Directed homotopy and homology theory, with an eye towards applications
Women in Topology November 29, 2017 - December 01, 2017
Location: SLMath: Eisenbud Auditorium
model categories
(∞ - 1)-categories
Directed algebraic topology
concurrency theory
54A20 - Convergence in general topology (sequences, filters, limits, convergence spaces, nets, etc.)
53B35 - Local differential geometry of Hermitian and Kählerian structures [See also 32Qxx]
2-Fajstrup
Directed spaces, i.e., topological spaces equipped with a “sense of direction” of some sort, arise naturally in applications of topology, in particular in computer science and in neuroscience, where they play an increasingly important role. It is natural to want to develop appropriate directed versions of familiar homotopy invariants, which turns out to be significantly harder than one might expect. For example, it is not clear how to formulate a good definition of “directed” homology, even when restricting to directed spaces built from simplices or cubes. To be of theoretical interest, directed homology should be an invariant of an acceptable notion of weak equivalence of directed spaces and should distinguish between at least some directed spaces with the same underlying undirected space. To be of practical interest for applications, it should also be reasonably computable.
- L. Fajstrup, E. Goubault, E. Haucourt, S. Mimram, M. Raussen, Directed Algebraic Topology and Concurrency, Springer Verlag, 2016.
- M. Grandis, Directed Algebraic Topology. Models of Non-reversible worlds. Cam- bridge University Press, 2010. Available from Grandis’ website http://www.dima.unige.it/∼ grandis/BkDAT page.html
- M. J. Dubut, “Directed homotopy and homology theories of geometric models of true concurrency” (2017 PhD thesis): http://www.lsv.fr/∼dubut/manuscript.pdf
Fajstrup Notes
|
Download |
2-Fajstrup
H.264 Video |
2-Fajstrup.mp4
|
Download |
Please report video problems to itsupport@slmath.org.
See more of our Streaming videos on our main VMath Videos page.