematics Subject Classification No Secondary AMS MSC
Funding & Logistics Show All Collapse

Show Funding

To apply for funding, you must register by the funding application deadline displayed above.

All are welcome to apply for funding, including students and recent PhDs. Funding awards are typically made 6 weeks before the workshop begins. Requests received after the funding deadline are considered only if additional funds become available.

Show Lodging

For information about recommended hotels for visits of under 30 days, visit Short-Term Housing. Questions? Contact coord@slmath.org.

Show Directions to Venue

Show Visa/Immigration